Human Power Production and Energy Harvesting
Definition
:1. Introduction
2. Energy Production in Sport
3. Energy Harvesting
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De La Mettrie, J.O. Machine Man and Other Writings; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Syvitski, J.; Waters, C.N.; Day, J.; Milliman, J.D.; Summerhayes, C.; Steffen, W.; Zalasiewicz, J.; Cearreta, A.; Gałuszka, A.; Hajdas, I.; et al. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Commun. Earth Environ. 2020, 1, 32. [Google Scholar] [CrossRef]
- Chen, J.; Bao, B.; Liu, J.; Wu, Y.; Wang, Q. Pendulum Energy Harvesters: A Review. Energies 2022, 15, 8674. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Staff, S. Harvesting Energy from Humans. Available online: https://www.popsci.com/environment/article/2009-01/harvestingenergy-humans/ (accessed on 17 April 2023).
- Mahapatra, S.D.; Mohapatra, P.C.; Aria, A.I.; Christie, G.; Mishra, Y.K.; Hofmann, S.; Thakur, V.K. Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Adv. Sci. 2021, 8, e2100864. [Google Scholar] [CrossRef] [PubMed]
- Homayounfar, S.Z.; Andrew, T.L. Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technol. 2020, 25, 9–24. [Google Scholar] [CrossRef]
- Robert Obrest. Available online: https://en.wikipedia.org/wiki/Robert_Oberst (accessed on 17 April 2023).
- Riemer, R.; Shapiro, A. Biomechanical energy harvesting from human motion:theory, state of the art, design guidelines and future directions. J. Neuroeng. Rehabil. 2011, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology: Energy, Nutrition, and Human Performance, 5th ed.; Lippincott, Williams & Wilkins: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Davies, C.T.; Sandstrom, E.R. Maximal mechanical power output and capacity of cyclists and young adults. Eur. J. Appl. Physiol. Occup. Physiol. 1989, 58, 838–844. [Google Scholar] [CrossRef]
- Garhammer, J. Power production by Olympic weightlifters. Med. Sci. Sports Exerc. 1980, 12, 54–60. [Google Scholar] [CrossRef]
- Soriano, M.A.; Kipp, K.; Lake, J.P.; Suchomel, T.J.; Marín, P.J.; Sainz De Baranda, M.P.; Comfort, P. Mechanical power production assessment during weightlifting exercises. A systematic review. Sport. Biomech. 2023, 22, 633–659. [Google Scholar] [CrossRef]
- Slawinski, J.; Termoz, N.; Rabita, G.; Guilhem, G.; Dorel, S.; Morin, J.B.; Samozino, P. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand. J. Med. Sci. Sports 2017, 27, 45–54. [Google Scholar] [CrossRef]
- Haugen, T.; Paulsen, G.; Seiler, S.; Sandbakk, Ø. New Records in Human Power. Int. J. Sports Physiol. Perform. 2018, 13, 678–686. [Google Scholar] [CrossRef]
- Izquierdo-Gabarren, M.; Expósito, R.G.; de Villarreal, E.S.; Izquierdo, M. Physiological factors to predict on traditional rowing performance. Eur. J. Appl. Physiol. 2010, 108, 83–89. [Google Scholar] [CrossRef]
- Swarén, M.; Eriksson, A. Power and pacing calculations based on real-time locating data from a cross-country skiing sprint race. Sport. Biomech. 2017, 3141, 1–12. [Google Scholar] [CrossRef]
- Poulianiti, K.P.; Havenith, G.; Flouris, A.D. Metabolic energy cost of workers in agriculture, construction, manufacturing, tourism, and transportation industries. Ind. Health 2019, 57, 283–305. [Google Scholar] [CrossRef] [Green Version]
- McGilvery, R.W. The use of fuels for muscular work. In Metabolic Adaptation to Prolonged Physical Exercise; Howald, H., Poortmans, J.R., Eds.; Birkhauser Verlag: Basel, Switzerland, 1975; pp. 12–30. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Hossain Polash, M.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Matos Ortiz, F.; Mohaddes, F.; et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2020, 258, 114069. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, M.; Tai, W.-C.; Zuo, L. Design and experimental studies of an energy harvesting backpack with mechanical motion rectification. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Portland, OR, USA, 12 April 2017. [Google Scholar]
- Martin, J.P.; Li, Q. Overground vs. treadmill walking on biomechanical energy harvesting: An energetics and EMG study. Gait Posture. 2017, 52, 124–128. [Google Scholar] [CrossRef]
- Jafek, A.; Salmon, J. A Systems Engineering Approach to Harnessing Human Energy in Public Places: A Feasibility Study. J. Energy Resour. Technol. 2017, 139, 041201. [Google Scholar] [CrossRef]
- Empowering Playgrounds. Available online: https://empowerplaygrounds.org (accessed on 17 April 2023).
- Bouchard-Roy, J.; Delnavaz, A.; Voix, J. In-Ear Energy Harvesting: Evaluation of the Power Capability of the Temporomandibular Joint. IEEE Sens. J. 2020, 20, 6338–6345. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, G.; Han, B.; Wu, L.; Li, H. Design of a Human Lower Limbs Exoskeleton for Biomechanical Energy Harvesting and Assist Walking. Energy Technol. 2021, 9, 2000726. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, X.; Zhang, Y.; Liu, Y.; Liu, Y.; Cao, W.; Chen, C. A New Portable Energy Harvesting Device Mounted on Shoes: Performance and Impact on Wearer. Energies 2020, 13, 3871. [Google Scholar] [CrossRef]
- Proto, A.; Penhaker, M.; Bibbo, D.; Vala, D.; Conforto, S.; Schmid, M. Measurements of Generated Energy/Electrical Quantities from Locomotion Activities Using Piezoelectric Wearable Sensors for Body Motion Energy Harvesting. Sensors 2016, 12, 524. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Li, Z.; Yu, J.; Ding, B. Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017, 40, 282–288. [Google Scholar] [CrossRef]
- Rome, L.C.; Flynn, L.; Evan, M.; Goldman, E.M.; Yoo, T.D. Generating Electricity While Walking with Loads. Science 2005, 309, 1725–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berdy, D.F.; Valentino, D.J.; Peroulis, D. Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester. Sens. Actuators A Phys. 2015, 222, 262–271. [Google Scholar] [CrossRef]
- Martin, J.P.; Li, Q. Generating electricity while walking with a medial-lateral oscillating load carriage device. R. Soc. Open Sci. 2019, 10, 182021. [Google Scholar] [CrossRef] [Green Version]
- Ling Xiao, A.; Kai, W.; Xiaobing, T.; Luo, J. Activity-specific caloric expenditure estimation from kinetic energy harvesting in wearable devices. Pervasive Mob. Comput. 2020, 67, 101185. [Google Scholar] [CrossRef]
- Dean, T. The Human-Powered Home: Choosing Muscles Over Motors; New Society Publishers: Gabriola Island, BC, Canada, 2013. [Google Scholar]
- Shin, H.D.; Bharma, T. Design for sustainable behaviour: A case study of using human-power as an everyday energy source. J. Des. Res. 2016, 14, 280. [Google Scholar] [CrossRef]
- Riaz, A.; Fariha, M.; Sourav, B. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity. Smart Mater. Struct. 2017, 26, 085031. [Google Scholar] [CrossRef]
- What If Your Footsteps Could Power Your City Sustainably? UrbanTimes. Available online: https://urbantimes.co/2012/10/footsteps-power-city-sustainably-pavegen-pavingtiles-smart/ (accessed on 17 April 2023).
- Birnbaum, S. Force on a Runner’s Foot. (Elert, G., Ed.). Available online: http://hypertextbook.com/facts/1999/SaraBirnbaum.shtml (accessed on 17 April 2023).
- Harvesting Energy form the Movement of Cows. Available online: https://www.tuni.fi/en/news/harvesting-energy-form-movement-cows#:~:text=%2C%E2%80%9D%20Bla%C5%BEevi%C4%87%20says.-,Electrical%20energy%20can%20be%20captured%20from%20the%20movement%20of%20animals,vibration%2C%20friction%20and%20temperature%20differences (accessed on 17 April 2023).
Energy Source | Production Rate and Peaks (W) |
---|---|
Olympic 50 m sprinter | 2000 |
Sprinting | 3440 |
Professional cyclist (1 h) | 400 |
Peak | 1100 |
Weightlifting | 6629 |
Vertical jump with run-up | 5600 |
Sprinters 100 m | 2392 |
Laborer (over 8 h) | 75 |
Agriculture (peak/min) | 420 |
One footstep | 2–5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicchella, A. Human Power Production and Energy Harvesting. Encyclopedia 2023, 3, 698-704. https://doi.org/10.3390/encyclopedia3020050
Cicchella A. Human Power Production and Energy Harvesting. Encyclopedia. 2023; 3(2):698-704. https://doi.org/10.3390/encyclopedia3020050
Chicago/Turabian StyleCicchella, Antonio. 2023. "Human Power Production and Energy Harvesting" Encyclopedia 3, no. 2: 698-704. https://doi.org/10.3390/encyclopedia3020050
APA StyleCicchella, A. (2023). Human Power Production and Energy Harvesting. Encyclopedia, 3(2), 698-704. https://doi.org/10.3390/encyclopedia3020050