Listericidal Novel Processing Technological Approaches for the Safety of Milk and Dairy Products: A Systematic Review
Abstract
1. Introduction
2. Methodology
2.1. Design
2.2. Eligibility Criteria
2.3. Search Strategy
2.4. Selection and Data Collection Process
2.5. Data Items and Effect Measures
2.6. Study Risk of Bias Assessment
2.7. Synthesis Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahraman, H.A.; Rugji, J.; Bektaş, T.; Erol, Z.; Tutun, H.; Keyvan, E. Inactivation of Listeria monocytogenes in Ready-to-Consume Liquid Infant Milk Treated with Ohmic Heating. Acta Sci. Technol. 2024, 46, e69714. [Google Scholar] [CrossRef]
- Melo, J.; Andrew, P.W.; Faleiro, M.L. Listeria monocytogenes in Cheese and the Dairy Environment Remains a Food Safety Challenge: The Role of Stress Responses. Food Res. Int. 2015, 67, 75–90. [Google Scholar] [CrossRef]
- Espí-Malillos, A.; López-Almela, I.; Ruiz-García, P.; López-Mendoza, M.C.; Carrón, N.; González-Torres, P.; Quereda, J.J. Raw Milk at Refrigeration Temperature Displays an Independent Microbiota Dynamic Regardless Listeria monocytogenes Contamination. Food Res. Int. 2025, 202, 115637. [Google Scholar] [CrossRef]
- Suresh, D.; Puttananjaiah, M.H.; Dhale, M.A. Listeria monocytogenes Isolated on Selective Chromogenic Plating Media Necessitates Further Characterization to Confirm Its Presence in Dairy Foods. Int. Dairy J. 2025, 164, 106197. [Google Scholar] [CrossRef]
- Domen, A.; Porter, J.; Johnson, J.; Molyneux, J.; McIntyre, L.; Kovacevic, J.; Waite-Cusic, J. Variability in Cadmium Tolerance of Closely Related Listeria monocytogenes Isolates Originating from Dairy Processing Environments. Appl. Environ. Microbiol. 2025, 91, e01281-24. [Google Scholar] [CrossRef]
- Kanca, N.; Avsar, Y.K. Cold Plasma Technology and Its Effects on Some Properties of Milk and Dairy Products. Ataturk Univ. J. Agric. Fac. 2023, 54, 89–94. [Google Scholar] [CrossRef]
- Everhart, E.; Carson, S.; Atkinson, K.; D’Amico, D.J. Commercial Bacteriophage Preparations for the Control of Listeria monocytogenes and Shiga Toxin-Producing Escherichia coli in Raw and Pasteurized Milk. Food Microbiol. 2025, 125, 104652. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Flores, K.; Sabillón, L.; Stratton, J.; Bianchini, A. Determination of an Effective Sanitizing Procedure for Listeria innocua in Personal Protective Equipment Used in Dairy Facilities. J. Food Prot. 2025, 88, 100455. [Google Scholar] [CrossRef]
- Abbas, H.M.; Altamim, E.A.; Salama, M.; Fouad, M.T.; Zahran, H.A. Cold Plasma Technology: A Sustainable Approach to Milk Preservation by Reducing Pathogens and Enhancing Oxidative Stability. Sustainability 2024, 16, 8754. [Google Scholar] [CrossRef]
- Atik, A.; Gumus, T. The Effect of Different Doses of UV-C Treatment on Microbiological Quality of Bovine Milk. LWT 2021, 136, 110322. [Google Scholar] [CrossRef]
- Araújo, A.; Barbosa, C.; Alves, M.R.; Romão, A.; Fernandes, P. Implications of Pulsed Electric Field Pre-Treatment on Goat Milk Pasteurization. Foods 2023, 12, 3913. [Google Scholar] [CrossRef]
- Zagorska, J.; Galoburda, R.; Raita, S.; Liepa, M. Inactivation and Recovery of Bacterial Strains, Individually and Mixed, in Milk after High Pressure Processing. Int. Dairy J. 2021, 123, 105147. [Google Scholar] [CrossRef]
- Cho, E.-R.; Kang, D.-H. Development and Investigation of Ultrasound-Assisted Pulsed Ohmic Heating for Inactivation of Foodborne Pathogens in Milk with Different Fat Content. Food Res. Int. 2024, 179, 113978. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Výrostková, J.; Pipová, M.; Semjon, B.; Jevinová, P.; Regecová, I.; Maľová, J. Antibacterial Effects of Hydrogen Peroxide and Caprylic Acid on Selected Foodborne Bacteria. Pol. J. Vet. Sci. 2020, 23, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Razavi, R.; Toosi, E.; Sheikholeslami, M.; Konjedi, M.; Hajian-Tilaki, A.; Najafi, A. Effect of Origanum onites L. Essential Oil and Cold Atmospheric Plasma on Physicochemical, Microbial, and Sensory Properties of Iranian White Cheese. J. Food Qual. 2024, 2024, 2308789. [Google Scholar] [CrossRef]
- Osaili, T.M.; Dhanasekaran, D.K.; Hasan, F.; Obaid, R.S.; Al-Nabulsi, A.A.; Olaimat, A.N.; Ismail, L.C.; Alkalbani, N.; Ayyash, M.; Bamigbade, G.B.; et al. Changes in Microbial Safety and Quality of High-Pressure Processed Camel Milk. Foods 2025, 14, 320. [Google Scholar] [CrossRef]
- Buzrul, S.; Cam, M.F. Determination of Time Required for 5 Log Reduction of Foodborne Pathogens by High Hydrostatic Pressure Processing in Foods. J. Food Process Eng. 2025, 48, e70044. [Google Scholar] [CrossRef]
- Lemos, Á.T.; Martins, A.P.; Delgadillo, I.; Saraiva, J.A. Low-Pressure Long-Time or Moderate Pressure Pasteurization at Room Temperature by Hyperbaric Inactivation as a New Nonthermal Preservation Approach—A Case Study on Milk. Food Microbiol. 2022, 105, 104031. [Google Scholar] [CrossRef]
- Pan, Y.; Cheng, J.-H.; Sun, D.-W. Oxidative Lesions and Post-Treatment Viability Attenuation of Listeria monocytogenes Triggered by Atmospheric Non-Thermal Plasma. J. Appl. Microbiol. 2022, 133, 2348–2360. [Google Scholar] [CrossRef]
- Gök, S.B.; Vetter, E.; Kromm, L.; Hansjosten, E.; Hensel, A.; Gräf, V.; Stahl, M. Inactivation of E. coli and L. innocua in Milk by a Thin Film UV-C Reactor Modified with Flow Guiding Elements (FGE). Int. J. Food Microbiol. 2021, 343, 109105. [Google Scholar] [CrossRef]
- Özkale, S.; Kahraman, H.A. Determination of the Effect of Milk Fat on the Inactivation of Listeria monocytogenes by Ohmic Heating. Ank. Üniversitesi Vet. Fakültesi Derg. 2023, 70, 277–283. [Google Scholar] [CrossRef]
- Ayyıldız, R.Y.; Kahraman, H.A. Ohmic Heating Application with Different Electric Fields on Inactivation of Listeria monocytogenes in Protein-Enriched Cow Milk. Pol. J. Vet. Sci. 2024, 27, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.B.; Scudini, H.; Ramos, G.L.P.A.; Pires, R.P.S.; Guimarães, J.T.; Balthazar, C.F.; Rocha, R.S.; Margalho, L.P.; Pimentel, T.C.; Siva, M.C.; et al. Ohmic Heating Processing of Milk for Probiotic Fermented Milk Production: Survival Kinetics of Listeria monocytogenes as Contaminant Post-Fermentation, Bioactive Compounds Retention and Sensory Acceptance. Int. J. Food Microbiol. 2021, 348, 109204. [Google Scholar] [CrossRef]
- Yan, B.; Nakamura, T.; Katsuki, S.; Masuda, N.; Shimizu, Y.; Sasahara, R.; Kurihara, J. Optimization of Co-Linear-Type Pulsed Electric Field Treatment Chamber for Milk Pasteurization. J. Food Eng. 2025, 388, 112373. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, W.; Yang, R. Response of Foodborne Pathogens to Pulse Electric Fields. In Stress Responses of Foodborne Pathogens; Springer International Publishing: Cham, Switzerland, 2022; pp. 251–280. ISBN 978-303090578-1. [Google Scholar]
- Ansari, M.F.; Afzal, F.; Mehra, S. Eradication of Enterobaracter aerogenes, Escherichia coli, Listeria monocytogene, Staphylococcus aurous, and Acetobacter by High Voltage Pulsed Electric Field in Water and Milk Samples. Biosci. Biotech. Res. Asia 2023, 20, 643–652. [Google Scholar] [CrossRef]
- Komora, N.; Maciel, C.; Pinto, C.A.; Ferreira, V.; Brandão, T.R.S.; Saraiva, J.M.A.; Castro, S.M.; Teixeira, P. Non-Thermal Approach to Listeria monocytogenes Inactivation in Milk: The Combined Effect of High Pressure, Pediocin PA-1 and Bacteriophage P100. Food Microbiol. 2020, 86, 103315. [Google Scholar] [CrossRef]
- Ruiz-De Anda, D.; Casados-Vázquez, L.E.; Ozuna, C. The Synergistic Effect of Thurincin H and Power Ultrasound: An Alternative for the Inactivation of Listeria innocua ATCC 33090 and Escherichia coli K-12 in Liquid Food Matrices. Food Control 2022, 135, 108778. [Google Scholar] [CrossRef]
- Mandal, R.; Pratap-Singh, A. Computational Fluid Dynamics Analysis and Biodosimetry-Based Microbial Validation for Continuous-Flow Pulsed UV Light Reactors for Processing of Model Liquid Foods. Food Bioprocess Technol. 2025, 18, 1656–1677. [Google Scholar] [CrossRef]
- Lanni, L.; Morena, V.; Scattareggia Marchese, A.; Destro, G.; Ferioli, M.; Catellani, P.; Giaccone, V. Challenge Test as Special Tool to Estimate the Dynamic of Listeria monocytogenes and Other Foodborne Pathogens. Foods 2021, 11, 32. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, J.; Luo, L.; Hong, Y.; Li, X.; Zhu, Y.; Wu, Y.; Bai, L. Thermal Inactivation Kinetics of Listeria monocytogenes in Milk under Isothermal and Dynamic Conditions. Food Res. Int. 2024, 179, 114010. [Google Scholar] [CrossRef] [PubMed]
- Leong, D.; NicAogáin, K.; Luque-Sastre, L.; McManamon, O.; Hunt, K.; Alvarez-Ordóñez, A.; Scollard, J.; Schmalenberger, A.; Fanning, S.; O’Byrne, C.; et al. A 3-Year Multi-Food Study of the Presence and Persistence of Listeria monocytogenes in 54 Small Food Businesses in Ireland. Int. J. Food Microbiol. 2017, 249, 18–26. [Google Scholar] [CrossRef] [PubMed]
Technology | Processing Parameters | Strains | Sample | Inactivation | Reference |
---|---|---|---|---|---|
High-Pressure Processing (HPP) | 10 °C; 350 MPa; time: 1, 2, 3, 4, 5 min. 4 °C and 10 °C; time: 0, 1, 4, 7, 10 days. | L. monocytogenes 7644 and GLM 5 | Camel milk | Reductions: 2 to 3 log CFU/mL. D-value: 3.77 ± 0.36 min. | [17] |
HPP | 400, 500, 550, 600 MPa Time: 15 to 30 min. Room temperature. Storage at 4 ± 1 °C for 1, 4, 6, 8, and 10 days. | L. monocytogenes ATCC 7644 | Ultrahigh-temperature-treated (UHT) milk (2% fat) | 104 and 107 CFU/mL. at 550 MPa/15 min. | [12] |
HPP | 600 MPa at 20–25 °C with holding times < 5 min. | L. monocytogenes Scott A | UHT whole milk | Time of reduction of 5 log (t5): 3.6 ± 0.2 min to 7.4 ± 1.5 min, depending on the strain. | [18] |
L. monocytogenes NCTC 10527 | |||||
L. monocytogenes 4a KUEN 136 | Raw whole milk | ||||
HPP | First cycle: 600 MPa/90 s. Second cycle: 600 MPa/120 s. | L. innocua ATCC 30090 | Raw bovine milk | 5.7 log CFU/mL. | [19] |
HPP | 600 MPa for 15 min. | L. monocytogenes ATCC 7644 | UHT milk 2% fat | ≥7 log reduction. | [20] |
Cold Plasma (CP) | CP: 70 kV/15 min. Storage at 5 ± 2 °C for 7 days. | L. monocytogenes ATCC 7644 | Raw Egyptian buffalo milk | 3 log CFU/mL. | [9] |
Atmospheric dielectric barrier discharge plasma | Input voltage: 50 V/Input power: 1000 W/Frequency: 10 kHz. Discharge gap of 5 mm between the quartz plate and sample surface. Exposure: 0, 30, 60, 90, and 120 s. | L. monocytogenes ATCC 19115 (G+) | Raw milk | Exposure > 120 s was more suitable for attenuating viability and avoiding recovery in raw milk within 7 days. | [20] |
UV-C light (UV-C) | Lamp: 253.7 nm/18 W. Flow rate: 5–18 mL/min/Temperature 4–25 °C in the D-Optimal Quadratic model. | L. monocytogenes ATCC 19115 | Milk | Reduction of 2.5 log CFU/mL. | [10] |
UV-C | 254 nm, flow rates: 30 and 100 L/h, cictinometric UV-C dose from 0 to 4169 ± 134 J/L. | L. innocua WS 2258 | Raw milk and UHT milk (3.8% and 0.3% fat) | 4.5 log CFU/mL. | [21] |
Ohmic heating (OH) | 5 V/cm, 10 V/cm, and 20 V/cm electric field. From 20 °C, to 62.5 °C, 5 min. | L. monocytogenes 4b (ATCC 13932) | UHT infant milk | 20 V/cm reduced below the detection limit at the 4th min. | [1] |
OH | 10 V/cm and 50 Hz from 23.8 °C, to 60 °C. | L. monocytogenes ATCC 13932 | Whole milk (3.1% fat), semi-skimmed milk (1.5%), and skimmed milk (0.1%) | Whole milk: 3.10 log CFU/mL. Semi-skimmed and skimmed milk: 5.30 log CFU/mL. | [22] |
OH | Electric field intensities: 10 V and 20 V/cm. From 23 °C to 63 °C. | L. monocytogenes 4b (ATCC 13932) | Enriched milk with protein (2.5%, 5%, 7.5%) | OH 10 V/cm, 2.5% protein, time of reduction 9 min: <1 log CFU/mL. OH 20 V/cm, 2.5% and 5% protein, 2 min 30 s: <1 log CFU/mL. | [23] |
OH | 0, 4, 6, and 8 V/cm, 90–95 °C/5 min. | L. monocytogenes ATCC BAA 751 | Whole raw milk (3.4% fat) for the elaboration of probiotic fermented milk | No viable cells (28 days) | [24] |
Colinear-type Pulse Electric Fields (PEFs) | Pressure: 0.5 MPa with nitrogen gas. Flow rate: 10 L/h, moderate heat treatment at 60 °C. PEF treatment chambers with the g values: 1, 3, and 5 mm/1 h. | L. innocua, strain not reported | Long-life milk | 7 log CFU/mL, 1 min. | [25] |
Pulse Electric Fields (PEFs) | 20 kV/cm, 55 °C. | L. monocytogenes, strain not reported | Skim milk | 4.5 log CFU/mL. | [26] |
32 kV/cm, 20 °C. | L. innocua, strain not reported | Liquid whey protein formulation | 6.5 log CFU/mL. | ||
High-Voltage Pulsed Electric Field (HV-PEF) | From 0 to 180 kV/cm, lab setting at 27–28 °C. | L. monocytogenes, strain not reported | Milk | An increase in pulse counts (at 100 pulses) led to a decrease in Survival Rate (0.001). | [27] |
Technology | Processing Parameters | Strains | Sample | Inactivation | Reference |
---|---|---|---|---|---|
Hydrogen peroxide (HP), caprylic acid (CA), and UV radiation | HP and CA: 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%. Exposure time: 15 min. UV: 260 nm. | L. monocytogenes CCM 5578 | Tile surface | 2 log CFU/mL. | [15] |
L. monocytogenes (isolated from raw milk sheep cheese ‘Bryndza’) | |||||
Ultrasound-assisted pulsed ohmic heating (POH) | 40 kHz and 50 W. 45, 50, 55, and 60 °C. 335, 475, and 525 s. | L. monocytogenes ATCC 19111, ATCC 19115, and ATCC 15313 | Whole milk (3.6% fat), low-fat milk (1.0% fat), and non-fat milk (0% fat) | 2 log CFU/mL. | [13] |
Origanum onites essential oil (OEO) and Cold Atmospheric Plasma (CAP) | OEO: 2000 and 3000 ppm. CAP: 3 and 7 min. Storage at 4 °C for 45 days. | L. monocytogenes ATCC 13076 | Iranian white cheese | E3000P7: <3.5 log CFU/mL. | [16] |
PEFs | Constant pulse: 50 μs, frequency: 3 Hz, electric field strength: 10 kV/cm, flow rate: 2.92 L/h. Thermal treatment at a flow rate of 10 L/h. Temperatures: 63, 66, 69, 72, and 75 °C, 2 s. | L. monocytogenes ATCC 13932 | UHT milk (1.5% fat) and raw goat milk | PEFs with thermal treatment: 5 log CFU/mL. PEFs without thermal treatment: 2.9 log CFU/mL. | [11] |
Mild HHP, phage ListexTM P100, and the bacteriocin pediocin PA-1 | Processing pressure of 200 and 300 MPa, 5 min, 10 °C. | L. monocytogenes Scott A (clinical isolate, ATCC 49594, serotype 4b); 1751 (isolated from dairy product, LRCESB, serotype 4b); ATCC 19116 (serotype 4c) L. innocua 2030c. | UHT whole milk (3.6% fat) | Non-recovery of L. monocytogenes during the shelf-life of milk at refrigeration temperatures. | [28] |
Application of PU in combination with Thurincin | Frequency: 20–25 kHz, nominal power: 150 W, ultrasonic energy density: 0.914–0.943 W/cm3, and temperature of 30 ± 5 °C in combination with thurincin H (40 μg/mL) | L. innocua ATCC 33090 | Ultra-pasteurized, partially skimmed milk enriched with vitamins A and D (28 g/L of butyric fat, 31 g/L of protein, and a pH of 6.5) | 0.7 log CFU/mL. | [29] |
Pulsed UV light (PUV) | Emission wavelength of 200–1100 nm, flow rate at 14.3–74.9 L/h; pulse frequency of 1–5 Hz; reactor configuration, annular (AT) and coiled tube (CT). Total delivered fluence 4.46 J/cm2 in the AT reactor and 22.47 J/cm2 for the CT reactor. | L. innocua 33090 (a surrogate for L. monocytogenes, given phenotypic similarity) | Skimmed milk | >3.5 log reduction. D-values (J/cm2) = 6.44. Reduction equivalent fluence (F0,REF (J/cm2) = 10.25 (AT), 119.5 (CT). | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Víquez-Barrantes, D.; Usaga, J.; García-Gimeno, R.M.; Posada-Izquierdo, G.D. Listericidal Novel Processing Technological Approaches for the Safety of Milk and Dairy Products: A Systematic Review. Encyclopedia 2025, 5, 143. https://doi.org/10.3390/encyclopedia5030143
Víquez-Barrantes D, Usaga J, García-Gimeno RM, Posada-Izquierdo GD. Listericidal Novel Processing Technological Approaches for the Safety of Milk and Dairy Products: A Systematic Review. Encyclopedia. 2025; 5(3):143. https://doi.org/10.3390/encyclopedia5030143
Chicago/Turabian StyleVíquez-Barrantes, Diana, Jessie Usaga, Rosa María García-Gimeno, and Guiomar Denisse Posada-Izquierdo. 2025. "Listericidal Novel Processing Technological Approaches for the Safety of Milk and Dairy Products: A Systematic Review" Encyclopedia 5, no. 3: 143. https://doi.org/10.3390/encyclopedia5030143
APA StyleVíquez-Barrantes, D., Usaga, J., García-Gimeno, R. M., & Posada-Izquierdo, G. D. (2025). Listericidal Novel Processing Technological Approaches for the Safety of Milk and Dairy Products: A Systematic Review. Encyclopedia, 5(3), 143. https://doi.org/10.3390/encyclopedia5030143