Optimization Examples for Water Allocation, Energy, Carbon Emissions, and Costs
Definition
:1. Introduction and Background Concepts
1.1. Integrated Water Resources Management Optimization Applications
1.2. Optimization Logic
2. Problem Definition
- SW: amount of surface water to use [m3 for a specific time, t] (>0);
- GW: amount of groundwater to use [m3 for a specific time, t] (>0);
- E: amount of non-renewable energy to produce [kWh for a specific time, t] (>0);
- ER: amount of renewable energy to produce [kWh for a specific time, t] (>0).
- SWA: Surface water use allowance (Surface water availability) [m3]. Surface water is considered to be a renewable supply source, in general (depending on the hydrological cycle). The amount of surface water we can exploit depends also on the infrastructure (dams and reservoirs, rainwater storage structures, etc.).
- GWA: Groundwater use allowance (Groundwater availability) [m3]. Groundwater is replenishing through infiltration, at a much lower rate than surface water, so it is considered to be a non-renewable supply source. Its availability for usage is determined by hydrological models that show what part of the groundwater stocks are renewable (groundwater recharge).
- TWA: Total Water Availability [m3]. This will be the sum of GWA and SWA.
- EA: Energy production capacity from non-renewable sources (Energy Availability) [kWh]. This will include power generation from sources that are finite and not naturally replenished within a human timescale, such as coal, natural gas, oil, or nuclear power.
- ERA: Energy production capacity from renewable sources (Energy Renewable Availability) [kWh]. This refers to the power generation from environmentally sustainable sources such as wind, solar, hydroelectric, or geothermal power.
- TEA: Total Energy Availability. This will be the sum of EA and ERA [kWh].
- WD: Water Demand (total) to cover the various uses (urban, agricultural, industrial) [m3].
- ED: Energy Demand (total) to cover the various uses (urban, agricultural, industrial) [kWh].
- GWC: Cost for using groundwater (e.g., pumping, treatment, works) [USD/m3].
- SWC: Cost for using surface water (e.g., storage and distribution works, treatment) [USD/m3].
- EC: Cost for using non-renewable energy (e.g., works, production, distribution) [USD/kWh].
- ERC: Cost for using renewable energy [USD/kWh].
- GWE: Groundwater-associated emissions (CO2 emissions resulting from water treatment and distribution) [kg CO2/m3].
- SWE: Surface water-associated emissions (CO2 emissions resulting from water treatment and distribution) [kg CO2/m3].
- EE: Non-renewable energy-associated emissions (CO2 emissions resulting from energy production and distribution) [kg CO2/kWh].
- ERE: Renewable energy-associated emissions (CO2 emissions resulting from energy production and distribution) [kg CO2/kWh].
- GHG: Emissions (maximum allowable CO2 emissions—Green-House-Gases) [kg CO2].
- B: Budget (maximum amount of money available to provide water and energy to serve the users) [USD].
- Not exceed the water availability;
- Not exceed the energy availability;
- Meet the water demand;
- Meet the energy demand;
- Not exceed the CO2 emissions based on the predefined level of allowable emissions (GHG);
- Not exceed the costs based on the available budget (B);
- Not exceed the groundwater available resources (avoid over-exploitation of non-renewable water stocks);
- Not exceed the surface water available to use (avoid over-pumping);
- Not exceed the energy production capacity from non-renewable sources;
- Not exceed the energy production capacity from renewable sources.
3. Linear Problem Formulation
4. Fuzzy Problem Formulation
- Alpha-Cut Level = 0: This corresponds to a crisp set and selects only elements with a membership degree of exactly 0. It effectively eliminates any uncertainty or fuzziness.
- Alpha-Cut Level = 0.5 (the “default” case): This is a common choice and represents a midpoint between the lowest and highest membership values in the fuzzy set. It provides a balanced estimate between conservative and optimistic scenarios.
- Alpha-Cut Level = 1: This corresponds to the highest membership degree and selects all elements with a membership degree of 1. It includes all elements in the fuzzy set.
- Alpha-Cut Level between 0 and 0.5: Lower alpha-cut levels select elements with lower membership values, making the estimate more conservative.
- Alpha-Cut Level between 0.5 and 1: Higher alpha-cut levels select elements with higher membership values, making the estimate more optimistic.
5. Dynamic Problem Formulation
- GWA: Groundwater use allowance (Groundwater availability) [m3/t];
- SWA: Surface water use allowance (Surface water availability) [m3/t];
- ERA: Energy production capacity from renewable sources (Energy Renewable Availability) [kWh/t];
- WD: the total water demand [m3/t].
- GWt: the amount of groundwater used at time t [m³].
- SWt: the amount of surface water used at time t [m³].
- Et: the amount of non-renewable energy produced at time t [kWh] (in this example we assume that this is constant, as usually the production of conventional energy sources is more controllable compared to the non-renewable sources).
- ERt: the amount of renewable energy produced at time t [kWh].
6. Multi-Objective Optimization—Goal Programming
7. Non-Linear Programming
8. Discussion
9. Conclusions and Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aalami, M.; Nourani, V.; Fazaeli, H. Developing a Surface Water Resources Allocation Model under Risk Conditions with a Multi-Objective Optimization Approach. Water Supply 2020, 20, 1167–1177. [Google Scholar] [CrossRef]
- Alamanos, A.; Xenarios, S.; Mylopoulos, N.; Stålnacke, P. Integrated Water Resources Management in Agro-Economy Using Linear Programming: The Case of Lake Karla Basin, Greece. Eur. Water 2017, 60, 41–47. [Google Scholar]
- Zhang, C.-Y.; Oki, T. Water Pricing Reform for Sustainable Water Resources Management in China’s Agricultural Sector. Agric. Water Manag. 2023, 275, 108045. [Google Scholar] [CrossRef]
- Dolan, F.; Lamontagne, J.; Link, R.; Hejazi, M.; Reed, P.; Edmonds, J. Evaluating the Economic Impact of Water Scarcity in a Changing World. Nat. Commun. 2021, 12, 1915. [Google Scholar] [CrossRef]
- Lukat, E.; Lenschow, A.; Dombrowsky, I.; Meergans, F.; Schütze, N.; Stein, U.; Pahl-Wostl, C. Governance towards Coordination for Water Resources Management: The Effect of Governance Modes. Environ. Sci. Policy 2023, 141, 50–60. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Hoekstra, A.Y.; Bunn, S.E.; Conway, D.; Gupta, J. Fresh Water Goes Global. Science 2015, 349, 478–479. [Google Scholar] [CrossRef]
- Garcia, J.A.; Alamanos, A. A Multi-Objective Optimization Framework for Water Resources Allocation Considering Stakeholder Input. Environ. Sci. Proc. 2023, 25, 32. [Google Scholar] [CrossRef]
- Ramadan, E.M.; Abdelwahab, H.F.; Vranayova, Z.; Zelenakova, M.; Negm, A.M. Optimization-Based Proposed Solution for Water Shortage Problems: A Case Study in the Ismailia Canal, East Nile Delta, Egypt. Water 2021, 13, 2481. [Google Scholar] [CrossRef]
- Martinsen, G.; Liu, S.; Mo, X.; Bauer-Gottwein, P. Joint Optimization of Water Allocation and Water Quality Management in Haihe River Basin. Sci. Total Environ. 2019, 654, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Farrokhzadeh, S.; Hashemi Monfared, S.A.; Azizyan, G.; Sardar Shahraki, A.; Ertsen, M.W.; Abraham, E. Sustainable Water Resources Management in an Arid Area Using a Coupled Optimization-Simulation Modeling. Water 2020, 12, 885. [Google Scholar] [CrossRef]
- Musa, A.A. Goal Programming Model for Optimal Water Allocation of Limited Resources under Increasing Demands. Environ. Dev. Sustain. 2021, 23, 5956–5984. [Google Scholar] [CrossRef]
- Fu, Q.; Li, T.; Cui, S.; Liu, D.; Lu, X. Agricultural Multi-Water Source Allocation Model Based on Interval Two-Stage Stochastic Robust Programming under Uncertainty. Water Resour. Manag. 2018, 32, 1261–1274. [Google Scholar] [CrossRef]
- Ahmad, A.; El-Shafie, A.; Razali, S.F.M.; Mohamad, Z.S. Reservoir Optimization in Water Resources: A Review. Water Resour. Manag. 2014, 28, 3391–3405. [Google Scholar] [CrossRef]
- Steele, J.C.; Mahoney, K.; Karovic, O.; Mays, L.W. Heuristic Optimization Model for the Optimal Layout and Pipe Design of Sewer Systems. Water Resour. Manag. 2016, 30, 1605–1620. [Google Scholar] [CrossRef]
- Wang, W.; Jia, B.; Simonovic, S.P.; Wu, S.; Fan, Z.; Ren, L. Comparison of Representative Heuristic Algorithms for Multi-Objective Reservoir Optimal Operation. Water Resour. Manag. 2021, 35, 2741–2762. [Google Scholar] [CrossRef]
- Stellingwerf, S.; Riddle, E.; Hopson, T.M.; Knievel, J.C.; Brown, B.; Gebremichael, M. Optimizing Precipitation Forecasts for Hydrological Catchments in Ethiopia Using Statistical Bias Correction and Multi-Modeling. Earth Space Sci. 2021, 8, e2019EA000933. [Google Scholar] [CrossRef]
- Ibrahim, K.S.M.H.; Huang, Y.F.; Ahmed, A.N.; Koo, C.H.; El-Shafie, A. A Review of the Hybrid Artificial Intelligence and Optimization Modelling of Hydrological Streamflow Forecasting. Alex. Eng. J. 2022, 61, 279–303. [Google Scholar] [CrossRef]
- Althoff, D.; Rodrigues, L.N. Goodness-of-Fit Criteria for Hydrological Models: Model Calibration and Performance Assessment. J. Hydrol. 2021, 600, 126674. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Ng, A.W.M.; Muthukumaran, S.; Perera, C.B.J. Optimization of Green Infrastructure Practices in Industrial Areas for Runoff Management: A Review on Issues, Challenges and Opportunities. Water 2020, 12, 1024. [Google Scholar] [CrossRef]
- Alamanos, A.; Papaioannou, G.; Varlas, G.; Markogianni, V.; Papadopoulos, A.; Dimitriou, E. Representation of a Post-Fire Flash-Flood Event Combining Meteorological Simulations, Remote Sensing, and Hydraulic Modeling. Land 2024, 13, 47. [Google Scholar] [CrossRef]
- Panahi, M.; Dodangeh, E.; Rezaie, F.; Khosravi, K.; Van Le, H.; Lee, M.-J.; Lee, S.; Thai Pham, B. Flood Spatial Prediction Modeling Using a Hybrid of Meta-Optimization and Support Vector Regression Modeling. CATENA 2021, 199, 105114. [Google Scholar] [CrossRef]
- Shishegar, S.; Duchesne, S.; Pelletier, G. Optimization Methods Applied to Stormwater Management Problems: A Review. Urban Water J. 2018, 15, 276–286. [Google Scholar] [CrossRef]
- Adedoja, O.S.; Hamam, Y.; Khalaf, B.; Sadiku, R. Towards Development of an Optimization Model to Identify Contamination Source in a Water Distribution Network. Water 2018, 10, 579. [Google Scholar] [CrossRef]
- Dai, D.; Alamanos, A.; Cai, W.; Sun, Q.; Ren, L. Assessing Water Sustainability in Northwest China: Analysis of Water Quantity, Water Quality, Socio-Economic Development and Policy Impacts. Sustainability 2023, 15, 11017. [Google Scholar] [CrossRef]
- Huang, Y.-K.; Bawa, R.; Mullen, J.; Hoghooghi, N.; Kalin, L.; Dwivedi, P. Designing Watersheds for Integrated Development (DWID): A Stochastic Dynamic Optimization Approach for Understanding Expected Land Use Changes to Meet Potential Water Quality Regulations. Agric. Water Manag. 2022, 271, 107799. [Google Scholar] [CrossRef]
- Kryston, A.; Müller, M.F.; Penny, G.; Bolster, D.; Tank, J.L.; Mondal, M.S. Addressing Climate Uncertainty and Incomplete Information in Transboundary River Treaties: A Scenario-Neutral Dimensionality Reduction Approach. J. Hydrol. 2022, 612, 128004. [Google Scholar] [CrossRef]
- Englezos, N.; Kartala, X.; Koundouri, P.; Tsionas, M.; Alamanos, A. A Novel HydroEconomic—Econometric Approach for Integrated Transboundary Water Management Under Uncertainty. Environ. Resour. Econ. 2023, 84, 975–1030. [Google Scholar] [CrossRef]
- Fu, J.; Zhong, P.-A.; Xu, B.; Zhu, F.; Chen, J.; Li, J. Comparison of Transboundary Water Resources Allocation Models Based on Game Theory and Multi-Objective Optimization. Water 2021, 13, 1421. [Google Scholar] [CrossRef]
- Mirzaei-Nodoushan, F.; Bozorg-Haddad, O.; Loáiciga, H.A. Evaluation of Cooperative and Non-Cooperative Game Theoretic Approaches for Water Allocation of Transboundary Rivers. Sci. Rep. 2022, 12, 3991. [Google Scholar] [CrossRef] [PubMed]
- Al-Jawad, J.Y.; Alsaffar, H.M.; Bertram, D.; Kalin, R.M. A Comprehensive Optimum Integrated Water Resources Management Approach for Multidisciplinary Water Resources Management Problems. J. Environ. Manag. 2019, 239, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Porse, E.; Mika, K.B.; Litvak, E.; Manago, K.F.; Hogue, T.S.; Gold, M.; Pataki, D.E.; Pincetl, S. The Economic Value of Local Water Supplies in Los Angeles. Nat. Sustain. 2018, 1, 289–297. [Google Scholar] [CrossRef]
- Alamanos, A.; Koundouri, P.; Papadaki, L.; Pliakou, T.; Toli, E. Water for Tomorrow: A Living Lab on the Creation of the Science-Policy-Stakeholder Interface. Water 2022, 14, 2879. [Google Scholar] [CrossRef]
- Koundouri, P.; Halkos, G.; Landis, C.F.M.; Alamanos, A. Ecosystem Services Valuation for Supporting Sustainable Life below Water. Sustain. Earth Rev. 2023, 6, 19. [Google Scholar] [CrossRef]
- Sadoff, C.W.; Borgomeo, E.; Uhlenbrook, S. Rethinking Water for SDG 6. Nat. Sustain. 2020, 3, 346–347. [Google Scholar] [CrossRef]
- Plagányi, É.; Kenyon, R.; Blamey, L.; Robins, J.; Burford, M.; Pillans, R.; Hutton, T.; Hughes, J.; Kim, S.; Deng, R.A.; et al. Integrated Assessment of River Development on Downstream Marine Fisheries and Ecosystems. Nat. Sustain. 2023, 7, 31–44. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D.; Li, T. Stochastic Multi-Objective Modeling for Optimization of Water-Food-Energy Nexus of Irrigated Agriculture. Adv. Water Resour. 2019, 127, 209–224. [Google Scholar] [CrossRef]
- Garcia, J.A.; Alamanos, A. Integrated Modelling Approaches for Sustainable Agri-Economic Growth and Environmental Improvement: Examples from Greece, Canada and Ireland. Land 2022, 11, 1548. [Google Scholar] [CrossRef]
- Næss, J.S.; Cavalett, O.; Cherubini, F. The Land–Energy–Water Nexus of Global Bioenergy Potentials from Abandoned Cropland. Nat. Sustain. 2021, 4, 525–536. [Google Scholar] [CrossRef]
- Hashmi, A.H.A.; Ahmed, S.A.S.; Hassan, I.H.I. Optimizing Pakistan’s Water Economy Using Hydro-Economic Modeling: Optimizing Pakistan’s Water Economy Using Hydro-Economic Modeling. J. Bus. Econ. 2019, 11, 111–124. [Google Scholar]
- Alamanos, A.; Koundouri, P. Emerging Challenges and the Future of Water Resources Management. In Hydrolink 2022/10. Madrid: International Association for Hydro-Environment Engineering and Research (IAHR); Henry: Karlsruhe, Germany, 2022; Available online: https://hdl.handle.net/20.500.11970/110818 (accessed on 8 December 2023).
- Pascual, A.; Giardina, C.P.; Povak, N.A.; Hessburg, P.F.; Heider, C.; Salminen, E.; Asner, G.P. Optimizing Invasive Species Management Using Mathematical Programming to Support Stewardship of Water and Carbon-Based Ecosystem Services. J. Environ. Manag. 2022, 301, 113803. [Google Scholar] [CrossRef]
- Abadie, L.M.; Markandya, A.; Neumann, M.B. Accounting for Economic Factors in Socio-Hydrology: Optimization under Uncertainty and Climate Change. Water 2019, 11, 2073. [Google Scholar] [CrossRef]
- Angeli, A.; Karkani, E.; Alamanos, A.; Xenarios, S.; Mylopoulos, N. Hydrological, Socioeconomic, Engineering and Water Quality Modeling Aspects for Evaluating Water Security: Experience from Greek Rural Watersheds. In Proceedings of the EGU General Assembly, Online, 4–8 May 2020; EGU: Vienna, Austria, 2020. [Google Scholar]
- Eisenstein, M. Natural Solutions for Agricultural Productivity. Nature 2020, 588, S58–S59. [Google Scholar] [CrossRef] [PubMed]
- Puy, A.; Massimi, M.; Lankford, B.; Saltelli, A. Irrigation Modelling Needs Better Epistemology. Nat. Rev. Earth Environ. 2023, 4, 427–428. [Google Scholar] [CrossRef]
- Allen, D.C.; Datry, T.; Boersma, K.S.; Bogan, M.T.; Boulton, A.J.; Bruno, D.; Busch, M.H.; Costigan, K.H.; Dodds, W.K.; Fritz, K.M.; et al. River Ecosystem Conceptual Models and Non-Perennial Rivers: A Critical Review. WIREs Water 2020, 7, e1473. [Google Scholar] [CrossRef] [PubMed]
- Dantzig, G.B.; Thapa, M.N. (Eds.) The Linear Programming Problem. In Linear Programming: 1: Introduction; Springer Series in Operations Research and Financial Engineering; Springer: New York, NY, USA, 1997; pp. 1–33. ISBN 978-0-387-22633-0. [Google Scholar]
- Bamisile, O.; Cai, D.; Adun, H.; Taiwo, M.; Li, J.; Hu, Y.; Huang, Q. Geothermal Energy Prospect for Decarbonization, EWF Nexus and Energy Poverty Mitigation in East Africa; the Role of Hydrogen Production. Energy Strategy Rev. 2023, 49, 101157. [Google Scholar] [CrossRef]
- Wang, X.; Bamisile, O.; Chen, S.; Xu, X.; Luo, S.; Huang, Q.; Hu, W. Decarbonization of China’s Electricity Systems with Hydropower Penetration and Pumped-Hydro Storage: Comparing the Policies with a Techno-Economic Analysis. Renew. Energy 2022, 196, 65–83. [Google Scholar] [CrossRef]
- Namany, S.; Al-Ansari, T.; Govindan, R. Sustainable Energy, Water and Food Nexus Systems: A Focused Review of Decision-Making Tools for Efficient Resource Management and Governance. J. Clean. Prod. 2019, 225, 610–626. [Google Scholar] [CrossRef]
- Azamathulla, H.M.; Wu, F.-C.; Ghani, A.A.; Narulkar, S.M.; Zakaria, N.A.; Chang, C.K. Comparison between Genetic Algorithm and Linear Programming Approach for Real Time Operation. J. Hydro-Environ. Res. 2008, 2, 172–181. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Guo, P.; Huo, Z. An Improved Interval-Based Fuzzy Credibility-Constrained Programming Approach for Supporting Optimal Irrigation Water Management under Uncertainty. Agric. Water Manag. 2020, 238, 106185. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Guo, S.; Zhang, F.; Guo, P. A Risk-Based Fuzzy Boundary Interval Two-Stage Stochastic Water Resources Management Programming Approach under Uncertainty. J. Hydrol. 2020, 582, 124553. [Google Scholar] [CrossRef]
- Jha, M.K.; Shekhar, A.; Jenifer, M.A. Assessing Groundwater Quality for Drinking Water Supply Using Hybrid Fuzzy-GIS-Based Water Quality Index. Water Res. 2020, 179, 115867. [Google Scholar] [CrossRef]
- Ji, L.; Wu, T.; Xie, Y.; Huang, G.; Sun, L. A Novel Two-Stage Fuzzy Stochastic Model for Water Supply Management from a Water-Energy Nexus Perspective. J. Clean. Prod. 2020, 277, 123386. [Google Scholar] [CrossRef]
- Cosic, A.; Stadler, M.; Mansoor, M.; Zellinger, M. Mixed-Integer Linear Programming Based Optimization Strategies for Renewable Energy Communities. Energy 2021, 237, 121559. [Google Scholar] [CrossRef]
- Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1994; ISBN 978-0-13-101171-7. [Google Scholar]
- Ross, T. Logic and Fuzzy Systems. In Fuzzy Logic with Engineering Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 117–173. ISBN 978-1-119-99437-4. [Google Scholar]
- Ghanbari, R.; Ghorbani-Moghadam, K.; Mahdavi-Amiri, N.; De Baets, B. Fuzzy Linear Programming Problems: Models and Solutions. Soft Comput. 2020, 24, 10043–10073. [Google Scholar] [CrossRef]
- Borovička, A. New Complex Fuzzy Multiple Objective Programming Procedure for a Portfolio Making under Uncertainty. Appl. Soft Comput. 2020, 96, 106607. [Google Scholar] [CrossRef]
- Brant, J.; Kauffman, G.J. PPI Water Resources and Environmental Depth Reference Manual for the Civil PE Exam—A Complete Reference Manual for the NCEES PE Civil Exam; PPI, a Kaplan Company: Fort Lauderdale, FL, USA, 2011; ISBN 978-1-59126-095-0. [Google Scholar]
- Kahraman, C. (Ed.) Fuzzy Multi-Criteria Decision Making; Springer Optimization and Its Applications; Springer US: Boston, MA, USA, 2008; Volume 16, ISBN 978-0-387-76812-0. [Google Scholar]
- Charnes, A.; Cooper, W.W. Management Models and Industrial Applications of Linear Programming, 1st ed.; John Wiley: Hoboken, NJ, USA, 1961. [Google Scholar]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D.; Li, T.; Zhou, Y. Managing Agricultural Water and Land Resources with Tradeoff between Economic, Environmental, and Social Considerations: A Multi-Objective Non-Linear Optimization Model under Uncertainty. Agric. Syst. 2020, 178, 102685. [Google Scholar] [CrossRef]
- Le, T.M.; Fatahi, B.; Khabbaz, H.; Sun, W. Numerical Optimization Applying Trust-Region Reflective Least Squares Algorithm with Constraints to Optimize the Non-Linear Creep Parameters of Soft Soil. Appl. Math. Model. 2017, 41, 236–256. [Google Scholar] [CrossRef]
- Becker, B.; Ochterbeck, D.; Piovesan, T. A Comparison of the Homotopy Method with Linearisation Approaches for a Non-Linear Optimization Problem of Operations in a Reservoir Cascade. Energy Syst. 2023. [Google Scholar] [CrossRef]
- Kruk, S. Practical Python AI Projects: Mathematical Models of Optimization Problems with Google OR-Tools; Apress: New York, NY, USA, 2018. [Google Scholar]
- Ommen, T.; Markussen, W.B.; Elmegaard, B. Comparison of Linear, Mixed Integer and Non-Linear Programming Methods in Energy System Dispatch Modelling. Energy 2014, 74, 109–118. [Google Scholar] [CrossRef]
- Jiménez, M.; Arenas, M.; Bilbao, A.; Rodríguez, M.V. Linear Programming with Fuzzy Parameters: An Interactive Method Resolution. Eur. J. Oper. Res. 2007, 177, 1599–1609. [Google Scholar] [CrossRef]
- Alamanos, A.; Garcia, J.; Linnane, S.; McGrath, T. Integrated Modelling for the Optimal Resource Use, Production-Economic Outputs, and Emissions Control: A Goal Programming Model for Irish Agriculture. In Proceedings of the 39th IAHR World Congress, Granada, Spain, 19–24 June 2022; IAHR: Granada, Spain, 2022. [Google Scholar]
- Yakowitz, S. Dynamic Programming Applications in Water Resources. Water Resour. Res. 1982, 18, 673–696. [Google Scholar] [CrossRef]
- Askew, A.J. Chance-Constrained Dynamic Programing and the Optimization of Water Resource Systems. Water Resour. Res. 1974, 10, 1099–1106. [Google Scholar] [CrossRef]
- Amini Fasakhodi, A.; Nouri, S.H.; Amini, M. Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach. Water Resour. Manag. 2010, 24, 4639–4657. [Google Scholar] [CrossRef]
- Zomorodian, M.; Lai, S.H.; Homayounfar, M.; Ibrahim, S.; Fatemi, S.E.; El-Shafie, A. The State-of-the-Art System Dynamics Application in Integrated Water Resources Modeling. J. Environ. Manag. 2018, 227, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Do, P.; Tian, F.; Zhu, T.; Zohidov, B.; Ni, G.; Lu, H.; Liu, H. Exploring Synergies in the Water-Food-Energy Nexus by Using an Integrated Hydro-Economic Optimization Model for the Lancang-Mekong River Basin. Sci. Total Environ. 2020, 728, 137996. [Google Scholar] [CrossRef] [PubMed]
- Sedighkia, M.; Abdoli, A. Balancing Environmental Impacts and Economic Benefits of Agriculture under the Climate Change through an Integrated Optimization System. Int. J. Energy Environ. Eng. 2022, 13, 1053–1066. [Google Scholar] [CrossRef]
- Nicklow, J.; Reed, P.; Savic, D.; Dessalegne, T.; Harrell, L.; Chan-Hilton, A.; Karamouz, M.; Minsker, B.; Ostfeld, A.; Singh, A.; et al. State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management. J. Water Resour. Plan. Manag. 2010, 136, 412–432. [Google Scholar] [CrossRef]
- Cai, X.; McKinney, D.C.; Lasdon, L.S. Solving Nonlinear Water Management Models Using a Combined Genetic Algorithm and Linear Programming Approach. Adv. Water Resour. 2001, 24, 667–676. [Google Scholar] [CrossRef]
- Alamanos, A.; Zeng, Q. Managing Scarce Water Resources for Socially Acceptable Solutions, through Hydrological and Econometric Modeling. Cent. Asian J. Water Res. 2021, 7, 84–101. [Google Scholar] [CrossRef]
Description | Weights w | “Intensive Economy” | “Middle Solution” | “Environmentalist” |
---|---|---|---|---|
Minimize Costs | 0.9 | 0.5 | 0.2 | |
Minimize Emissions | 0.1 | 0.4 | 1 | |
Minimize Groundwater use | 0.1 | 0.4 | 0.8 | |
Reach surface water use | 0.1 | 0.5 | 0.7 | |
Reach surface water use | 0.1 | 0.5 | 0.7 | |
Minimize non-renewable energy use | 0.3 | 0.6 | 0.8 | |
Maximize renewable energy use | 0.5 | 0.7 | 0.8 | |
Do not exceed water availability | 0.2 | 0.5 | 0.7 | |
Do not exceed energy availability | 0.2 | 0.3 | 0.5 | |
Meet Water Demand | 0.8 | 0.7 | 0.5 | |
Meet Water Demand | 0.8 | 0.7 | 0.5 | |
Meet Energy Demand | 0.8 | 0.6 | 0.4 | |
Meet Energy Demand | 0.8 | 0.6 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamanos, A.; Garcia, J.A. Optimization Examples for Water Allocation, Energy, Carbon Emissions, and Costs. Encyclopedia 2024, 4, 295-312. https://doi.org/10.3390/encyclopedia4010022
Alamanos A, Garcia JA. Optimization Examples for Water Allocation, Energy, Carbon Emissions, and Costs. Encyclopedia. 2024; 4(1):295-312. https://doi.org/10.3390/encyclopedia4010022
Chicago/Turabian StyleAlamanos, Angelos, and Jorge Andres Garcia. 2024. "Optimization Examples for Water Allocation, Energy, Carbon Emissions, and Costs" Encyclopedia 4, no. 1: 295-312. https://doi.org/10.3390/encyclopedia4010022
APA StyleAlamanos, A., & Garcia, J. A. (2024). Optimization Examples for Water Allocation, Energy, Carbon Emissions, and Costs. Encyclopedia, 4(1), 295-312. https://doi.org/10.3390/encyclopedia4010022