Bioactive Compounds from Eruca sativa Seeds
Definition
:1. Introduction
2. Components and Bioactive Molecules in Eruca sativa Seeds
2.1. Oil
2.2. Gums
2.3. Glucosinolates
2.3.1. Active Defatted Seed Meals for Agricultural Uses
2.3.2. Active Food-Grade Defatted Seed Meals for a Nutraceutical Purpose: E. sativa Defatted Seed Meals from Cold-Press Oil Production
2.3.3. Deactivated Food-Grade Defatted Seed Meals for Nutraceutical Purpose: AutoClaved E. sativa Defatted Seed Meals from Cold-Press Oil Production
2.3.4. Extracts from Defatted Seed Meals Enriched in Glucosinolates
2.4. Polyphenols
3. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bell, L.; Wagstaff, C. Rocket science: A review of phytochemical & health-related research in Eruca & Diplotaxis species. Food Chem. X 2019, 1, 100002. [Google Scholar] [CrossRef] [PubMed]
- Bantis, F.; Kaponas, C.; Charalambous, C.; Koukounaras, A. Strategic successive harvesting of rocket and spinach baby leaves enhanced their quality and production efficiency. Agriculture 2021, 11, 465. [Google Scholar] [CrossRef]
- Mirzabe, A.H.; Hajiahmad, A.; Asadollahzadeh, A.H. Moisture-dependent engineering properties of arugula seed relevant in mechanical processing and bulk handling. J. Food Process Eng. 2021, 44, e13704. [Google Scholar] [CrossRef]
- Yang, T.; Samarakoon, U.; Altland, J.; Ling, P. Photosynthesis, biomass production, nutritional quality, and flavor-related phytochemical properties of hydroponic-grown arugula (Eruca sativa Mill.) ‘standard’ under different electrical conductivities of nutrient solution. Agronomy 2021, 11, 1340. [Google Scholar] [CrossRef]
- Lazzeri, L.; Errani, M.; Leoni, O.; Venturi, G. Eruca sativa spp. oleifera: A new non-food crop. Ind. Crops Prod. 2004, 20, 67–73. [Google Scholar] [CrossRef]
- Guffanti, D.; Cocetta, G.; Franchetti, B.M.; Ferrante, A. The effect of flushing on the nitrate content and postharvest quality of lettuce (Lactuca sativa L. var. acephala) and rocket (Eruca sativa mill.) grown in a vertical farm. Horticulturae 2022, 8, 604. [Google Scholar] [CrossRef]
- Bell, L.; Chadwick, M.; Puranik, M.; Tudor, R.; Methven, L.; Kennedy, S.; Wagstaff, C. The Eruca sativa genome and transcriptome: A targeted analysis of sulfur metabolism and glucosinolate biosynthesis pre and postharvest. Front. Plant Sci. 2020, 11, 525102. [Google Scholar] [CrossRef]
- Zhu, B.; Qian, F.; Hou, Y.; Yang, W.; Id, M.C. Complete chloroplast genome features and phylogenetic analysis of e Eruca sativa (Brassicaceae). PLoS ONE 2021, 16, e0248556. [Google Scholar] [CrossRef]
- Padulosi, S. Rocket Genetic Resources Network. Report of the First Meeting, 13–15 November 1994, Lisbon, Portugal; IPGRI: Rome, Italy, 1995. [Google Scholar]
- Community Plant Variety Office Database. Available online: https://online.plantvarieties.eu/ (accessed on 10 August 2022).
- Protocol for Tests on Distinctness, Uniformity and Stability—Eruca sativa Mill. Available online: https://cpvo.europa.eu/sites/default/files/documents/eruca_1.1.pdf (accessed on 10 August 2022).
- Bajpai, P.K.; Weiss, H.; Dvir, G.; Hanin, N.; Wasserstrom, H.; Barazani, O. Phenotypic differentiation and diversifying selection in populations of Eruca sativa along an aridity gradient. BMC Ecol. Evol. 2022, 22, 40. [Google Scholar] [CrossRef]
- Golkar, P.; Bakhtiari, M.A. Evaluation of genetic diversity in the world collection of Eruca sativa L. using oil content, fatty acids and molecular markers. Ind. Crops Prod. 2020, 148, 112280. [Google Scholar] [CrossRef]
- Guijarro-Real, C.; Navarro, A.; Esposito, S.; Festa, G.; Macellaro, R.; Di Cesare, C.; Fita, A.; Rodríguez-Burruezo, A.; Cardi, T.; Prohens, J.; et al. Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin. Euphytica 2020, 216, 53. [Google Scholar] [CrossRef]
- Zafar-Pashanezhad, M.; Shahbazi, E.; Golkar, P.; Shiran, B. Genetic variation of Eruca sativa L. genotypes revealed by agro-morphological traits and issr molecular markers. Ind. Crops Prod. 2020, 145, 111992. [Google Scholar] [CrossRef]
- Tripodi, P.; Coelho, P.S.; Guijarro-Real, C. Breeding advances and prospects in rocket salad (Eruca vesicaria ssp. sativa Mill.) cultivation. In Advances in Plant Breeding Strategies: Vegetable Crops; Springer International Publishing: Cham, Switzerland, 2021; pp. 95–133. [Google Scholar]
- Hanin, N.; Quaye, M.; Westberg, E.; Barazani, O. Soil seed bank and among-years genetic diversity in arid populations of Eruca sativa Miller (Brassicaceae). J. Arid Environ. 2013, 91, 151–154. [Google Scholar] [CrossRef]
- Rahimi, V.; Karimi, K.; Shafiei, M.; Naghavi, R.; Khoshnevisan, B.; Ghanavati, H.; Mohtasebi, S.S.; Rafiee, S.; Tabatabaei, M. Well-to-wheel life cycle assessment of Eruca sativa-based biorefinery. Renew. Energy 2018, 117, 135–149. [Google Scholar] [CrossRef]
- Rizwana, H.; Alwhibi, M.S.; Khan, F.; Soliman, D.A. Chemical composition and antimicrobial activity of Eruca sativa seeds against pathogenic bacteria and fungi. J. Anim. Plant Sci. 2016, 26, 1859–1871. [Google Scholar]
- Khalil, N.; Gad, H.A.; Al Musayeib, N.M.; Bishr, M.; Ashour, M.L. Correlation of glucosinolates and volatile constituents of six Brassicaceae seeds with their antioxidant activities based on partial least squares regression. Plants 2022, 11, 1116. [Google Scholar] [CrossRef]
- Yehuda, H.; Khatib, S.; Sussan, I.; Musa, R.; Vaya, J.; Tamir, S. Potential skin antiinflammatory effects of 4-methylthiobutylisothiocyanate (mtbi) isolated from rocket (Eruca sativa) seeds. BioFactors 2009, 35, 295–305. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, D.; Singh, G.; Attri, S.; Singh, D.; Sharma, M.; Buttar, H.S.; Bedi, N.; Singh, B.; Arora, S. Pharmacokinetics and toxicity profiling of 4-(methylthio)butyl isothiocyanate with special reference to pre-clinical safety assessment studies. Toxicon 2022, 212, 19–33. [Google Scholar] [CrossRef]
- Qaiyyum, I.A.; Nergis, A. The therapeutic uses and pharmacopeal action of jirjeer (Eruca sativa): A review. CELLMED 2022, 12, 1–8. [Google Scholar]
- Nail, T.N.A.; Ali, M.M.; Salim, E.R.A. Phytochemical studies on sudanese rocket (Eruca sativa) seeds and oil constituents. Am. J. Phytomedicine Clin. Ther. 2017, 5, 1–5. [Google Scholar] [CrossRef]
- Das, S.; Tyagi, A.K.; Singhal, K.K. Chemical composition including amino acid, fatty acid and glucosinolate profile of taramira (Eruca sativa) oilseed. Indian J. Agric. Sci. 2001, 71, 613–615. [Google Scholar]
- Khan, A.U.; Ullah, F.; Khan, N.; Mehmood, S.; Fahad, S.; Datta, R.; Irshad, I.; Danish, S.; Saud, S.; Alaraidh, I.A.; et al. Production of organic fertilizers from rocket seed (Eruca sativa L.), chicken peat and Moringa oleifera leaves for growing linseed under water deficit stress. Sustainability 2021, 13, 59. [Google Scholar] [CrossRef]
- Fagbenro, O.A. Soybean meal replacement by roquette (Eruca sativa Miller) seed meal as protein feedstuff in diets for african catfish, Clarias gariepinus (Burchell 1822), fingerlings. Aquac. Res. 2004, 35, 917–923. [Google Scholar] [CrossRef]
- Khaliq, B.; Falke, S.; Saeed, Q.; Bilal, M.; Munawar, A.; Ali, A.; Baermann, G.; Athar, H.-R.U.R.; Mahmood, S.; Betzel, C.; et al. Eruca sativa seed napin structural insights and thorough functional characterization. Sci. Rep. 2021, 11, 24066. [Google Scholar] [CrossRef]
- Akgul, C.; Akcicek, A.; Karadag, A.; Karasu, S. Formulation optimization of low-fat emulsion stabilized by rocket seed (Eruca sativa mill) gum as novel natural fat replacer: Effect on steady, dynamic and thixotropic behavior. Acta Sci. Technol. 2022, 44, e56006. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Erucic acid in feed and food. EFSA J. 2016, 14, 4593. [Google Scholar] [CrossRef]
- Kumar, M.S.S.; Mawlong, I.; Kumar, A.; Singh, K.H.; Gurung, B.; Rani, R.; Rai, P.K. Evaluation of major anti-nutritional factors in oilseed brassica. Vegetos 2022, 1–8. [Google Scholar] [CrossRef]
- El-Missiry, M.A.; El Gindy, A.M. Amelioration of alloxan induced diabetes mellitus and oxidative stress in rats by oil of Eruca sativa seeds. Ann. Nutr. Metab. 2000, 44, 97–100. [Google Scholar] [CrossRef]
- Bassyouni, R.H.; Kamel, Z.; Algameel, A.A.; Ismail, G.; Gaber, S.N. In-vitro determination of antimicrobial activities of Eruca sativa seed oil against antibiotic-resistant gram-negative clinical isolates from neonates: A future prospect. BMC Complement. Med. Ther. 2022, 22, 229. [Google Scholar] [CrossRef]
- Sanad, R.A.E.B.; Mabrouk, M.I. Development and assessment of stable formulations containing two herbal antimicrobials: Allium sativum L. and Eruca sativa Miller seed oils. Drug Dev. Ind. Pharm. 2016, 42, 958–968. [Google Scholar] [CrossRef]
- Eid, M.A.; Jaradat, A.N.; Al-Masri, M.; Issa, L.; Zubidat, F.; Asrawi, H.; Ahmad, S. Development and antimicrobial evaluation of Eruca sativa oil nanoemulgel with determination of the oil antioxidant, sun protection factor and elastase inhibition. Curr. Pharm. Biotechnol. 2020, 21, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Aghababaie, M.; Beheshti, M.; Razmjou, A.; Bordbar, A.-K. Enzymatic biodiesel production from crude Eruca sativa oil using Candida rugosa lipase in a solvent-free system using response surface methodology. Biofuels 2020, 11, 93–99. [Google Scholar] [CrossRef]
- Elansary, H.O.; Mahmoud, E.A.; Shokralla, S.; Yessoufou, K. Diversity of plants, traditional knowledge, and practices in local cosmetics: A case study from Alexandria, Egypt. Econ. Bot. 2015, 69, 114–126. [Google Scholar] [CrossRef]
- Vahabi Mashhoor, M.; Mikani, A.; Mehrabadi, M.; Moharramipour, S. Antifeedant activity of nanoemulsion formulation of arugula Eruca sativa oil on elm leaf beetle Xanthogaleruca luteola (coleoptera: Chrysomelidae). J. Agric. Sci. Technol. 2021, 23, 125–136. [Google Scholar]
- Aghababaie, M.; Beheshti, M.; Razmjou, A.; Bordbar, A.-K. Two phase enzymatic membrane reactor for the production of biodiesel from crude Eruca sativa oil. Renew. Energy 2019, 140, 104–110. [Google Scholar] [CrossRef]
- Chakrabarti, M.H.; Ali, M.; Baroutian, S.; Saleem, M. Techno-economic comparison between b10 of Eruca sativa L. and other indigenous seed oils in pakistan. Process Saf. Environ. Prot. 2011, 89, 165–171. [Google Scholar] [CrossRef]
- Bateni, H.; Bateni, F.; Karimi, K. Effects of oil extraction on ethanol and biogas production from Eruca sativa seed cake. Waste Biomass Valorization 2017, 8, 1897–1905. [Google Scholar] [CrossRef]
- Franco, P.; Spinozzi, S.; Pagnotta, E.; Lazzeri, L.; Ugolini, L.; Camborata, C.; Roda, A. Development of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous analysis of intact glucosinolates and isothiocyanates in brassicaceae seeds and functional foods. J. Chromatogr. A 2016, 1428, 154–161. [Google Scholar] [CrossRef]
- Lucarini, E.; Pagnotta, E.; Micheli, L.; Parisio, C.; Testai, L.; Martelli, A.; Calderone, V.; Matteo, R.; Lazzeri, L.; Di Cesare Mannelli, L.; et al. Eruca sativa meal against diabetic neuropathic pain: An h2s-mediated effect of glucoerucin. Molecules 2019, 24, 3006. [Google Scholar] [CrossRef] [Green Version]
- Nanetti, A.; Ugolini, L.; Cilia, G.; Pagnotta, E.; Malaguti, L.; Cardaio, I.; Matteo, R.; Lazzeri, L. Seed meals from Brassica nigra and Eruca sativa control artificial Nosema ceranae infections in Apis mellifera. Microorganisms 2021, 9, 949. [Google Scholar] [CrossRef]
- Uğur, A.; Süntar, I.; Aslan, S.; Orhan, I.E.E.; Kartal, M.; Sekeroğlu, N.; Eşiyok, D.; Sener, B.; Uǧur, A.; Süntar, I.; et al. Variations in fatty acid compositions of the seed oil of Eruca sativa Mill. caused by different sowing periods and nitrogen forms. Pharmacogn. Mag. 2010, 6, 305–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, G.; Sharma, V. Eruca sativa (L.): Botanical description, crop improvement, and medicinal properties. J. Herbs. Spices Med. Plants 2014, 20, 171–182. [Google Scholar] [CrossRef]
- Mumtaz, M.W.; Mukhtar, H.; Dilawer, U.A.; Hussain, S.M.; Hussain, M.; Iqbal, M.; Adnan, A.; Nisar, J. Biocatalytic transesterification of Eruca sativa oil for the production of biodiesel. Biocatal. Agric. Biotechnol. 2016, 5, 162–167. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, R.; Arora, R.; Arora, S.; Singh, B.; Sharma, U. Quantitative and qualitative analysis of Eruca sativa and Brassica juncea seeds by UPLC-DAD and UPLC-ESI-QTOF. Nat. Prod. Commun. 2017, 12, 1934578X1701200. [Google Scholar] [CrossRef]
- Tekin, M.D.; Çelikozlu, S.; Aydin, H. Electrospun rocket seed (Eruca sativa Mill) mucilage/polyvinyl alcohol nanofibers: Fabrication and characterization. Iran. Polym. J. 2022, 1–9. [Google Scholar] [CrossRef]
- Akcicek, A.; Bozkurt, F.; Akgül, C.; Karasu, S. Encapsulation of olive pomace extract in rocket seed gum and chia seed gum nanoparticles: Characterization, antioxidant activity and oxidative stability. Foods 2021, 10, 1735. [Google Scholar] [CrossRef]
- Koocheki, A.; Razavi, S.M.A.; Hesarinejad, M.A. Effect of extraction procedures on functional properties of Eruca sativa seed mucilage. Food Biophys. 2012, 7, 84–92. [Google Scholar] [CrossRef]
- Kutlu, G.; Akcicek, A.; Bozkurt, F.; Karasu, S.; Tekin-Cakmak, Z.H. Rocket seed (Eruca sativa Mill) gum: Physicochemical and comprehensive rheological characterization. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Hijazi, T.; Karasu, S.; Tekin-Çakmak, Z.H.; Bozkurt, F. Extraction of natural gum from cold-pressed chia seed, flaxseed, and rocket seed oil by-product and application in low fat vegan mayonnaise. Foods 2022, 11, 363. [Google Scholar] [CrossRef]
- Cataldi, T.R.I.; Rubino, A.; Lelario, F.; Bufo, S.A. Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2374–2388. [Google Scholar] [CrossRef]
- Parchem, K.; Piekarska, A.; Bartoszek, A. Enzymatic activities behind degradation of glucosinolates. In Glucosinolates: Properties, Recovery, and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 79–106. [Google Scholar]
- Wu, J.; Cui, S.; Liu, J.; Tang, X.; Zhao, J.; Zhang, H.; Mao, B.; Chen, W. The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies. Crit. Rev. Food Sci. Nutr. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Barillari, J.; Canistro, D.; Paolini, M.; Ferroni, F.; Pedulli, G.F.; Iori, R.; Valgimigli, L. Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa mill.) seeds and sprouts. J. Agric. Food Chem. 2005, 53, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Ishii, G. Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Sci. Plant Nutr. 2006, 52, 394–400. [Google Scholar] [CrossRef]
- Bennett, R.N.; Rosa, E.A.S.; Mellon, F.A.; Kroon, P.A. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (turkish rocket). J. Agric. Food Chem. 2006, 54, 4005–4015. [Google Scholar] [CrossRef]
- Matteo, R.; Back, M.A.; Reade, J.P.H.; Ugolini, L.; Pagnotta, E.; Lazzeri, L. Effectiveness of defatted seed meals from brassicaceae with or without crude glycerin against black grass (Alopecurus myosuroides huds.). Ind. Crops Prod. 2018, 111, 506–512. [Google Scholar] [CrossRef]
- Giannini, V.; Melito, S.; Matteo, R.; Lazzeri, L.; Pagnotta, E.; Chahine, S.; Roggero, P.P. Testing Eruca sativa defatted seed meal as a potential bioherbicide on selected weeds and crops. Ind. Crops Prod. 2021, 171, 113834. [Google Scholar] [CrossRef]
- Ugolini, L.; Scarafile, D.; Matteo, R.; Pagnotta, E.; Malaguti, L.; Lazzeri, L.; Modesto, M.; Checcucci, A.; Mattarelli, P.; Braschi, I. Effect of bioactive compounds released from brassicaceae defatted seed meals on bacterial load in pig manure. Environ. Sci. Pollut. Res. 2021, 28, 62353–62367. [Google Scholar] [CrossRef]
- Curto, G.; Dallavalle, E.; Matteo, R.; Lazzeri, L. Biofumigant effect of new defatted seed meals against the southern root-knot nematode, Meloidogyne incognita. Ann. Appl. Biol. 2016, 169, 17–26. [Google Scholar] [CrossRef]
- Lucarini, E.; Micheli, L.; Pagnotta, E.; Matteo, R.; Parisio, C.; Toti, A.; Ferrara, V.; Ciampi, C.; Martelli, A.; Testai, L.; et al. Beneficial effects of Eruca sativa defatted seed meal on visceral pain and intestinal damage resulting from colitis in rats. Foods 2022, 11, 580. [Google Scholar] [CrossRef]
- Testai, L.; Pagnotta, E.; Piragine, E.; Flori, L.; Citi, V.; Martelli, A.; Mannelli, L.D.C.; Ghelardini, C.; Matteo, R.; Suriano, S.; et al. Cardiovascular benefits of Eruca sativa Mill. defatted seed meal extract: Potential role of hydrogen sulfide. Phyther. Res. 2022, 36, 2616–2627. [Google Scholar] [CrossRef]
- Piragine, E.; Flori, L.; Di Cesare Mannelli, L.; Ghelardini, C.; Pagnotta, E.; Matteo, R.; Lazzeri, L.; Martelli, A.; Miragliotta, V.; Pirone, A.; et al. Eruca sativa Mill seed extract promotes anti-obesity and hypoglycemic effects in mice fed with a high-fat diet. Phyther. Res. 2021, 35, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Pagnotta, E.; Lisotti, A.; Ugolini, L.; Matteo, R.; Franco, P.; Roda, G.; Roda, A.; Roda, E. Bakery products enriched with Eruca sativa Mill. defatted seed meal ameliorates systemic markers of inflammation and glucose and lipid metabolism in adults- a pilot study. Acta Sci. Gastrointest. Disord. 2022, 5, 8–14. [Google Scholar] [CrossRef]
- Blaževic, I.; Mastelic, J. Free and bound volatiles of rocket (Eruca sativa Mill.). Flavour Fragr. J. 2008, 23, 278–285. [Google Scholar] [CrossRef]
- Al-Turki, A.I.; Dick, W.A. Myrosinase activity in soil. Soil Sci. Soc. Am. J. 2003, 67, 139–145. [Google Scholar] [CrossRef]
- Ugolini, L.; Cilia, G.; Pagnotta, E.; Malaguti, L.; Capano, V.; Guerra, I.; Zavatta, L.; Albertazzi, S.; Matteo, R.; Lazzeri, L.; et al. Glucosinolate bioactivation by Apis mellifera workers and its impact on Nosema ceranae infection at the colony level. Biomolecules 2021, 11, 1657. [Google Scholar] [CrossRef] [PubMed]
- Youseif, S.H.; Abdel, H.M.K.; Mary, F. A new source of bacterial myrosinase isolated from endophytic Bacillus sp. ngb-b10, and its relevance in biological control activity. World J. Microbiol. Biotechnol. 2022, 38, 215. [Google Scholar] [CrossRef] [PubMed]
- Narbad, A.; Rossiter, J.T. Gut glucosinolate metabolism and isothiocyanate production. Mol. Nutr. Food Res. 2018, 62, 1700991. [Google Scholar] [CrossRef] [Green Version]
- Gugliandolo, A.; Giacoppo, S.; Ficicchia, M.; Aliquo, A.; Bramanti, P.; Mazzon, E. Eruca sativa seed extract: A novel natural product able to counteract neuroinflammation. Mol. Med. Rep. 2018, 17, 6235–6244. [Google Scholar] [CrossRef] [Green Version]
- Piragine, E.; Citi, V.; Lawson, K.; Calderone, V.; Martelli, A. Potential effects of natural H2S-donors in hypertension management. Biomolecules 2022, 12, 581. [Google Scholar] [CrossRef]
- Citi, V.; Martelli, A.; Testai, L.; Marino, A.; Breschi, M.; Calderone, V. Hydrogen sulfide releasing capacity of natural isothiocyanates: Is it a reliable explanation for the multiple biological effects of brassicaceae? Planta Med. 2014, 80, 610–613. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, X.; Lu, Y.; Liang, D.; Huang, D. Isothiocyanates as H2S donors triggered by cysteine: Reaction mechanism and structure and activity relationship. Org. Lett. 2019, 21, 5977–5980. [Google Scholar] [CrossRef] [PubMed]
- Gambari, L.; Barone, M.; Amore, E.; Grigolo, B.; Filardo, G.; Iori, R.; Citi, V.; Calderone, V.; Grassi, F. Glucoraphanin increases intracellular hydrogen sulfide (H2S) levels and stimulates osteogenic differentiation in human mesenchymal stromal cell. Nutrients 2022, 14, 435. [Google Scholar] [CrossRef] [PubMed]
- Martelli, A.; Piragine, E.; Citi, V.; Testai, L.; Pagnotta, E.; Ugolini, L.; Lazzeri, L.; Di Cesare Mannelli, L.; Manzo, O.L.; Bucci, M.; et al. Erucin exhibits vasorelaxing effects and antihypertensive activity by H2S-releasing properties. Br. J. Pharmacol. 2020, 177, 824–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stagos, D. Antioxidant activity of polyphenolic plant extracts. Antioxidants 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elsalam, R.M.; El Badawy, S.A.; Ogaly, H.A.; Ibrahim, F.M.; Farag, O.M.; Ahmed, K.A. Eruca sativa seed extract modulates oxidative stress and apoptosis and up-regulates the expression of bcl-2 and bax genes in acrylamide-induced testicular dysfunction in rats. Environ. Sci. Pollut. Res. 2021, 28, 53249–53266. [Google Scholar] [CrossRef]
- Abdelkader, R.S.-E.; El-Beih, N.M.; Zaahkouk, S.A.; El-Hussieny, E.A. Ameliorative effect of Eruca sativa seeds and its rutin on gentamicin-induced nephrotoxicity in male rats via targeting inflammatory status, oxidative stress and kidney injury molecule-1 (kim-1)/cystatin c expression. Indones. Biomed. J. 2022, 14, 74–83. [Google Scholar] [CrossRef]
- Sarwar Alam, M.; Kaur, G.; Jabbar, Z.; Javed, K.; Athar, M. Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. Food Chem. Toxicol. 2007, 45, 910–920. [Google Scholar] [CrossRef]
- Tian, R.; Yang, W.; Xue, Q.; Gao, L.; Huo, J.; Ren, D.; Chen, X. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via NRF2 signaling pathway in rats. Eur. J. Pharmacol. 2016, 771, 84–92. [Google Scholar] [CrossRef]
- Kishore, L.; Kaur, N.; Singh, R. Effect of kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in streptozotocin-induced diabetic neuropathy. Inflammopharmacology 2018, 26, 993–1003. [Google Scholar] [CrossRef]
Model | Effect | Reference | Material |
---|---|---|---|
Colitis induced in Sprague-Dawley rats by 2,4-dinitrobenzenesulfonic acid | ↓ mast cells infiltration and enteric GLIAS activation in a model of visceral hypersensitivity | [64] | Defatted seed meals |
Diabetic neuropathic pain induced by streptozotocin in C57BL/6 mice | ↓ neuropathic pain in diabetic animals ↑ activation of Kv7 potassium channels | [43] | |
Apis mellifera ligustica colonies | ↓ Nosema ceranae natural infection in Apis mellifera colonies | [70] | Defatted seed meals enriched feed and food |
Human adults with BMI < 30, euglycemic status and normal to mild hypercholesterolemia | ↓ LDL cholesterol and cholesterol ratio ↓ High sensitivity C reactive Protein, Gamma –GT and TNF-α ↓ reduction of hepatomegaly | [67] | |
Wistar rats, spontaneously hypertensive rats and phenylephrine -hypertensive rats | Anti-hypertensive, anti-ischemic ↓ intra-mitochondrial accumulation of Ca2+ | [65] | Seed extracts |
Balb/c male mice fed with standard or high fat diet | ↓ body weight gain, BMI ↓ total cholesterol, LDL and triglycerides ↑ glucose homeostasis | [66] | |
Gentamicin nephrotoxic Wistar albino rats | ↓ Nephrotoxic effects of Gentamicin ↓ serum levels of creatinine, Urea, Na+, K+, TNF-α, IL-1β | [81] | |
Wistar albino rats with acrylamide-induced testicular dysfunction | ↓ Toxic effects of acrylamide on the sperm indices ↑ reduced GSH, and SOD activities, counteracting oxidative damage induced by acrylamide ↓ Bax and Caspase-3 counteracting apoptotic effect induced by acrylamide | [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagnotta, E.; Ugolini, L.; Matteo, R.; Righetti, L. Bioactive Compounds from Eruca sativa Seeds. Encyclopedia 2022, 2, 1866-1879. https://doi.org/10.3390/encyclopedia2040129
Pagnotta E, Ugolini L, Matteo R, Righetti L. Bioactive Compounds from Eruca sativa Seeds. Encyclopedia. 2022; 2(4):1866-1879. https://doi.org/10.3390/encyclopedia2040129
Chicago/Turabian StylePagnotta, Eleonora, Luisa Ugolini, Roberto Matteo, and Laura Righetti. 2022. "Bioactive Compounds from Eruca sativa Seeds" Encyclopedia 2, no. 4: 1866-1879. https://doi.org/10.3390/encyclopedia2040129
APA StylePagnotta, E., Ugolini, L., Matteo, R., & Righetti, L. (2022). Bioactive Compounds from Eruca sativa Seeds. Encyclopedia, 2(4), 1866-1879. https://doi.org/10.3390/encyclopedia2040129