Traumatic Optic Neuropathy: Update on Management
Definition
:1. Introduction or History
2. Pathophysiology
2.1. Reactive Oxygen Species
2.2. Neuroinflammation
2.3. The Role of Glutamate
3. Optic Nerve Injury Classification
3.1. Direct Injury
3.2. Indirect Injury
3.3. Injury Location
4. Diagnosis
4.1. Clinical Manifestation
- (1)
- An immediate or delayed loss of vision after an injury;
- (2)
- VF defects;
- (3)
- Impaired color vision;
- (4)
4.2. Imaging
4.3. CT Scan
4.4. MRI
4.5. Visual Pathway Electrophysiology
4.6. Electroretinograms and Flash Visual Evoked Potentials
4.7. Optical Coherence Tomography
4.8. Doppler Sonography
4.9. CLOSED Protocol
5. Clinical Management of TON
6. Medical Management
6.1. Corticosteroids
6.2. Erythropoietin
7. Surgical Management
8. Minimal Invasive Management
Endoscopic Optic Nerve Decompression
9. Experimental Treatments
9.1. Glutamate Antagonists
9.2. Crystallin
9.3. Citrus Naringenin
9.4. Anti-Inflammatory and Reactive Oxygen Species
9.5. Nerve Growth Factors
9.6. Mesenchymal Stem Cells
9.7. RNAs
9.8. Hypothermia
9.9. Lipids
9.10. Mitotherapy
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Karimi, S.; Arabi, A.; Ansari, I.; Shahraki, T.; Safi, S. A systematic literature review on traumatic optic neuropathy. J. Ophthalmol. 2021, 2021, 5553885. [Google Scholar] [CrossRef]
- Atkins, E.J.; Newman, N.J.; Biousse, V. Post-traumatic visual loss. Rev. Neurol. Dis. 2008, 5, 73. [Google Scholar]
- Cirovic, S.; Bhola, R.M.; Hose, D.R.; Howard, I.C.; Lawford, P.V.; E Marr, J.; A Parsons, M. Computer modelling study of the mechanism of optic nerve injury in blunt trauma. Br. J. Ophthalmol. 2006, 90, 778–783. [Google Scholar] [CrossRef] [Green Version]
- Sarkies, N. Traumatic optic neuropathy. Eye 2004, 18, 1122–1125. [Google Scholar] [CrossRef] [Green Version]
- Yu-Wai-Man, P.; Griffiths, P.G. Steroids for traumatic optic neuropathy. Cochrane Database Syst. Rev. 2013, 6, CD006032. [Google Scholar] [CrossRef] [Green Version]
- McClenaghan, F.; Ezra, D.; Holmes, S. Mechanisms and management of vision loss following orbital and facial trauma. Curr. Opin. Ophthalmol. 2011, 22, 426–431. [Google Scholar] [CrossRef]
- Steinsapir, K.D.; Goldberg, R.A. Traumatic optic neuropathy: An evolving understanding. Am. J. Ophthalmol. 2011, 151, 928–933.e2. [Google Scholar] [CrossRef]
- Crompton, M.R. Visual lesions in closed head injury. Brain 1970, 93, 785–792. [Google Scholar] [CrossRef]
- Seiff, S.R. High Dose Corticosteroids for Treatment of Vision Loss Due to Indirect Injury to the Optic Nerve; SLACK Incorporated Thorofare: West Deptford, NJ, USA, 1990; pp. 389–395. [Google Scholar]
- Mayercik, V.A.; Eller, A.W.; Stefko, S.T. Ocular injuries in all-terrain-vehicle accidents. Injury 2012, 43, 1462–1465. [Google Scholar] [CrossRef]
- Steinsapir, K.; Goldberg, R. Traumatic optic neuropathy: A critical update. Compr. Ophthalmol. Update 2005, 6, 11–21. [Google Scholar]
- Yoles, E.; Schwartz, M. Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve. Arch. Ophthalmol. 1998, 116, 906–910. [Google Scholar] [CrossRef] [Green Version]
- Sengottuvel, V.; Leibinger, M.; Pfreimer, M.; Andreadaki, A.; Fischer, D. Taxol facilitates axon regeneration in the mature CNS. J. Neurosci. 2011, 31, 2688–2699. [Google Scholar] [CrossRef] [Green Version]
- AAhmad, S.; Fatteh, N.; El-Sherbiny, N.M.; Naime, M.; Ibrahim, A.S.; El-Sherbini, A.M.; El-Shafey, S.A.; Khan, S.; Fulzele, S.; Gonzales, J.; et al. Potential role of A2A adenosine receptor in traumatic optic neuropathy. J. Neuroimmunol. 2013, 264, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Cansler, S.M.; Evanson, N.K. Connecting endoplasmic reticulum and oxidative stress to retinal degeneration, TBI, and traumatic optic neuropathy. J. Neurosci. Res. 2020, 98, 571–574. [Google Scholar] [CrossRef]
- Tao, W.; Dvoriantchikova, G.; Tse, B.C.; Pappas, S.; Chou, T.-H.; Tapia, M.; Porciatti, V.; Ivanov, D.; Tse, D.T.; Pelaez, D. A novel mouse model of traumatic optic neuropathy using external ultrasound energy to achieve focal, indirect optic nerve injury. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Tsai, R.K.; Chang, C.H.; Zu Wang, H. Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in neurodegeneration after optic nerve crush in rats. Exp. Eye Res. 2008, 87, 242–250. [Google Scholar] [CrossRef]
- Gupta, R.; Saha, P.; Sen, T.; Sen, N. An augmentation in histone dimethylation at lysine nine residues elicits vision impairment following traumatic brain injury. Free. Radic. Biol. Med. 2019, 134, 630–643. [Google Scholar] [CrossRef]
- Perri, E.R.; Thomas, C.J.; Parakh, S.; Spencer, D.M.; Atkin, J.D. The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Front. Cell Dev. Biol. 2016, 3, 80. [Google Scholar] [CrossRef] [Green Version]
- Tavender, T.J.; Bulleid, N.J. Molecular mechanisms regulating oxidative activity of the Ero1 family in the endoplasmic reticulum. Antioxid. Redox Signal. 2010, 13, 1177–1187. [Google Scholar] [CrossRef] [Green Version]
- Nadal-Nicolás, F.M.; Jiménez-López, M.; Salinas-Navarro, M.; Sobrado-Calvo, P.; Vidal-Sanz, M.; Agudo-Barriuso, M. Microglial dynamics after axotomy-induced retinal ganglion cell death. J. Neuroinflamm. 2017, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Heuss, N.D.; Pierson, M.J.; Roehrich, H.; McPherson, S.W.; Gram, A.L.; Li, L.; Gregerson, D. Optic nerve as a source of activated retinal microglia post-injury. Acta Neuropathol. Commun. 2018, 6, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, V.H.; Gordon, S. Modulation of CD4 antigen on macrophages and microglia in rat brain. J. Exp. Med. 1987, 166, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Stoll, G.; Trapp, B.D.; Griffin, J.W. Macrophage function during Wallerian degeneration of rat optic nerve: Clearance of degenerating myelin and Ia expression. J. Neurosci. 1989, 9, 2327–2335. [Google Scholar] [CrossRef] [Green Version]
- Tezel, G.; Yang, X.; Yang, J.; Wax, M.B. Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res. 2004, 996, 202–212. [Google Scholar] [CrossRef]
- Venters, H.D.; Dantzer, R.; Kelley, K.W. A new concept in neurodegeneration: TNFα is a silencer of survival signals. Trends Neurosci. 2000, 23, 175–180. [Google Scholar] [CrossRef]
- Fontaine, V.; Mohand-Said, S.; Hanoteau, N.; Fuchs, C.; Pfizenmaier, K.; Eisel, U. Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: Opposite roles of TNF receptor 1 and TNF receptor 2. J. Neurosci. 2002, 22, RC216. [Google Scholar] [CrossRef] [PubMed]
- Lam, D. Neurotransmitters in the vertebrate retina. Investig. Ophthalmol. Vis. Sci. 1997, 38, 553–556. [Google Scholar]
- Vorwerk, C.; Kreutz, M.; Böckers, T.; Brosz, M.; Dreyer, E.; Sabel, B. Susceptibility of retinal ganglion cells to excitotoxicity depends on soma size and retinal eccentricity. Curr. Eye Res. 1999, 19, 59–65. [Google Scholar] [CrossRef]
- Kageyama, T.; Ishikawa, A.; Tamai, M. Glutamate elevation in rabbit vitreous during transient ischemia-reperfusion. Jpn. J. Ophthalmol. 2000, 44, 110–114. [Google Scholar] [CrossRef]
- Mawrin, C.; Pap, T.; Pallas, M.; Dietzmann, K.; Behrens-Baumann, W.; Vorwerk, C.K. Changes of retinal glutamate transporter GLT-1 mRNA levels following optic nerve damage. Mol. Vis. 2003, 9, 10–13. [Google Scholar]
- Suzuki, H.; Oku, H.; Horie, T.; Morishita, S.; Tonari, M.; Oku, K.; Okubo, A.; Kida, T.; Mimura, M.; Fukumoto, M.; et al. Changes in expression of aquaporin-4 and aquaporin-9 in optic nerve after crushing in rats. PLoS ONE 2014, 9, e114694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.-N.; Sun, X.-L.; Gao, L.; Fan, Y.; Ding, J.-H.; Hu, G. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol. Cell. Neurosci. 2007, 34, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Gunnarson, E.; Zelenina, M.; Axehult, G.; Song, Y.; Bondar, A.; Krieger, P.; Brismar, H.; Zelenin, S.; Aperia, A. Identification of a molecular target for glutamate regulation of astrocyte water permeability. Glia 2008, 56, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Warner, N.; Eggenberger, E. Traumatic optic neuropathy: A review of the current literature. Curr. Opin. Ophthalmol. 2010, 21, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Sawhney, R.; Kochhar, S.; Gupta, R.; Jain, R.; Sood, S. Traumatic optic nerve avulsion: Role of ultrasonography. Eye 2003, 17, 667–670. [Google Scholar] [CrossRef]
- Petrarca, R.; Saldana, M. Choroidal rupture and optic nerve injury with equipment designated as ‘child-safe’. Case Rep. 2012, 2012, bcr2012006476. [Google Scholar] [CrossRef]
- Mauriello, J.A.; DeLuca, J.; Krieger, A.; Schulder, M.; Frohman, L. Management of traumatic optic neuropathy—A study of 23 patients. Br. J. Ophthalmol. 1992, 76, 349–352. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.R. Traumatic Optic Neuropathy. J. Neurol. Surg. Part B Skull Base 2021, 82, 107–115. [Google Scholar]
- Manson, P.N.; Stanwix, M.G.; Yaremchuk, M.J.; Nam, A.J.; Hui-Chou, H.; Rodriguez, E.D. Frontobasal fractures: Anatomical classification and clinical significance. Plast. Reconstr. Surg. 2009, 124, 2096–2106. [Google Scholar] [CrossRef]
- Chaon, B.C.; Lee, M.S. Is there treatment for traumatic optic neuropathy? Curr. Opin. Ophthalmol. 2015, 26, 445–449. [Google Scholar] [CrossRef]
- Sloan, T.; Sloan, H.; Rogers, J. Nitrous oxide and isoflurane are synergistic with respect to amplitude and latency effects on sensory evoked potentials. J. Clin. Monit. Comput. 2010, 24, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Zimmerer, R.; Rana, M.; Schumann, P.; Gellrich, N.-C. Diagnosis and treatment of optic nerve trauma. Facial Plast. Surg. 2014, 30, 518–527. [Google Scholar] [PubMed]
- Lin, J.; Hu, W.; Wu, Q.; Zhang, J.; Yan, W. An evolving perspective of endoscopic transnasal optic canal decompression for traumatic optic neuropathy in clinic. Neurosurg. Rev. 2021, 44, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, H.; Zhai, Q.; Li, H.; Wang, C.; Wang, Y. Traumatic optic neuropathy: A review of current studies. Neurosurg. Rev. 2022, 45, 1895–1913. [Google Scholar] [CrossRef]
- Soleimani, M.; Tabatabaei, S.A.; Alami, Z.; Alizadeh, M.; Movasat, M. Predictive value of visual evoked potentials, relative afferent pupillary defect, and orbital fractures in patients with traumatic optic neuropathy. Clin. Ophthalmol. (Auckland, NZ). 2011, 5, 1021. [Google Scholar] [CrossRef]
- Holmes, M.D.; Sires, B.S. Flash visual evoked potentials predict visual outcome in traumatic optic neuropathy. Ophthalmic Plast. Reconstr. Surg. 2004, 20, 342–346. [Google Scholar] [CrossRef]
- Seiff, S.R.; Berger, M.S.; Pitts, L.H.; Guyon, J. Computed tomographic evaluation of the optic canal in sudden traumatic blindness. Am. J. Ophthalmol. 1984, 98, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, S.J.; Raji, M.R.; Sprinkle, P.M.; Weinstein, G.W.; Minardi, L.M.; Swanson, T.J. Computerized tomographic scan findings in facial fractures associated with blindness. Plast. Reconstr. Surg. 1981, 68, 479–490. [Google Scholar] [CrossRef]
- Hathiram, B.T.; Khattar, V.S.; Sonawane, H.P.; Watve, P.J. Traumatic optic neuropathy—Our experience. Indian J. Otolaryngol. Head Neck Surg. 2010, 62, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Yu-Wai-Man, P. Traumatic optic neuropathy—Clinical features and management issues. Taiwan J. Ophthalmol. 2015, 5, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.-H.; Jeng, S.-F.; Lin, T.-S.; Kueh, N.-S.; Hsieh, C.-H. Predictive value of computed tomography in visual outcome in indirect traumatic optic neuropathy complicated with periorbital facial bone fracture. Clin. Neurol. Neurosurg. 2005, 107, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Dutton, G.; Al-Qurainy, I.; Stassen, L.; Titterington, D.; Moos, K.; El-Attar, A. Ophthalmic consequences of mid-facial trauma. Eye 1992, 6, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Bodanapally, U.; Shanmuganathan, K.; Shin, R.; Dreizin, D.; Katzman, L.; Reddy, R.; Mascarenhas, D. Hyperintense optic nerve due to diffusion restriction: Diffusion-weighted imaging in traumatic optic neuropathy. Am. J. Neuroradiol. 2015, 36, 1536–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Shi, W.; Li, M.; Wang, Z.; He, H.; Xian, J.; Lv, B.; Yan, F. Time-dependent diffusion tensor changes of optic nerve in patients with indirect traumatic optic neuropathy. Acta Radiol. 2014, 55, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Salvador, F.; Galan, A.; Gil-Gibernau, J.J. Aplasia of the Optic Nerve: Report of Three Cases; SLACK Incorporated Thorofare: West Deptford, NJ, USA, 1992; pp. 228–231. [Google Scholar]
- Gellrich, N. Controversies and current status of therapy of optic nerve damage in craniofacial traumatology and surgery. Mund-Kiefer-Und Gesichtschirurgie MKG 1999, 3, 176–194. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, A. Visual evoked potentials in optic nerve injury. Does it merit a mention? Acta Neurochir. 1991, 112, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.; Foroozan, R. Orbital apex syndrome. Curr. Opin. Ophthalmol. 2004, 15, 490–498. [Google Scholar] [CrossRef]
- Mine, S.; Yamakami, I.; Yamaura, A.; Hanawa, K.; Ikejiri, M.; Mizota, A.; Adachi-Usami, E. Outcome of traumatic optic neuropathy. Comparison between surgical and nonsurgical treatment. Acta Neurochir. 1999, 141, 27–30. [Google Scholar] [CrossRef]
- Kumaran, A.; Sundar, G.; Chye, L. Traumatic optic neuropathy: A review. Craniomaxillofacial Trauma Reconstr. 2015, 8, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Cunha, L.P.; Costa-Cunha, L.V.F.; Malta, R.F.S.; Monteiro, M.L.R. Comparison between retinal nerve fiber layer and macular thickness measured with OCT detecting progressive axonal loss following traumatic optic neuropathy. Arq. Bras. De Oftalmol. 2009, 72, 622–625. [Google Scholar] [CrossRef]
- Mohan, K.; Kecova, H.; Hernandez-Merino, E.; Kardon, R.H.; Harper, M.M. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3440–3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Wang, H.-Z.; Song, W.-X.; Yang, W.-L.; Li, W.-Y.; Wang, N.-L. Axonal loss and blood flow disturbances in the natural course of indirect traumatic optic neuropathy. Chin. Med. J. 2013, 126, 1292–1297. [Google Scholar] [PubMed]
- Ustymowicz, A.; Mariak, Z.; Obuchowska, I.; Mariak, Z.; Kochanowicz, J. Blood flow disturbances in the central retinal artery in patients with traumatic optic neuropathy. Med. Sci. Monitor 2009, 15, CR366–CR371. [Google Scholar]
- Shankar, H.; Pagel, P.S.; Warner, D.S. Potential adverse ultrasound-related biological effects: A critical review. J. Am. Soc. Anesthesiol. 2011, 115, 1109–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasulo, F.A.; Bertuetti, R. Transcranial Doppler and optic nerve sonography. J. Cardiothorac. Vasc. Anesth. 2019, 33, S38–S52. [Google Scholar] [CrossRef] [PubMed]
- Aspide, R.; Bertolini, G.; Albini Riccioli, L.; Mazzatenta, D.; Palandri, G.; Biasucci, D.G. A proposal for a new protocol for sonographic assessment of the optic nerve sheath diameter: The CLOSED protocol. Neurocritical Care 2020, 32, 327–332. [Google Scholar] [CrossRef]
- Ropposch, T.; Steger, B.; Meço, C.; Emesz, M.; Reitsamer, H.; Rasp, G.; Moser, G. The effect of steroids in combination with optic nerve decompression surgery in traumatic optic neuropathy. Laryngoscope 2013, 123, 1082–1086. [Google Scholar] [CrossRef]
- Yang, W.-G.; Chen, C.-T.; Tsay, P.-K.; de Villa, G.H.; Tsai, Y.-J.; Chen, Y.-R. Outcome for traumatic optic neuropathy-surgical versus nonsurgical treatment. Ann. Plast. Surg. 2004, 52, 36–42. [Google Scholar] [CrossRef]
- Hall, E.D. The neuroprotective pharmacology of methylprednisolone. J. Neurosurg. 1992, 76, 13–22. [Google Scholar] [CrossRef]
- Hall, E.D. Importance of pharmacologic considerations in the evaluation of new treatments for acute spinal cord injury. J. Neurotrauma 1992, 9, 173–176. [Google Scholar] [CrossRef]
- Steinsapir, K.D. Treatment of traumatic optic neuropathy with high-dose corticosteroid. J. Neuro-Ophthalmol. 2006, 26, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Flamm, E.S.; Demopoulos, H.B.; Seligman, M.L.; Poser, R.G.; Ransohoff, J. Free radicals in cerebral ischemia. Stroke 1978, 9, 445–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braughler, J.M.; Hall, E.D.; Means, E.D.; Waters, T.R.; Anderson, D.K. Evaluation of an intensive methylprednisolone sodium succinate dosing regimen in experimental spinal cord injury. J. Neurosurg. 1987, 67, 102–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.L.; Panje, W.R.; Gross, C.E. Optic nerve blindness following blunt forehead trauma. Ophthalmology 1982, 89, 445–455. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhu, Y.; Wu, L. Effect of high dosage of methylprednisolone on rat retinal ganglion cell apoptosis after optic nerve crush. Yan Ke Xue Bao (2016) 2004, 20, 181–186. [Google Scholar]
- Spoor, T.C.; Lensink, D.B.; Wilkinson, M.J.; Hartel, W.C. Treatment of traumatic optic neuropathy with corticosteroids. Am. J. Ophthalmol. 1990, 110, 665–669. [Google Scholar] [CrossRef]
- Chuenkongkaew, W.; Chirapapaisan, N. A prospective randomized trial of megadose methylprednisolone and high dose dexamethasone for traumatic optic neuropathy. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2002, 85, 597–603. [Google Scholar]
- Chatagner, A.; Hüppi, P.S.; Leuchter, R.H.-V.; Sizonenko, S. Érythropoïétine et neuroprotection. Arch. De Pédiatrie 2010, 17, S78–S84. [Google Scholar] [CrossRef]
- Kashkouli, M.B.; Pakdel, F.; Sanjari, M.S.; Haghighi, A.; Nojomi, M.; Homaee, M.H.; Heirati, A. Erythropoietin: A novel treatment for traumatic optic neuropathy—A pilot study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011, 249, 731–736. [Google Scholar] [CrossRef]
- Ohlsson, M.; Svensson, M. Early decompression of the injured optic nerve reduces axonal degeneration and improves functional outcome in the adult rat. Exp. Brain Res. 2007, 179, 121–130. [Google Scholar] [CrossRef]
- Niho, S.; Yasuda, K.; Sato, T.; Sugita, S.; Murayama, K.; Ogino, N. Decompression of the optic canal by the transethmoidal route. Am. J. Ophthalmol. 1961, 51, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Levin, L.A.; Beck, R.W.; Joseph, M.P.; Seiff, S.; Kraker, R.; Group IONTS. The treatment of traumatic optic neuropathy: The International Optic Nerve Trauma Study. Ophthalmology 1999, 106, 1268–1277. [Google Scholar] [CrossRef]
- Harris, J.N.; Miller, N.R. Traumatic optic neuropathy. In Emergencies of the Orbit and Adnexa; Springer: Berlin/Heidelberg, Germany, 2017; pp. 113–137. [Google Scholar]
- Matsuzaki, H.; Kunita, M.; Kawai, K. Optic nerve damage in head trauma: Clinical and experimental studies. Jpn. J. Ophthalmol. 1982, 26, 447–461. [Google Scholar] [PubMed]
- Joseph, M.P.; Lessell, S.; Rizzo, J.; Momose, K.J. Extracranial optic nerve decompression for traumatic optic neuropathy. Arch. Ophthalmol. 1990, 108, 1091–1093. [Google Scholar] [CrossRef] [PubMed]
- Girard, B.C.; Bouzas, E.A.; Lamas, G.; Soudant, J. Visual improvement after transethmoid-sphenoid decompression in optic nerve injuries. J. Clin. Neuro-Ophthalmol. 1992, 12, 142–148. [Google Scholar]
- Wei, W.; Zhao, S.-F.; Li, Y.; Zhang, J.-L.; Wu, J.-P.; Liu, H.-C.; Sun, S.; Song, G.-D.; Ma, J.-M.; Kang, J. The outcome of surgical and non-surgical treatments for traumatic optic neuropathy: A comparative study of 685 cases. Ann. Transl. Med. 2022, 10, 542. [Google Scholar] [CrossRef] [PubMed]
- Li, K.K.; Teknos, T.N.; Lai, A.; Lauretano, A.M.; Joseph, M.P. Traumatic optic neuropathy: Result in 45 consecutive surgically treated patients. Otolaryngol.—Head Neck Surg. 1999, 120, 5–11. [Google Scholar] [CrossRef]
- Sun, J.; Cai, X.; Zou, W.; Zhang, J. Outcome of endoscopic optic nerve decompression for traumatic optic neuropathy. Ann. Otol. Rhinol. Laryngol. 2021, 130, 56–59. [Google Scholar] [CrossRef]
- Dkhissi, O.; Chanut, E.; Wasowicz, M.; Savoldelli, M.; Nguyen-Legros, J.; Minvielle, F.; Versaux-Botteri, C. Retinal TUNEL-positive cells and high glutamate levels in vitreous humor of mutant quail with a glaucoma-like disorder. Investig. Ophthalmol. Vis. Sci. 1999, 40, 990–995. [Google Scholar]
- Woldemussie, E.; Yoles, E.; Schwartz, M.; Ruiz, G.; Wheeler, L.A. Neuroprotective effect of memantine in different retinal injury models in rats. J. Glaucoma 2002, 11, 474–480. [Google Scholar] [CrossRef]
- Schuettauf, F.; Naskar, R.; Vorwerk, C.K.; Zurakowski, D.; Dreyer, E.B. Ganglion cell loss after optic nerve crush mediated through AMPA-kainate and NMDA receptors. Investig. Ophthalmol. Vis. Sci. 2000, 41, 4313–4316. [Google Scholar]
- Zalish, M.; Lavie, V. Dexanabinol (HU-211) has a beneficial effect on axonal sprouting and survival after rat optic nerve crush injury. Vis. Res. 2003, 43, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Yurkewicz, L.; Weaver, J.; Bullock, M.R.; Marshall, L.F. The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. J. Neurotrauma 2005, 22, 1428–1443. [Google Scholar] [CrossRef]
- Wu, N.; Yu, J.; Chen, S.; Xu, J.; Ying, X.; Ye, M.; Li, Y.; Wang, Y. α-Crystallin protects RGC survival and inhibits microglial activation after optic nerve crush. Life Sci. 2014, 94, 17–23. [Google Scholar] [CrossRef]
- Fischer, D.; Hauk, T.G.; Müller, A.; Thanos, S. Crystallins of the β/γ-superfamily mimic the effects of lens injury and promote axon regeneration. Mol. Cell. Neurosci. 2008, 37, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qi, Y.; Niu, X.; Tang, H.; Meydani, S.N.; Wu, D. Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice. J. Nutr. Biochem. 2018, 54, 130–139. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Yang, C.; He, Y.; Arai, T.; Huang, Q.; Liu, X.; Miao, L. Citrus Naringenin Increases Neuron Survival in Optic Nerve Crush Injury Model by Inhibiting JNK-JUN Pathway. Int. J. Mol. Sci. 2021, 23, 385. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.T.; Tso, M. Nitric oxide synthase (NOS) inhibitors ameliorate retinal damage induced by ischemia in rats. Res. Commun. Mol. Pathol. Pharmacol. 1996, 92, 329–340. [Google Scholar]
- Min J-y Lv, Y.; Mao, L.; Gong Y-y Gu, Q.; Wei, F. A rodent model of anterior ischemic optic neuropathy (AION) based on laser photoactivation of verteporfin. BMC Ophthalmol. 2018, 18, 1–9. [Google Scholar]
- Huang, C.-T.; Wen, Y.-T.; Desai, T.D.; Tsai, R.-K. Intravitreal Injection of Long-Acting Pegylated Granulocyte Colony-Stimulating Factor Provides Neuroprotective Effects via Antioxidant Response in a Rat Model of Traumatic Optic Neuropathy. Antioxidants 2021, 10, 1934. [Google Scholar] [CrossRef]
- Sapieha, P.S.; Peltier, M.; Rendahl, K.G.; Manning, W.C.; Di Polo, A. Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol. Cell. Neurosci. 2003, 24, 656–672. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Weber, A.J. BDNF enhances retinal ganglion cell survival in cats with optic nerve damage. Investig. Ophthalmol. Vis. Sci. 2001, 42, 966–974. [Google Scholar]
- Group ACTS. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology 1996, 46, 1244. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-C.; Huang, W.-C.; Tsai, Y.-A.; Chen, Y.-C.; Cheng, H. Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: A preliminary Phase I clinical study. J. Neurosurg. Spine 2008, 8, 208–214. [Google Scholar] [CrossRef]
- Roy, F.H.; Fraunfelder, F.W.; Fraunfelder, F.T. Roy and Fraunfelder’s Current Ocular Therapy; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Cen, L.-P.; Ng, T.K.; Liang, J.-J.; Zhuang, X.; Yao, X.; Yam, G.H.-F.; Chen, H.; Cheung, H.S.; Zhang, M.; Pang, C.P. Human periodontal ligament-derived stem cells promote retinal ganglion cell survival and axon regeneration after optic nerve injury. Stem Cells 2018, 36, 844–855. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bai, X.; Guan, X.; Yuan, H.; Xu, X. Treatment of optic canal decompression combined with umbilical cord mesenchymal stem (stromal) cells for indirect traumatic optic neuropathy: A phase 1 clinical trial. Ophthalmic Res. 2021, 64, 398–404. [Google Scholar] [CrossRef]
- Park, K.K.; Liu, K.; Hu, Y.; Smith, P.D.; Wang, C.; Cai, B.; Xu, B.; Connolly, L.; Kramvis, I.; Sahin, M.; et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008, 322, 963–966. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Huo, Y.; Huang, C.-J.; Chen, C.-L.; Ye, J. MicroRNA-30b promotes axon outgrowth of retinal ganglion cells by inhibiting Semaphorin3A expression. Brain Res. 2015, 1611, 65–73. [Google Scholar] [CrossRef]
- Li, H.-J.; Pan, Y.-B.; Sun, Z.-L.; Sun, Y.-Y.; Yang, X.-T.; Feng, D.-F. Inhibition of miR-21 ameliorates excessive astrocyte activation and promotes axon regeneration following optic nerve crush. Neuropharmacology 2018, 137, 33–49. [Google Scholar] [CrossRef]
- Thomas, C.N.; Bernardo-Colón, A.; Courtie, E.; Essex, G.; Rex, T.S.; Blanch, R.J.; Ahmed, Z. Effects of intravitreal injection of siRNA against caspase-2 on retinal and optic nerve degeneration in air blast induced ocular trauma. Sci. Rep. 2021, 11, 16839. [Google Scholar] [CrossRef]
- Salido, E.M.; Dorfman, D.; Bordone, M.; Chianelli, M.; González Fleitas, M.F.; Rosenstein, R.E. Global and ocular hypothermic preconditioning protect the rat retina from ischemic damage. PLoS ONE 2013, 8, e61656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Tang, W. Changes of evoked potentials and evaluation of mild hypothermia for treatment of severe brain injury. Chin. J. Traumatol. Zhonghua Chuang Shang Za Zhi 2001, 4, 8–13. [Google Scholar] [PubMed]
- Liu, K.; Tedeschi, A.; Park, K.K.; He, Z. Neuronal intrinsic mechanisms of axon regeneration. Annu. Rev. Neurosci. 2011, 34, 131–152. [Google Scholar] [CrossRef] [PubMed]
- Pfenninger, K.H. Plasma membrane expansion: A neuron’s Herculean task. Nat. Rev. Neurosci. 2009, 10, 251–261. [Google Scholar] [CrossRef]
- Ziegler, A.B.; Thiele, C.; Tenedini, F.; Richard, M.; Leyendecker, P.; Hoermann, A.; Soba, P.; Tavosanis, G. Cell-autonomous control of neuronal dendrite expansion via the fatty acid synthesis regulator SREBP. Cell Rep. 2017, 21, 3346–3353. [Google Scholar] [CrossRef] [Green Version]
- Shabanzadeh, A.P.; Charish, J.; Tassew, N.G.; Farhani, N.; Feng, J.; Qin, X.; Sugita, S.; Mothe, A.J.; Wälchli, T.; Koeberle, P.D.; et al. Cholesterol synthesis inhibition promotes axonal regeneration in the injured central nervous system. Neurobiol. Dis. 2021, 150, 105259. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Cao, Y.; Zhang, M.; Wei, S. Sirtuin 1 regulates lipid metabolism associated with optic nerve regeneration. Mol. Med. Rep. 2015, 12, 6962–6968. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Shi, Z.; Su, H.; So, K.-F.; Cui, Q. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice. Exp. Eye Res. 2016, 148, 90–96. [Google Scholar] [CrossRef]
- Silva, R.V.; Oliveira, J.T.; Santos, B.L.R.; Dias, F.C.; Martinez, A.M.B.; Lima, C.K.F.; Miranda, A.L.P. Long-chain omega-3 fatty acids supplementation accelerates nerve regeneration and prevents neuropathic pain behavior in mice. Front. Pharmacol. 2017, 8, 723. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Wang, X.; Wang, J.; Wang, X.; Chen, W.; Lu, N.; Siniossoglou, S.; Yao, Z.; Liu, K. Rewiring neuronal glycerolipid metabolism determines the extent of axon regeneration. Neuron 2020, 105, 276–292.e5. [Google Scholar] [CrossRef]
- Stark, D.T.; Anderson, D.M.G.; Kwong, J.M.K.; Patterson, N.H.; Schey, K.L.; Caprioli, R.M.; Caprioli, J. Optic nerve regeneration after crush remodels the injury site: Molecular insights from imaging mass spectrometry. Investig. Ophthalmol. Vis. Sci. 2018, 59, 212–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, A.; Shi, X.; Zhang, H.; Fu, B. Mitotherapy for fatty liver by intravenous administration of exogenous mitochondria in male mice. Front. Pharmacol. 2017, 8, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Sun, Q.; Xia, F.; Chen, Z.; Wu, J.; Zhang, Y.; Xu, J.; Liu, L. Methane rescues retinal ganglion cells and limits retinal mitochondrial dysfunction following optic nerve crush. Exp. Eye Res. 2017, 159, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Nascimento-Dos-Santos, G.; De-Souza-Ferreira, E.; Lani, R.; Faria, C.; de Araujo, V.G.; Teixeira-Pinheiro, L.C.; Vasconcelos, T.; Gonçalo, T.; Santiago, M.F.; Linden, R.; et al. Neuroprotection from optic nerve injury and modulation of oxidative metabolism by transplantation of active mitochondria to the retina. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165686. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini Siyanaki, M.R.; Azab, M.A.; Lucke-Wold, B. Traumatic Optic Neuropathy: Update on Management. Encyclopedia 2023, 3, 88-101. https://doi.org/10.3390/encyclopedia3010007
Hosseini Siyanaki MR, Azab MA, Lucke-Wold B. Traumatic Optic Neuropathy: Update on Management. Encyclopedia. 2023; 3(1):88-101. https://doi.org/10.3390/encyclopedia3010007
Chicago/Turabian StyleHosseini Siyanaki, Mohammad Reza, Mohammed A. Azab, and Brandon Lucke-Wold. 2023. "Traumatic Optic Neuropathy: Update on Management" Encyclopedia 3, no. 1: 88-101. https://doi.org/10.3390/encyclopedia3010007
APA StyleHosseini Siyanaki, M. R., Azab, M. A., & Lucke-Wold, B. (2023). Traumatic Optic Neuropathy: Update on Management. Encyclopedia, 3(1), 88-101. https://doi.org/10.3390/encyclopedia3010007