Integrated Fabry–Perot Cavities: A Quantum Leap in Technology
Definition
:1. The Advent of Integrated Fabry–Perot Cavities
2. The Challenges with Current Cavities
3. The Design of Integrated Fabry–Perot Cavities for Classical Light
4. Quantum Light in Cavity
5. Fundamental Principles of CQED
5.1. Strong Coupling Regime
5.2. Weak Coupling Regime
5.3. The Purcell Regime
5.4. Heralded Single Photon Emitters
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HPC | High-Performance Computing |
IFPC | Integrated Fabry–Perot Cavity |
Q | Quality Factor |
VM | Modal Volume |
CMOS | Complementary Metal Oxide Semiconductor |
NLAM | Non-Linear Atomic Memory |
CQED | Cavity Quantum Electrodynamics |
References
- Perot, A.; Fabry, C. On the Application of Interference Phenomena to the Solution of Various Problems of Spectroscopy and Metrology. Astrophys. J. 1899, 9, 87. [Google Scholar] [CrossRef]
- Protsenko, I.E.; Uskov, A.V. Quantum Fluctuations in the Small Fabry-Perot Interferometer. Symmetry 2023, 15, 346. [Google Scholar] [CrossRef]
- Iwaguchi, S.; Ishikawa, T.; Ando, M.; Michimura, Y.; Komori, K.; Nagano, K.; Akutsu, T.; Musha, M.; Yamada, R.; Watanabe, I.; et al. Quantum Noise in a Fabry-Perot Interferometer Including the Influence of Diffraction Loss of Light. Galaxies 2021, 9, 9. [Google Scholar] [CrossRef]
- Liu, Q.; Zeng, D.; Mei, C.; Li, H.; Huang, Q.; Zhang, X. Integrated photonic devices enabled by silicon traveling wave-like Fabry–Perot resonators. Opt. Express 2022, 30, 9450–9462. [Google Scholar] [CrossRef]
- Vahala, K.J. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef]
- Velha, P.; Picard, E.; Charvolin, T.; Hadji, E.; Rodier, J.C.; Lalanne, P.; Peyrade, D. Ultra-High Q/V Fabry-Perot microcavity on SOI substrate. Opt. Express 2007, 15, 16090–16096. [Google Scholar] [CrossRef]
- Azzini, S.; Grassani, D.; Galli, M.; Gerace, D.; Patrini, M.; Liscidini, M.; Velha, P.; Bajoni, D. Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities. Appl. Phys. Lett. 2013, 103, 031117. [Google Scholar] [CrossRef]
- Akahane, Y.; Asano, T.; Song, B.S.; Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 2003, 425, 944–947. [Google Scholar] [CrossRef]
- Soltani, M.; Yegnanarayanan, S.; Adibi, A. Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Opt. Express 2007, 15, 4694–4704. [Google Scholar] [CrossRef]
- Michael, C.P.; Borselli, M.; Johnson, T.J.; Chrystal, C.; Painter, O. An optical fiber-taper probe for wafer-scale microphotonic device characterization. Opt. Express 2007, 15, 4745–4752. [Google Scholar] [CrossRef]
- Armani, D.K.; Kippenberg, T.J.; Spillane, S.M.; Vahala, K.J. Ultra-high-Q toroid microcavity on a chip. Nature 2003, 421, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Painter, O.; Vahala, K.J. Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System. Phys. Rev. Lett. 2000, 85, 74–77. [Google Scholar] [CrossRef]
- Huang, L.; Jin, R.; Zhou, C.; Li, G.; Xu, L.; Overvig, A.; Deng, F.; Chen, X.; Lu, W.; Alù, A.; et al. Ultrahigh-Q guided mode resonances in an All-dielectric metasurface. Nat. Commun. 2023, 14, 3433. [Google Scholar] [CrossRef] [PubMed]
- Bin-Alam, M.S.; Reshef, O.; Mamchur, Y.; Alam, M.Z.; Carlow, G.; Upham, J.; Sullivan, B.T.; Ménard, J.M.; Huttunen, M.J.; Boyd, R.W.; et al. Ultra-high-Q resonances in plasmonic metasurfaces. Nat. Commun. 2021, 12, 974. [Google Scholar] [CrossRef]
- Ginis, V.; Benea-Chelmus, I.C.; Lu, J.; Piccardo, M.; Capasso, F. Resonators with tailored optical path by cascaded-mode conversions. Nat. Commun. 2023, 14, 495. [Google Scholar] [CrossRef] [PubMed]
- Velha, P.; Rodier, J.C.; Lalanne, P.; Hugonin, J.P.; Peyrade, D.; Picard, E.; Charvolin, T.; Hadji, E. Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide. New J. Phys. 2006, 8, 204. [Google Scholar] [CrossRef]
- Velha, P.; Rodier, J.C.; Lalanne, P.; Hugonin, J.P.; Peyrade, D.; Picard, E.; Charvolin, T.; Hadji, E. Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance. Appl. Phys. Lett. 2006, 89, 171121. [Google Scholar] [CrossRef]
- Lalanne, P.; Mias, S.; Hugonin, J.P. Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities. Opt. Express 2004, 12, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Lalanne, P.; Hugonin, J. Bloch-wave engineering for high-Q, small-V microcavities. IEEE J. Quantum Electron. 2003, 39, 1430–1438. [Google Scholar] [CrossRef]
- Velha, P.; Hugonin, J.P.; Lalanne, P. Compact and efficient injection of light into band-edge slow-modes. Opt. Express 2007, 15, 6102–6112. [Google Scholar] [CrossRef]
- Quan, Q.; Loncar, M. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Opt. Express 2011, 19, 18529–18542. [Google Scholar] [CrossRef] [PubMed]
- Lalouat, L.; Cluzel, B.; Velha, P.; Picard, E.; Peyrade, D.; Hugonin, J.P.; Lalanne, P.; Hadji, E.; de Fornel, F. Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity. Phys. Rev. B 2007, 76, 041102. [Google Scholar] [CrossRef]
- Philippe Lalanne, J.P.H. RETICOLO Software for Grating Analysis. 2021. Available online: https://arxiv.org/ftp/arxiv/papers/2101/2101.00901.pdf (accessed on 14 February 2024).
- Sauvan, C.; Lecamp, G.; Lalanne, P.; Hugonin, J. Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities. Opt. Express 2005, 13, 245–255. [Google Scholar] [CrossRef]
- Oskooi, A.; Mutapcic, A.; Noda, S.; Joannopoulos, J.D.; Boyd, S.P.; Johnson, S.G. Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides. Opt. Express 2012, 20, 21558–21575. [Google Scholar] [CrossRef]
- Baba, T. Slow light in photonic crystals. Nat. Photonics 2008, 2, 465–473. [Google Scholar] [CrossRef]
- Porzi, C.; Serafino, G.; Velha, P.; Ghelfi, P.; Bogoni, A. Integrated SOI High-Order Phase-Shifted Bragg Grating for Microwave Photonics Signal Processing. J. Lightwave Technol. 2017, 35, 4479–4487. [Google Scholar] [CrossRef]
- Reiserer, A.; Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 2015, 87, 1379–1418. [Google Scholar] [CrossRef]
- Emran, R.; Chalupnik, M.; Knall, E.N.; Riedinger, R.; Chia, C.; Loncar, M. Limitations in design and applications of ultra-small mode volume photonic crystals. arXiv 2024, arXiv:2402.00363. [Google Scholar]
- Gong, Y.; Ellis, B.; Shambat, G.; Sarmiento, T.; Harris, J.S.; Vukovic, J. Nanobeam photonic crystal cavity quantum dot laser. Opt. Express 2010, 18, 8781–8789. [Google Scholar] [CrossRef]
- Kiršanskė, G.; Thyrrestrup, H.; Daveau, R.S.; Dreeßen, C.L.; Pregnolato, T.; Midolo, L.; Tighineanu, P.; Javadi, A.; Stobbe, S.; Schott, R.; et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys. Rev. B 2017, 96, 165306. [Google Scholar] [CrossRef]
- Ataman, S. The quantum optical description of a Fabry-Perot interferometer and the prediction of an antibunching effect. Eur. Phys. J. D 2015, 187, 69. [Google Scholar] [CrossRef]
- Douglas, J.S.; Habibian, H.; Hung, C.L.; Gorshkov, A.V.; Kimble, H.J.; Chang, D.E. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photonics 2015, 9, 326–331. [Google Scholar] [CrossRef]
- Auffèves-Garnier, A.; Simon, C.; Gérard, J.M.; Poizat, J.P. Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys. Rev. A 2007, 75, 053823. [Google Scholar] [CrossRef]
- Aoki, T.; Dayan, B.; Wilcut, E.; Bowen, W.P.; Parkins, A.S.; Kippenberg, T.J.; Vahala, K.J.; Kimble, H.J. Observation of strong coupling between one atom and a monolithic microresonator. Nature 2006, 443, 671–674. [Google Scholar] [CrossRef]
- Basov, D.N.; Asenjo-Garcia, A.; Schuck, P.J.; Zhu, X.; Rubio, A. Polariton panorama. Nanophotonics 2021, 10, 549–577. [Google Scholar] [CrossRef]
- Galbiati, M.; Ferrier, L.; Solnyshkov, D.D.; Tanese, D.; Wertz, E.; Amo, A.; Abbarchi, M.; Senellart, P.; Sagnes, I.; Lemaître, A.; et al. Polariton Condensation in Photonic Molecules. Phys. Rev. Lett. 2012, 108, 126403. [Google Scholar] [CrossRef] [PubMed]
- Purcell, E.M. Proceedings of the American Physical Society. Phys. Rev. 1946, 69, 674. [Google Scholar] [CrossRef]
- Lei, Y.; Asadi, F.K.; Zhong, T.; Kuzmich, A.; Simon, C.; Hosseini, M. Quantum optical memory for entanglement distribution. Optica 2023, 10, 1511–1528. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velha, P. Integrated Fabry–Perot Cavities: A Quantum Leap in Technology. Encyclopedia 2024, 4, 622-629. https://doi.org/10.3390/encyclopedia4020039
Velha P. Integrated Fabry–Perot Cavities: A Quantum Leap in Technology. Encyclopedia. 2024; 4(2):622-629. https://doi.org/10.3390/encyclopedia4020039
Chicago/Turabian StyleVelha, Philippe. 2024. "Integrated Fabry–Perot Cavities: A Quantum Leap in Technology" Encyclopedia 4, no. 2: 622-629. https://doi.org/10.3390/encyclopedia4020039
APA StyleVelha, P. (2024). Integrated Fabry–Perot Cavities: A Quantum Leap in Technology. Encyclopedia, 4(2), 622-629. https://doi.org/10.3390/encyclopedia4020039