OAM of Light: Origins and Applications
Definition
1. Introduction
2. Physical Origin of the OAM
3. Applications of OAM
3.1. Atom Guiding, Telecommunications and Interferometry
3.1.1. Atom Guiding
3.1.2. Telecommunications
3.1.3. Interferences
3.2. OAM Transfer
3.2.1. OAM Transfer to Atoms and Molecules
3.2.2. OAM Transfer to Micro/Meso-Scopic Particles
3.2.3. OAM Transfer to Macroscopic Objects
3.3. Rotational Doppler Effect
3.3.1. Rotational Doppler Effect in Terms of Energy Conservation
3.3.2. Use of the Rotational Doppler Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boner, P.J. Kepler on the origins of comets: Applying earthly knowledge to celestial events. Nuncius 2006, 21, 31–47. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1904; Volume 2. [Google Scholar]
- Lebedev, P. Investigations on the pressure forces of light. Ann. Phys. 1901, 6, 433–458. [Google Scholar]
- Nichols, E.F.; Hull, G.F. A preliminary communication on the pressure of heat and light radiation. Phys. Rev. 1901, 13, 307. [Google Scholar] [CrossRef]
- Nichols, E.F.; Hull, G.F. The pressure due to radiation. Phys. Rev. 1903, 17, 26. [Google Scholar]
- Wright, J.L. Space Sailing; Taylor & Francis: Abingdon, UK, 1992. [Google Scholar]
- Vulpetti, G.; Johnson, L.; Matloff, G. Solar Sails: A Novel Approach to Interplanetary Travel, 2nd ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Verne, J. From the Earth to the Moon 1865; Baldick, R.; Baldick, W., Translators; Dent J. M. & Sons: London, UK, 1970. [Google Scholar]
- Chu, S. Nobel Lecture: The manipulation of neutral particles. Rev. Mod. Phys. 1998, 70, 685. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.N. Nobel Lecture: Manipulating atoms with photons. Rev. Mod. Phys. 1998, 70, 707. [Google Scholar] [CrossRef]
- Phillips, W.D. Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 1998, 70, 721. [Google Scholar] [CrossRef]
- Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970, 24, 156. [Google Scholar] [CrossRef]
- Beth, R.A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 1936, 50, 115. [Google Scholar] [CrossRef]
- Carrara, N. Torque and angular momentum of centimetre electromagnetic waves. Nature 1949, 164, 882–884. [Google Scholar] [CrossRef]
- Delannoy, G.; Emile, O.; Le Floch, A. Direct observation of a photon spin-induced constant acceleration in macroscopic systems. Appl. Phys. Lett. 2005, 86, 081109. [Google Scholar] [CrossRef]
- Friese, M.E.; Nieminen, T.A.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 1998, 394, 348–350, Erratum in Nature 1998, 395, 621. [Google Scholar] [CrossRef]
- He, H.; Friese, M.; Heckenberg, N.; Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 1995, 75, 826. [Google Scholar] [CrossRef]
- Emile, O.; Brousseau, C.; Emile, J.; Niemiec, R.; Madhjoubi, K.; Thide, B. Electromagnetically induced torque on a large ring in the microwave range. Phys. Rev. Lett. 2014, 112, 053902. [Google Scholar] [CrossRef]
- Brasselet, E. Torsion pendulum driven by the angular momentum of light: Beth’s legacy continues. Adv. Photon. 2023, 5, 034003. [Google Scholar] [CrossRef]
- Van Enk, S.; Nienhuis, G. Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields. J. Mod. Opt. 1994, 41, 963–977. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Bialynicka-Birula, Z. Canonical separation of angular momentum of light into its orbital and spin parts. J. Opt. 2011, 13, 064014. [Google Scholar] [CrossRef]
- Klimov, V.V.; Bloch, D.; Ducloy, M.; Rios Leite, J.R. Mapping of focused Laguerre-Gauss beams: The interplay between spin and orbital angular momentum and its dependence on detector characteristics. Phys. Rev. A 2012, 85, 053834. [Google Scholar] [CrossRef]
- Tamburini, F.; Mari, E.; Sponselli, A.; Thidé, B.; Bianchini, A.; Romanato, F. Encoding many channels on the same frequency through radio vorticity: First experimental test. New J. Phys. 2012, 14, 033001. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Phot. 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Thidé, B.; Tamburini, F.; Then, H.; Someda, C.; Ravanelli, R. The physics of angular momentum radio. arXiv 2014, arXiv:1410.4268. [Google Scholar]
- Barnett, S.M.; Babiker, M.; Padgett, M.J. Optical orbital angular momentum. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2017, 375, 20150444. [Google Scholar] [CrossRef]
- Padgett, M.J. Orbital angular momentum 25 years on. Opt. Express 2017, 25, 11265–11274. [Google Scholar] [CrossRef] [PubMed]
- Poynting, J. Containing papers of a mathematical and physical character. Proc. R. Soc. Lond. Ser. A 1909, 82, 560. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Bazhenov, V.Y.; Vasnetsov, M.; Soskin, M. Laser beams with screw dislocations in their wavefronts. JETP Lett. 1990, 52, 429–431. [Google Scholar]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.; Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef] [PubMed]
- Molina-Terriza, G.; Torres, J.P.; Torner, L. Twisted photons. Nat. Phys. 2007, 3, 305–310. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photon. 2011, 3, 161–204. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef]
- Otte, E.; Denz, C. Optical trapping gets structure: Structured light for advanced optical manipulation. Appl. Phys. Rev. 2020, 7, 041308. [Google Scholar] [CrossRef]
- Siegman, A.E. Lasers; University Science Books: Melville, NY, USA, 1986. [Google Scholar]
- Wang, X.; Nie, Z.; Liang, Y.; Wang, J.; Li, T.; Jia, B. Recent advances on optical vortex generation. Nanophotonics 2018, 7, 1533–1556. [Google Scholar] [CrossRef]
- Lian, Y.; Qi, X.; Wang, Y.; Bai, Z.; Wang, Y.; Lu, Z. OAM beam generation in space and its applications: A review. Opt. Lasers Eng. 2022, 151, 106923. [Google Scholar] [CrossRef]
- Bazhenov, V.Y.; Soskin, M.; Vasnetsov, M. Screw dislocations in light wavefronts. J. Mod. Opt. 1992, 39, 985–990. [Google Scholar] [CrossRef]
- Heckenberg, N.; McDuff, R.; Smith, C.; White, A. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 1992, 17, 221–223. [Google Scholar] [CrossRef]
- Forbes, A.; Dudley, A.; McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics 2016, 8, 200–227. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Allen, L.; Van der Veen, H.E.L.O.; Woerdman, J.P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 1993, 96, 123–132. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Coerwinkel, R.P.C.; Kristensen, M.; Woerdman, J.P. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 1994, 112, 321–327. [Google Scholar] [CrossRef]
- Labroille, G.; Denolle, B.; Jian, P.; Genevaux, P.; Treps, N.; Morizur, J.F. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express 2014, 22, 15599–15607. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Genevet, P.; Kats, M.A.; Antoniou, N.; Capasso, F. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett. 2013, 13, 4269–4274. [Google Scholar] [CrossRef]
- Devlin, R.C.; Ambrosio, A.; Rubin, N.A.; Mueller, J.P.B.; Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 2017, 358, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.L.; Ni, P.N.; Xie, Y.Y.; Genevet, P. On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces. Opto-Electron. Adv. 2025, 8, 240159. [Google Scholar] [CrossRef]
- Bisson, J.; Senatsky, Y.; Ueda, K.I. Generation of Laguerre-Gaussian modes in Nd: YAG laser using diffractive optical pumping. Laser Phys. Lett. 2005, 2, 327. [Google Scholar] [CrossRef]
- Forbes, A.; Mkhumbuza, L.; Feng, L. Orbital angular momentum lasers. Nat. Rev. Phys. 2024, 6, 352–364. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, G.; Li, J.; Li, J.; Wang, S.; Zhao, H.; Li, M.; Yue, Z.; Zhang, Y.; Zhang, Y.; et al. All-Dielectric Metasurface for Manipulating the Superpositions of Orbital Angular Momentum via Spin-Decoupling. Adv. Opt. Mater. 2021, 9, 2002007. [Google Scholar] [CrossRef]
- Zheng, C.; Li, J.; Liu, J.; Li, J.; Yue, Z.; Li, H.; Yang, F.; Zhang, Y.; Zhang, Y.; Yao, J. Creating Longitudinally Varying Vector Vortex Beams with an All-Dielectric Metasurface. Laser Photonics Rev. 2022, 16, 2200236. [Google Scholar] [CrossRef]
- Mei, F.; Qu, G.; Sha, X.; Han, J.; Yu, M.; Li, H.; Chen, Q.; Ji, Z.; Ni, J.; Qiu, C.W.; et al. Cascaded metasurfaces for high-purity vortex generation. Nat. Commun. 2023, 14, 6410. [Google Scholar] [CrossRef] [PubMed]
- Thidé, B.; Then, H.; Sjöholm, J.; Palmer, K.; Bergman, J.; Carozzi, T.D.; Istomin, Y.N.; Ibragimov, N.H.; Khamitova, R. Utilization of Photon Orbital Angular Momentum in the Low-Frequency Radio Domain. Phys. Rev. Lett. 2007, 99, 087701. [Google Scholar] [CrossRef] [PubMed]
- Grimm, R.; Weidemüller, M.; Ovchinnikov, Y.B. Optical dipole traps for neutral atoms. In Advances in Atomic, Molecular, and Optical Physics; Elsevier: Amsterdam, The Netherlands, 2000; Volume 42, pp. 95–170. [Google Scholar]
- Arnold, A.S. Extending dark optical trapping geometries. Opt. Lett. 2012, 37, 2505–2507. [Google Scholar] [CrossRef]
- Franke-Arnold, S. Optical angular momentum and atoms. Phil. Trans. R. Soc. A 2017, 375, 20150435. [Google Scholar] [CrossRef]
- Kuga, T.; Torii, Y.; Shiokawa, N.; Hirano, T.; Shimizu, Y.; Sasada, H. Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 1997, 78, 4713. [Google Scholar] [CrossRef]
- Ozeri, R.; Khaykovich, L.; Davidson, N. Long spin relaxation times in a single-beam blue-detuned optical trap. Phys. Rev. A 1999, 59, R1750, Erratum in Phys. Rev. A 2002, 65, 069903. [Google Scholar] [CrossRef]
- Olson, S.E.; Terraciano, M.L.; Bashkansky, M.; Fatemi, F.K. Cold-atom confinement in an all-optical dark ring trap. Phys. Rev. A 2007, 76, 061404. [Google Scholar] [CrossRef]
- Melo, B.; Brandão, I.; Pinheiro da, B.S.; Rodrigues, R.; Khoury, A.; Guerreiro, T. Optical trapping in a dark focus. Phys. Rev. Appl. 2020, 14, 034069. [Google Scholar] [CrossRef]
- Carrat, V.; Cabrera-Gutiérrez, C.; Jacquey, M.; Tabosa, J.W.; Viaris de Lesegno, B.; Pruvost, L. Long-distance channeling of cold atoms exiting a 2D magneto-optical trap by a Laguerre–Gaussian laser beam. Opt. Lett. 2014, 39, 719–722. [Google Scholar] [CrossRef]
- Pechkis, J.A.; Fatemi, F.K. Cold atom guidance in a capillary using blue-detuned, hollow optical modes. Opt. Express 2012, 20, 13409–13418. [Google Scholar] [CrossRef]
- He, X.; Xu, P.; Wang, J.; Zhan, M. Rotating single atoms in a ring lattice generated by a spatial light modulator. Opt. Express 2009, 17, 21007–21014. [Google Scholar] [CrossRef]
- Lee, W.; Kim, H.; Ahn, J. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps. Opt. Express 2016, 24, 9816–9825. [Google Scholar] [CrossRef]
- Amico, L.; Osterloh, A.; Cataliotti, F. Quantum many particle systems in ring-shaped optical lattices. Phys. Rev. Lett. 2005, 95, 063201. [Google Scholar] [CrossRef]
- Amico, L.; Boshier, M.; Birkl, G.; Minguzzi, A.; Miniatura, C.; Kwek, L.C.; Aghamalyan, D.; Ahufinger, V.; Anderson, D.; Andrei, N.; et al. Roadmap on Atomtronics: State of the art and perspective. AVS Quantum Sci. 2021, 3, 039201. [Google Scholar] [CrossRef]
- Franke-Arnold, S.; Leach, J.; Padgett, M.J.; Lembessis, V.E.; Ellinas, D.; Wright, A.J.; Girkin, J.M.; Öhberg, P.; Arnold, A.S. Optical ferris wheel for ultracold atoms. Opt. Express 2007, 15, 8619–8625. [Google Scholar] [CrossRef]
- Kennedy, S.A.; Biedermann, G.; Farrar, J.T.; Akin, T.; Krzyzewski, S.; Abraham, E. Confinement of ultracold atoms in a Laguerre–Gaussian laser beam created with diffractive optics. Opt. Commun. 2014, 321, 110–115. [Google Scholar] [CrossRef]
- Xu, D.; Qi, T.; Chen, Y.; Gao, W. Switchable optical ring lattice in free space. Opt. Express 2023, 31, 9416–9427. [Google Scholar] [CrossRef]
- Willner, A.E.; Pang, K.; Song, H.; Zou, K.; Zhou, H. Orbital angular momentum of light for communications. Appl. Phys. Rev. 2021, 8, 041312. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Li, S.; Zhao, Y.; Du, J.; Zhu, L. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics 2022, 11, 645–680. [Google Scholar] [CrossRef]
- Padgett, M.J.; Miatto, F.M.; Lavery, M.P.; Zeilinger, A.; Boyd, R.W. Divergence of an orbital-angular-momentum-carrying beam upon propagation. New J. Phys. 2015, 17, 023011. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, S.J.; Zhu, F.Q.; Shao, W.; Chen, M.S. Dimensional properties of Laguerre–Gaussian vortex beams. Appl. Opt. 2017, 56, 3556–3561. [Google Scholar] [CrossRef]
- Tamagnone, M.; Craeye, C.; Perruisseau-Carrier, J. Comment on ‘Encoding many channels on the same frequency through radio vorticity: First experimental test. New J. Phys. 2012, 14, 118001. [Google Scholar] [CrossRef]
- Edfors, O.; Johansson, A.J. Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area? IEEE Trans. Antennas Propag. 2012, 60, 1126–1131. [Google Scholar] [CrossRef]
- Tamburini, F.; Thidé, B.; Mari, E.; Sponselli, A.; Bianchini, A.; Romanato, F. Reply to Comment on Encoding many channels on the same frequency through radio vorticity: First experimental test. New J. Phys. 2012, 14, 118002. [Google Scholar] [CrossRef]
- Oldoni, M.; Spinello, F.; Mari, E.; Parisi, G.; Someda, C.G.; Tamburini, F.; Romanato, F.; Ravanelli, R.A.; Coassini, P.; Thidé, B. Space-division demultiplexing in orbital-angular-momentum-based MIMO radio systems. IEEE Trans. Antennas Propag. 2015, 63, 4582–4587. [Google Scholar] [CrossRef]
- Ferlic, N.A.; van Iersel, M.; Davis, C.C. Weak turbulence effects on different beams carrying orbital angular momentum. J. Opt. Soc. Am. A 2021, 38, 1423–1437. [Google Scholar] [CrossRef]
- Krenn, M.; Fickler, R.; Fink, M.; Handsteiner, J.; Malik, M.; Scheidl, T.; Ursin, R.; Zeilinger, A. Communication with spatially modulated light through turbulent air across Vienna. New J. Phys. 2014, 16, 113028. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Magaña-Loaiza, O.S.; O’Sullivan, M.N.; Rodenburg, B.; Malik, M.; Lavery, M.P.; Padgett, M.J.; Gauthier, D.J.; Boyd, R.W. High-dimensional quantum cryptography with twisted light. New J. Phys. 2015, 17, 033033. [Google Scholar] [CrossRef]
- Zhang, Y.; Bian, Y.; Li, Z.; Yu, S.; Guo, H. Continuous-variable quantum key distribution system: Past, present, and future. Appl. Phys. Rev. 2024, 11, 011318. [Google Scholar] [CrossRef]
- Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 2001, 412, 313–316. [Google Scholar] [CrossRef]
- Nagali, E.; Sansoni, L.; Sciarrino, F.; De Martini, F.; Marrucci, L.; Piccirillo, B.; Karimi, E.; Santamato, E. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nat. Photonics 2009, 3, 720–723. [Google Scholar] [CrossRef]
- Wang, X.L.; Cai, X.D.; Su, Z.E.; Chen, M.C.; Wu, D.; Li, L.; Liu, N.L.; Lu, C.Y.; Pan, J.W. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 2015, 518, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Forbes, A.; Nape, I. Quantum mechanics with patterns of light: Progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci. 2019, 1, 011701. [Google Scholar] [CrossRef]
- Leach, J.; Courtial, J.; Skeldon, K.; Barnett, S.M.; Franke-Arnold, S.; Padgett, M.J. Interferometric Methods to Measure Orbital and Spin, or the Total Angular Momentum of a Single Photon. Phys. Rev. Lett. 2004, 92, 013601. [Google Scholar] [CrossRef]
- Hickmann, J.; Fonseca, E.; Soares, W.; Chávez-Cerda, S. Unveiling a Truncated Optical Lattice Associated with a Triangular Aperture Using Light’s Orbital Angular Momentum. Phys. Rev. Lett. 2010, 105, 053904. [Google Scholar] [CrossRef]
- Emile, O.; Emile, J. Young’s double-slit interference pattern from a twisted beam. Appl. Phys. B 2014, 117, 487–491. [Google Scholar] [CrossRef]
- Emile, O.; Emile, J. Naked eye picometer resolution in a Michelson interferometer using conjugated twisted beams. Opt. Lett. 2017, 42, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Yuan, T.; Zhang, Y.; Wang, T.; Zhang, X. Recent progress on laser interferometry based on vortex beams: Status, challenges, and perspectives. Opt. Lasers Eng. 2024, 172, 107871. [Google Scholar] [CrossRef]
- Cheng, M.; Jiang, W.; Guo, L.; Li, J.; Forbes, A. Metrology with a twist: Probing and sensing with vortex light. Light Sci. Appl. 2025, 14, 4. [Google Scholar] [CrossRef]
- Andersen, M.; Ryu, C.; Cladé, P.; Natarajan, V.; Vaziri, A.; Helmerson, K.; Phillips, W.D. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett. 2006, 97, 170406. [Google Scholar] [CrossRef]
- Wright, K.; Leslie, L.; Bigelow, N. Optical control of the internal and external angular momentum of a Bose-Einstein condensate. Phys. Rev. A 2008, 77, 041601. [Google Scholar] [CrossRef]
- Emile, O.; Emile, J. Experimental analysis of submicrometer optical intensity distributions after an opaque disk. Appl. Opt. 2020, 59, 1678–1683. [Google Scholar] [CrossRef]
- Heeres, R.W.; Zwiller, V. Subwavelength focusing of light with orbital angular momentum. Nano Lett. 2014, 14, 4598–4601. [Google Scholar] [CrossRef]
- Sunaba, Y.; Ide, M.; Takei, R.; Sakai, K.; Pin, C.; Sasaki, K. Nano-shaping of chiral photons. Nanophotonics 2023, 12, 2499–2506. [Google Scholar] [CrossRef]
- Lu, Z.W.; Guo, L.; Li, Z.Z.; Ababekri, M.; Chen, F.Q.; Fu, C.; Lv, C.; Xu, R.; Kong, X.; Niu, Y.F.; et al. Manipulation of giant multipole resonances via vortex γ photons. Phys. Rev. Lett. 2023, 131, 202502. [Google Scholar] [CrossRef]
- Schmiegelow, C.T.; Schulz, J.; Kaufmann, H.; Ruster, T.; Poschinger, U.G.; Schmidt-Kaler, F. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 2016, 7, 12998. [Google Scholar] [CrossRef]
- Konzelmann, A.M.; Krüger, S.O.; Giessen, H. Interaction of orbital angular momentum light with Rydberg excitons: Modifying dipole selection rules. Phys. Rev. B 2019, 100, 115308. [Google Scholar] [CrossRef]
- Graß, T.; Bhattacharya, U.; Sell, J.; Hafezi, M. Two-dimensional excitons from twisted light and the fate of the photon’s orbital angular momentum. Phys. Rev. B 2022, 105, 205202. [Google Scholar] [CrossRef]
- Dasgupta, R.; Ahlawat, S.; Verma, R.S.; Gupta, P.K. Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode. Opt. Express 2011, 19, 7680–7688. [Google Scholar] [CrossRef] [PubMed]
- Bobkova, V.; Stegemann, J.; Droop, R.; Otte, E.; Denz, C. Optical grinder: Sorting of trapped particles by orbital angular momentum. Opt. Express 2021, 29, 12967–12975. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Y.X.; Chen, M.; Arita, Y.; Rosales-Guzmán, C. Optical trapping with structured light: A review. Adv. Photonics 2021, 3, 034001. [Google Scholar] [CrossRef]
- Geng, Y.; Tan, J.; Cao, Y.; Zhao, Y.; Liu, Z.; Ding, W. Giant and tunable optical torque for micro-motors by increased force arm and resonantly enhanced force. Sci. Rep. 2018, 8, 2819. [Google Scholar] [CrossRef]
- Andrews, D.L.; Bradshaw, D.S. Optofluidics: Lab-on-a-chip mixing and actuating flow. In Optical Nanomanipulation, 2nd ed.; IOP Publishing: Bristol, UK, 2022; pp. 11-1–11-6. [Google Scholar]
- Emile, O.; Le Meur, M.; Emile, J. Light angular momentum of a plane wave diffracted by a two-dimensional object. Phys. Rev. A 2014, 89, 013846. [Google Scholar] [CrossRef]
- Emile, O.; Emile, J. Rotation of millimeter-sized objects using ordinary light. Opt. Lett. 2016, 41, 211–214. [Google Scholar] [CrossRef]
- Emile, O.; Niemiec, R.; Brousseau, C.; Emile, J.; Mahdjoubi, K.; Wei, W.; Thide, B. Mechanism of angular momentum transfer from microwaves to a copper ring. Eur. Phys J. D 2016, 70, 172. [Google Scholar] [CrossRef]
- Emile, O.; Brousseau, C.; Emile, J.; Mahdjoubi, K. Energy and angular momentum transfers from an electromagnetic wave to a copper ring in the UHF band. Comptes Rendus Phys. 2017, 18, 137–143. [Google Scholar] [CrossRef]
- Emile, O.; Emile, J. Energy, linear momentum, and angular momentum of light: What do we measure? Ann. Phys. 2018, 530, 1800111. [Google Scholar] [CrossRef]
- Raman, C.; Bhagavantam, S. Experimental proof of the spin of the photon. Ind. J. Phys. 1931, 6, 353. [Google Scholar] [CrossRef]
- Longato, M.M.; Yotov, V.; Aglietti, G.S. A predictive model for reaction wheel assembly microvibration. Acta Astronaut. 2025, 230, 39–53. [Google Scholar] [CrossRef]
- Padgett, M. Electromagnetism: Like a speeding watch. Nature 2006, 443, 924. [Google Scholar] [CrossRef]
- Verne, J. Around the World in Eighty Days; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Padgett, M. Light’s twist. Proc. Math. Phys. Eng. Sci. 2014, 470, 20140633. [Google Scholar] [CrossRef]
- Emile, O.; Emile, J. Rotational Doppler effect: A review. Ann. Phys. 2023, 535, 2300250. [Google Scholar] [CrossRef]
- Lavery, M.P.; Speirits, F.C.; Barnett, S.M.; Padgett, M.J. Detection of a spinning object using light’s orbital angular momentum. Science 2013, 341, 537–540. [Google Scholar] [CrossRef]
- Lavery, M.P.; Barnett, S.M.; Speirits, F.C.; Padgett, M.J. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica 2014, 1, 1–4. [Google Scholar] [CrossRef]
- Fang, L.; Wan, Z.; Forbes, A.; Wang, J. Vectorial doppler metrology. Nat. Commun. 2021, 12, 4186. [Google Scholar] [CrossRef]
- Zhou, H.L.; Fu, D.Z.; Dong, J.J.; Zhang, P.; Chen, D.X.; Cai, X.L.; Li, F.L.; Zhang, X.L. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light Sci. Appl. 2017, 6, e16251. [Google Scholar] [CrossRef]
- Emile, O.; Emile, J. Is it Possible to Detect a Rotating Spherical Colloidal Particle? Adv. Photon. Res. 2025, 6, 2400098. [Google Scholar] [CrossRef]
- Ryabtsev, A.; Pouya, S.; Safaripour, A.; Koochesfahani, M.; Dantus, M. Fluid flow vorticity measurement using laser beams with orbital angular momentum. Opt. Express 2016, 24, 11762–11767. [Google Scholar] [CrossRef]
- Emile, O.; Emile, J. Fluid vortex mapping using the rotational Doppler effect. Appl. Phys. Lett. 2022, 120, 181101. [Google Scholar] [CrossRef]
- Robertson, E.; Cramer, T.; Holsenback, V.; Wiley, J.; Miller, J.; Johnson, E. Measurement of capillary wave phase velocity using orbital angular momentum (OAM) and the Doppler effect. In Proceedings of the 2023 IEEE Photonics Conference (IPC), Orlando, FL, USA, 12–16 November 2023; pp. 1–2. [Google Scholar]
- Emile, O.; Rochefort, G.; Le Stradic, K.; Emile, J. Air vortex detection using the rotational Doppler effect. Appl. Opt. 2024, 63, 7669–7673. [Google Scholar] [CrossRef]
- Emile, O.; Emile, J.; Brousseau, C.; Le Guennic, T.; Jian, P.; Labroille, G. Rotational Doppler shift from a rotating rod. Opt. Lett. 2021, 46, 3765–3768. [Google Scholar] [CrossRef]
- Emile, O.; Emile, J.; Brousseau, C.; le Guennic, T.; Jian, P.; Labroille, G. Rotational Doppler effect on reflection upon an ideal rotating propeller. J. Opt. Soc. Am. B 2022, 39, 1945–1949. [Google Scholar] [CrossRef]
- Emile, O.; Emile, J.; Brousseau, C.; Guennic, T.l.; Jian, P.; Labroille, G. Rotational Doppler shift of the light transmitted behind a rotating object with rotational symmetries: Rotational Doppler shift of the transmitted light. Eur. Phys. J. D 2022, 76, 8. [Google Scholar] [CrossRef]
- Ding, Y.; Ren, Y.; Liu, T.; Qiu, S.; Wang, C.; Li, Z.; Liu, Z. Analysis of misaligned optical rotational Doppler effect by modal decomposition. Opt. Express 2021, 29, 15288–15299. [Google Scholar] [CrossRef]
- Perger, M.; Anglada-Escudé, G.; Baroch, D.; Lafarga, M.; Ribas, I.; Morales, J.C.; Herrero, E.; Amado, P.J.; Barnes, J.R.; Caballero, J.; et al. A machine learning approach for correcting radial velocities using physical observables. Astron. Astrophys. 2023, 672, A118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emile, O.; Emile, J. OAM of Light: Origins and Applications. Encyclopedia 2025, 5, 152. https://doi.org/10.3390/encyclopedia5030152
Emile O, Emile J. OAM of Light: Origins and Applications. Encyclopedia. 2025; 5(3):152. https://doi.org/10.3390/encyclopedia5030152
Chicago/Turabian StyleEmile, Olivier, and Janine Emile. 2025. "OAM of Light: Origins and Applications" Encyclopedia 5, no. 3: 152. https://doi.org/10.3390/encyclopedia5030152
APA StyleEmile, O., & Emile, J. (2025). OAM of Light: Origins and Applications. Encyclopedia, 5(3), 152. https://doi.org/10.3390/encyclopedia5030152