Sociodemographic and Clinical Determinants of Multimorbidity of Underlying Conditions That Increase the Risk of Severe Illness from COVID-19 in Chronic Adult Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Study Variables and Measures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Worldometer. COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/ (accessed on 17 August 2021).
- DGS. Ponto de Situação Atual em Portugal. Available online: https://covid19.min-saude.pt/ponto-de-situacao-atual-em-portugal/ (accessed on 17 August 2021).
- IHME. COVID-19 Vaccine Efficacy Summary. Available online: http://www.healthdata.org/covid/covid-19-vaccine-efficacy-summary (accessed on 17 August 2021).
- Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C.; Rodes-Guirao, L. A global database of COVID-19 vaccinations. Nat. Hum. Behav. 2021, 5, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Our World in Data. Coronavirus (COVID-19) Vaccinations. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 21 August 2021).
- Del Rio, C.; Malani, P. COVID-19 in 2021-continuing uncertainty. JAMA 2021, 325, 1389–1390. [Google Scholar] [CrossRef] [PubMed]
- CDC. Evidence Used to Update the List of Underlying Medical Conditions That Increase a Person’s Risk of Severe Illness from COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/underlying-evidence-table.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fhcp%2Fclinical-care%2Funderlying-evidence-table.html (accessed on 3 November 2020).
- Clark, A.; Jit, M.; Warren-Gash, C.; Guthrie, B.; Wang, H.H.X.; Mercer, S.W.; Sanderson, C.; McKee, M.; Troeger, C.; Ong, K.L.; et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: A modelling study. Lancet Glob. Health 2020, 8, e1003–e1017. [Google Scholar] [CrossRef]
- Visco, V.; Vitale, C.; Rispoli, A.; Izzo, C.; Virtuoso, N.; Ferruzzi, G.J.; Santopietro, M.; Melfi, A.; Rusciano, M.R.; Maglio, A.; et al. Post-COVID-19 syndrome: Involvement and interactions between respiratory, cardiovascular and nervous systems. J. Clin. Med. 2022, 11, 524. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.; Patel, K.; Pinto, C.; Jaiswal, R.; Tirupathi, R.; Pillai, S.; Patel, U. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)-a systematic review and meta-analysis. J. Med. Virol. 2022, 94, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef]
- Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Pilling, L.C.; Kuo, C.L.; Kuchel, G.A.; Melzer, D. Preexisting comorbidities predicting COVID-19 and mortality in the UK biobank community cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 2224–2230. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Guan, W.J.; Liang, W.H.; Zhao, Y.; Liang, H.R.; Chen, Z.S.; Li, Y.M.; Liu, X.Q.; Chen, R.C.; Tang, C.L.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with COVID-19 in china: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, X.; Jia, X.; Li, J.; Hu, K.; Chen, G.; Wei, J.; Gong, Z.; Zhou, C.; Yu, H.; et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin. Microbiol. Infect. 2020, 26, 767–772. [Google Scholar] [CrossRef]
- Violan, C.; Foguet-Boreu, Q.; Flores-Mateo, G.; Salisbury, C.; Blom, J.; Freitag, M.; Glynn, L.; Muth, C.; Valderas, J.M. Prevalence, determinants and patterns of multimorbidity in primary care: A systematic review of observational studies. PLoS ONE 2014, 9, e102149. [Google Scholar] [CrossRef] [PubMed]
- Prazeres, F.; Santiago, L. Prevalence of multimorbidity in the adult population attending primary care in Portugal: A cross-sectional study. BMJ Open 2015, 5, e009287. [Google Scholar] [CrossRef] [Green Version]
- Mair, F.S.; Foster, H.M.; Nicholl, B.I. Multimorbidity and the COVID-19 pandemic—An urgent call to action. J. Comorb. 2020, 10, 2235042X20961676. [Google Scholar] [CrossRef] [PubMed]
- Tisminetzky, M.; Delude, C.; Hebert, T.; Carr, C.; Goldberg, R.J.; Gurwitz, J.H. Age, multiple chronic conditions, and COVID-19: A literature review. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, glaa320. [Google Scholar] [CrossRef]
- Iaccarino, G.; Grassi, G.; Borghi, C.; Ferri, C.; Salvetti, M.; Volpe, M.; Investigators, S.-R. Age and multimorbidity predict death among COVID-19 patients: Results of the sars-ras study of the italian society of hypertension. Hypertension 2020, 76, 366–372. [Google Scholar] [CrossRef] [PubMed]
- McQueenie, R.; Foster, H.M.E.; Jani, B.D.; Katikireddi, S.V.; Sattar, N.; Pell, J.P.; Ho, F.K.; Niedzwiedz, C.L.; Hastie, C.E.; Anderson, J.; et al. Multimorbidity, polypharmacy, and COVID-19 infection within the UK biobank cohort. PLoS ONE 2020, 15, e0238091. [Google Scholar] [CrossRef]
- INE. Inquérito Nacional de Saúde. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=414434213&DESTAQUESmodo=2 (accessed on 5 August 2021).
- INE. Inquérito Nacional de Saúde 2019, Código 616/Versão 1—Documento Metodológico; DES/Serviço de Estatísticas das Condições de Vida: Lisboa, Portugal, 2019. [Google Scholar]
- Laires, P.A.; Nunes, C. Population-based estimates for high risk of severe COVID-19 disease due to age and underlying health conditions. Acta Med. Port. 2020, 33, 720–725. [Google Scholar] [CrossRef]
- Ajufo, E.; Rao, S.; Navar, A.M.; Pandey, A.; Ayers, C.R.; Khera, A.U.S. Population at increased risk of severe illness from COVID-19. Am. J. Prev. Cardiol. 2021, 6, 100156. [Google Scholar] [CrossRef]
- Thome, B.; Rezende, L.F.M.; Schveitzer, M.C.; Monteiro, C.N.; Goldbaum, M. Differences in the prevalence of risk factors for severe COVID-19 across regions of Sao Paulo city. Rev. Bras. Epidemiol. 2020, 23, e200087. [Google Scholar] [CrossRef]
- Hanlon, P.; Chadwick, F.; Shah, A.; Wood, R.; Minton, J.; McCartney, G.; Fischbacher, C.; Mair, F.S.; Husmeier, D.; Matthiopoulos, J.; et al. COVID-19—Exploring the implications of long-term condition type and extent of multimorbidity on years of life lost: A modelling study. Wellcome Open Res. 2020, 5, 75. [Google Scholar] [CrossRef] [Green Version]
- Ecks, S. Multimorbidity, polyiatrogenesis, and COVID-19. Med. Anthropol. Q. 2020, 34, 488–503. [Google Scholar] [CrossRef]
- Aoun, M.; Khalil, R.; Mahfoud, W.; Fatfat, H.; Bou Khalil, L.; Alameddine, R.; Afiouni, N.; Ibrahim, I.; Hassan, M.; Zarzour, H.; et al. Age and multimorbidities as poor prognostic factors for COVID-19 in hemodialysis: A Lebanese national study. BMC Nephrol. 2021, 22, 73. [Google Scholar] [CrossRef] [PubMed]
- Quinaz Romana, G.; Kislaya, I.; Salvador, M.R.; Cunha Goncalves, S.; Nunes, B.; Dias, C. Multimorbidity in Portugal: Results from the first national health examination survey. Acta Med. Port. 2019, 32, 30–37. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Public Health. Education: A neglected social determinant of health. Lancet Public Health 2020, 5, e361. [Google Scholar] [CrossRef]
- Rezende, L.F.M.; Thome, B.; Schveitzer, M.C.; Souza-Junior, P.R.B.; Szwarcwald, C.L. Adults at high-risk of severe coronavirus disease-2019 (COVID-19) in Brazil. Rev. Saude Publica 2020, 54, 50. [Google Scholar] [CrossRef]
- Li, H.L.; Cheung, B.M.Y. The proportion of adult Americans at risk of severe COVID-19 illness. J. Gen. Intern. Med. 2021, 36, 259–261. [Google Scholar] [CrossRef]
- Prazeres, F.; Santiago, L. Measuring multimorbidity in family practice-a comparison of two methods. Fam. Pract. 2018, 35, 571–575. [Google Scholar] [CrossRef]
- Nunes, B.P.; Souza, A.S.S.; Nogueira, J.; Andrade, F.B.; Thume, E.; Teixeira, D.; Lima-Costa, M.F.; Facchini, L.A.; Batista, S.R. Multimorbidity and population at risk for severe COVID-19 in the Brazilian longitudinal study of aging. Cad. Saude Publica 2020, 36, e00129620. [Google Scholar] [CrossRef]
- Shaaban, A.N.; Peleteiro, B.; Martins, M.R.O. COVID-19: What is next for Portugal? Front. Public Health 2020, 8, 392. [Google Scholar] [CrossRef]
n (%) | |
---|---|
Sex, women | 4760 (60.6) |
Age groups (years) | |
<65 | 3846 (48.9) |
65+ | 4013 (51.1) |
Living arrangements | |
Alone | 2429 (30.9) |
With someone | 5430 (69.1) |
Educational level | |
None | 1134 (14.4) |
Basic education (1st, 2nd, and 3rd levels) | 4890 (62.2) |
Secondary education | 871 (11.1) |
Higher education | 964 (12.3) |
Household Income | |
1st quintile | 1421 (18.1) |
2nd quintile | 2298 (29.2) |
3rd quintile | 1737 (22.1) |
4th quintile | 1234 (15.7) |
5th quintile | 1169 (14.9) |
Regions | |
North | 1120 (14.3) |
Central | 1486 (18.9) |
Lisbon and the Tagus Valley | 1230 (15.7) |
Alentejo | 1159 (14.7) |
Algarve | 787 (10.0) |
Madeira | 1126 (14.3) |
Azores | 951 (12.1) |
Medical conditions | |
Chronic kidney disease | 735 (9.4) |
COPD | 846 (10.8) |
Heart conditions | 882 (11.2) |
Obesity | 1822 (23.2) |
Smoking | 987 (12.6) |
Diabetes mellitus | 1737 (22.1) |
Self-reported health status, n = 7854 | |
“Bad to Very Bad” Health | 2018 (25.7) |
Functional capacity, n = 7834 | |
Limited and severely limited | 3848 (49.1) |
Healthcare appointments (previous 12 months) | |
With GPs, n = 7854 | 6699 (85.3) |
With other medical specialists, n = 7852 | 4548 (57.9) |
With psychologist, psychotherapist, or psychiatrist, n = 7846 | 1289 (16.4) |
Presence of Medical Conditions That Increase a Person’s Risk of Severe COVID-19, n (%) | ||||
---|---|---|---|---|
0 Conditions (n = 3128; 39.8%) | 1 Condition (n = 3017; 38.4%) | ≥2 Conditions (n = 1714; 21.8%) | p-Value a; Effect Size | |
Sex | <0.001; 0.08 | |||
Men | 1094 (35.3) | 1297 (41.9) | 708 (22.8) | |
Women | 2034 (42.7) | 1720 (36.1) | 1006 (21.1) | |
Age groups (years) | ||||
<65 years | 1692 (44.0) | 1475 (38.4) | 679 (17.7) | <0.001; 0.11 |
65+ years | 1436 (35.8) | 1542 (38.4) | 1035 (25.8) | |
Living arrangements | <0.001; 0.05 | |||
Alone | 885 (36.4) | 976 (40.2) | 568 (23.4) | |
With someone | 2243 (41.3) | 2041 (37.6) | 1146 (21.1) | |
Educational level | <0.001; 0.17 | |||
None | 382 (33.7) | 425 (37.5) | 327 (28.8) | |
Basic education (1st, 2nd, and 3rd levels) | 1793 (36.7) | 1907 (39.0) | 1190 (24.3) | |
Secondary education | 434 (49.8) | 345 (39.6) | 92 (10.6) | |
Higher education | 519 (53.8) | 340 (35.3) | 105 (10.9) | |
Household income | <0.001; 0.11 | |||
1st quintile | 515 (36.2) | 565 (39.8) | 341 (24.0) | |
2nd quintile | 878 (38.2) | 877 (38.2) | 543 (23.6) | |
3rd quintile | 627 (36.1) | 664 (38.2) | 446 (25.7) | |
4th quintile | 546 (44.2) | 462 (37.4) | 226 (18.3) | |
5th quintile | 562 (48.1) | 449 (38.4) | 158 (13.5) | |
Regions | <0.001; 0.07 | |||
North | 448 (40.0) | 449 (40.1) | 223 (19.9) | |
Central | 643 (43.3) | 526 (35.4) | 317 (21.3) | |
Lisbon and the Tagus Valley | 492 (40.0) | 480 (39.0) | 258 (21.0) | |
Alentejo | 452 (39.0) | 455 (39.3) | 252 (21.7) | |
Algarve | 329 (41.8) | 302 (38.4) | 156 (19.8) | |
Madeira | 448 (39.8) | 423 (37.6) | 255 (22.6) | |
Azores | 316 (33.2) | 382 (40.2) | 253 (26.6) | |
Self-reported health status | <0.001; 0.25 | |||
Very good | 106 (55.8) | 73 (38.4) | 11 (5.8) | |
Good | 835 (51.9) | 610 (37.9) | 165 (10.2) | |
Fair | 1630 (40.4) | 1588 (39.3) | 818 (20.3) | |
Bad | 443 (28.7) | 585 (37.9) | 517 (33.5) | |
Very bad | 112 (23.7) | 158 (33.4) | 203 (42.9) | |
Functional capacity | <0.001; 0.21 | |||
Severely limited | 242 (25.2) | 357 (37.1) | 363 (37.7) | |
Limited but not severely | 1016 (35.2) | 1096 (38.0) | 774 (26.8) | |
Not limited | 1855 (46.5) | 1555 (39.0) | 576 (14.5) | |
Healthcare appointments | ||||
With GPs,n = 7854 | <0.001; 0.07 | |||
<12 months | 2598 (38.8) | 2561 (38.2) | 1540 (23.0) | |
≥12 months or never | 528 (45.7) | 454 (39.3) | 173 (15.0) | |
With other medical specialists, n = 7852 | <0.001; 0.06 | |||
<12 months | 1750 (38.5) | 1709 (37.6) | 1089 (23.9) | |
≥12 months or never | 1377 (41.7) | 1304 (39.5) | 623 (18.9) | |
With psychologist, psychotherapist, or psychiatrist, n = 7846 | 0.005; 0.04 | |||
Yes | 562 (43.6) | 450 (34.9) | 277 (21.5) | |
No | 2563 (39.1) | 2563 (39.1) | 1431 (21.8) |
Initial Model | Final Model | |||
---|---|---|---|---|
EXP(B) [95% CI] | p-Value | EXP(B) [95% CI] | p-Value | |
Sex | ||||
Men | Reference | Reference | ||
Women | 0.82 [0.73; 0.93] | 0.002 | 0.79 [0.70; 0.88] | <0.001 |
Age | ||||
<65 years | Reference | |||
65+ years | 1.10 [0.96; 1.25] | 0.159 | ||
Living arrangements | ||||
With someone | Reference | |||
Alone | 1.05 [0.93; 1.20] | 0.418 | ||
Education level | ||||
None | Reference | Reference | ||
Basic education (1st, 2nd, and 3rd levels) | 0.99 [0.84; 1.16] | 0.859 | 0.98 [0.84; 1.14] | 0.755 |
Secondary education | 0.53 [0.40; 0.70] | <0.001 | 0.50 [0.38; 0.66] | <0.001 |
Higher education | 0.56 [0.41; 0.77] | <0.001 | 0.54 [0.42; 0.70] | <0.001 |
Household Income | ||||
1st quintile | Reference | |||
2nd quintile | 0.89 [0.74; 1.05] | 0.164 | ||
3rd quintile | 1.10 [0.92; 1.32] | 0.295 | ||
4th quintile | 0.95 [0.77; 1.16] | 0.594 | ||
5th quintile | 0.95 [0.73; 1.24] | 0.717 | ||
Regions | ||||
North | Reference | Reference | ||
Central | 1.02 [0.84; 1.25] | 0.815 | 1.03 [0.84; 1.26] | 0.787 |
Lisbon and the Tagus Valley | 1.20 [0.97; 1.47] | 0.097 | 1.19 [0.97; 1.47] | 0.097 |
Alentejo | 1.15 [0.93; 1.42] | 0.194 | 1.15 [0.93; 1.42] | 0.200 |
Algarve | 1.12 [0.88; 1.42] | 0.369 | 1.12 [0.88; 1.42] | 0.344 |
Azores | 1.70 [1.37; 2.12] | <0.001 | 1.70 [1.37; 2.11] | <0.001 |
Madeira | 1.40 [1.13; 1.73] | 0.002 | 1.39 [1.12; 1.72] | 0.002 |
Self-reported health status | ||||
Very good | Reference | Reference | ||
Good | 1.59 [0.84; 3.01] | 0.152 | 1.60 [0.85; 3.02] | 0.149 |
Fair | 2.55 [1.37; 4.77] | 0.003 | 2.60 [1.39; 4.87] | 0.003 |
Bad | 3.89 [2.05; 7.37] | <0.001 | 3.99 [2.10; 7.55] | <0.001 |
Very bad | 5.37 [2.77; 10.42] | <0.001 | 5.52 [2.85; 10.70] | <0.001 |
Functional capacity | ||||
Severely limited | Reference | Reference | ||
Limited but not severely | 0.83 [0.70; 0.99] | 0.038 | 0.83 [0.70; 0.99] | 0.035 |
Not limited | 0.57 [0.46; 0.69] | <0.001 | 0.56 [0.46; 0.69] | <0.001 |
Healthcare appointments | ||||
With GPs | ||||
≥12 months or never | Reference | Reference | ||
<12 months | 0.71 [0.59; 0.86] | <0.001 | 0.70 [0.59; 0.85] | <0.001 |
With other medical specialists | ||||
≥12 months or never | Reference | Reference | ||
<12 months | 0.80 [0.71; 0.90] | <0.001 | 0.80 [0.71; 0.89] | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prazeres, F.; Castro, L.; Teixeira, A. Sociodemographic and Clinical Determinants of Multimorbidity of Underlying Conditions That Increase the Risk of Severe Illness from COVID-19 in Chronic Adult Individuals. BioMed 2022, 2, 94-103. https://doi.org/10.3390/biomed2010010
Prazeres F, Castro L, Teixeira A. Sociodemographic and Clinical Determinants of Multimorbidity of Underlying Conditions That Increase the Risk of Severe Illness from COVID-19 in Chronic Adult Individuals. BioMed. 2022; 2(1):94-103. https://doi.org/10.3390/biomed2010010
Chicago/Turabian StylePrazeres, Filipe, Luísa Castro, and Andreia Teixeira. 2022. "Sociodemographic and Clinical Determinants of Multimorbidity of Underlying Conditions That Increase the Risk of Severe Illness from COVID-19 in Chronic Adult Individuals" BioMed 2, no. 1: 94-103. https://doi.org/10.3390/biomed2010010
APA StylePrazeres, F., Castro, L., & Teixeira, A. (2022). Sociodemographic and Clinical Determinants of Multimorbidity of Underlying Conditions That Increase the Risk of Severe Illness from COVID-19 in Chronic Adult Individuals. BioMed, 2(1), 94-103. https://doi.org/10.3390/biomed2010010