Supplements for Smoking-Related Lung Diseases
Definition
:1. Introduction
2. Data, Applications, and Influences
3. Conclusions
Funding
Conflicts of Interest
Entry Link on the Encyclopedia Platform
References
- Barta, J.A.; Powel, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef] [PubMed]
- Schane, R.E.; Ling, P.M.; Glantz, S.A. Health effects of light and intermittent smoking: A review. Circulation 2010, 121, 1518–1522. [Google Scholar] [CrossRef]
- West, R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol. Health 2017, 32, 1018–1036. [Google Scholar] [CrossRef] [PubMed]
- GBD 2015 Tobacco Collaborators. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990-2015: A systematic analysis from the Global Burden of Disease Study 2015. Lancet 2017, 389, 1885–1906. [Google Scholar] [CrossRef]
- Talhout, R.; Schulz, T.; Florek, E.; van Benthem, J.; Wester, P.; Opperhuizen, A. Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Public Health 2011, 8, 613–628. [Google Scholar] [CrossRef]
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [Google Scholar] [CrossRef]
- Jayes, L.; Haslam, P.L.; Gratziou, C.G.; Powell, P.; Britton, J.; Vardavas, C.; Jimenez-Ruiz, C.; Leonardi-Bee, J.; Tobacco Control Committee of the European Respiratory Society. SmokeHaz: Systematic reviews and meta-analyses of the effects of smoking on respiratory health. Chest 2016, 150, 164–179. [Google Scholar] [CrossRef]
- Skaaby, T.; Taylor, A.E.; Jacobsen, R.K.; Paternoster, L.; Thuesen, B.H.; Ahluwalia, T.S.; Larsen, S.C.; Zhou, A.; Wong, A.; Gabrielsen, M.E.; et al. Investigating the causal effect of smoking on hay fever and asthma: A Mendelian randomization meta-analysis in the CARTA consortium. Sci. Rep. 2017, 7, 2224. [Google Scholar] [CrossRef]
- Santillan, A.A.; Camargo, C.A., Jr.; Colditz, G.A. A meta-analysis of asthma and risk of lung cancer (United States). Cancer Causes Control 2003, 14, 327–334. [Google Scholar] [CrossRef]
- Rosenberger, A.; Bickeböller, H.; McCormack, V.; Brenner, D.R.; Duell, E.J.; Tjønneland, A.; Friis, S.; Muscat, J.E.; Yang, P.; Wichmann, H.E.; et al. Asthma and lung cancer risk: A systematic investigation by the International Lung Cancer Consortium. Carcinogenesis 2012, 33, 587–597. [Google Scholar] [CrossRef]
- Qu, Y.L.; Liu, J.; Zhang, L.X.; Wu, C.M.; Chu, A.J.; Wen, B.L.; Ma, C.; Yan, X.Y.; Zhang, X.; Wang, D.M.; et al. Asthma and the risk of lung cancer: A meta-analysis. Oncotarget 2017, 8, 48525. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation. Global Burden of Disease. 2017. Available online: http://vizhub.healthdata.org/gbd-compare/# (accessed on 26 December 2020).
- Yu, Y.; Liu, H.; Zheng, S.; Ding, Z.; Chen, Z.; Jin, W.; Ying, K.; Zhang, R.; Ying, F.; Wang, Z.; et al. Gender susceptibility for cigarette smoking-attributable lung cancer: A systematic review and meta-analysis. Lung Cancer. 2014, 85, 351–360. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, L.M.; Taylor, G.; Huxley, R.R.; Mitchell, P.; Woodward, M.; Peters, S.A.E. Smoking as a risk factor for lung cancer in women and men: A systematic review and meta-analysis. BMJ Open 2018, 8, e021611. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.S.; Ko, H.J.; Kwon, J.H.; Lee, J.M. Exposure to secondhand smoke and risk of cancer in never smokers: A meta-analysis of epidemiologic studies. Int. J. Environ. Res. Public Health 2018, 15, E1981. [Google Scholar] [CrossRef] [PubMed]
- Kabir, Z.; Connolly, G.N.; Clancy, L. Sex-differences in lung cancer cell-types? An epidemiologic study in Ireland. Ulster Med. J. 2008, 77, 31–35. [Google Scholar] [PubMed]
- Barrera-Rodriguez, R.; Morales-Fuentes, J. Lung cancer in women. Lung Cancer 2012, 3, 79–89. [Google Scholar]
- Allen, A.M.; Oncken, C.; Hatsukami, D. Women and smoking: The effect of gender on the epidemiology, health effects, and cessation of smoking. Curr. Addict. Rep. 2014, 1, 53–60. [Google Scholar] [CrossRef]
- Riely, G.J.; Marks, J.; Pao, W. KRAS mutations in non-small cell lung cancer. Proc. Am. Thorac. Soc. 2009, 6, 201–205. [Google Scholar] [CrossRef]
- Kempf, E.; Rousseau, B.; Besse, B.; Paz-Ares, L. KRAS oncogene in lung cancer: Focus on molecularly driven clinical trials. Eur. Respir. Rev. 2016, 25, 71–76. [Google Scholar] [CrossRef]
- Ferrer, I.; Zugazagoitia, J.; Herbertz, S.; John, W.; Paz-Ares, L.; Schmid-Bindert, G. KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer 2018, 124, 53–64. [Google Scholar] [CrossRef]
- Wang, Z.D.; Wei, S.Q.; Wang, Q.Y. Targeting oncogenic KRAS in non-small cell lung cancer cells by phenformin inhibits growth and angiogenesis. Am. J. Cancer Res. 2015, 5, 3339–3349. [Google Scholar]
- Gazdar, A.F.; Minna, J.D. Deregulated EGFR signaling during lung cancer progression: Mutations, amplicons, and autocrine loops. Cancer Prev. Res. 2008, 1, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Gazdar, A.F. Epidermal growth factor receptor inhibition in lung cancer: The evolving role of individualized therapy. Cancer Metastasis Rev. 2010, 29, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, H.; Lin, L.; Takahashi, T.; Nomura, M.; Suzuki, M.; Wistuba, I.I.; Fong, K.M.; Lee, H.; Toyooka, S.; Shimizu, N.; et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J. Natl. Cancer Inst. 2005, 97, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Enilari, O.; Sinha, S. The global impact of asthma in adult populations. Ann. Glob. Health. 2019, 85, 2. [Google Scholar] [CrossRef]
- Shah, R.; Newcomb, D.C. Sex bias in asthma prevalence and pathogenesis. Front. Immunol. 2018, 9, 2997. [Google Scholar] [CrossRef]
- Dharmage, S.C.; Perret, J.L.; Custovic, A. Epidemiology of asthma in children and adults. Front. Pediatr. 2019, 7, 246. [Google Scholar] [CrossRef]
- Baptist, A.P.; Busse, P.J. Asthma over the age of 65: All’s Well That Ends Well. J. Allergy Clin. Immunol. Pract. 2018, 6, 764–773. [Google Scholar] [CrossRef]
- Kaplan, A.; Szefler, S.J.; Halpin, D.M.G. Impact of comorbid conditions on asthmatic adults and children. NPJ Prim. Care Respir. Med. 2020, 30, 36. [Google Scholar] [CrossRef]
- Quirt, J.; Hildebrand, K.J.; Mazza, J.; Noya, F.; Kim, H. Asthma. Allergy Asthma Clin. Immunol. 2018, 14 (Suppl. 2), 50. [Google Scholar] [CrossRef]
- Fahy, J.V. Type 2 inflammation in asthma- present in most, absent in many. Nat. Rev. Immunol. 2015, 15, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Dunican, E.M.; Fahy, J.V. The role of type 2 inflammation in the pathogenesis of asthma exacerbations. Ann. Am. Thorac. Soc. 2015, 12 (Suppl. 2), S144–S149. [Google Scholar] [PubMed]
- Strzelak, A.; Ratajczak, A.; Adamiec, A.; Feleszko, W. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: A mechanistic review. Int. J. Environ. Res. Public Health 2018, 15, 1033. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kim, H.Y.; Ahn, H.; Sohn, T.S.; Song, J.Y.; Lee, Y.P.; Lee, D.; Lee, J.; Jeong, S.C.; Chae, H.S.; et al. The association between tobacco smoke and serum Immunoglobulin E levels in Korean adults. Intern. Med. 2017, 56, 2571–2577. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.J.; Husen, A.Z.; Khoshnaw, N.; Getta, H.A.; Hussein, Z.S.; Yassin, A.K.; Jalal, S.D.; Mohammed, R.N.; Alwan, A.F. The effects of smoking on IgE, oxidative stress and haemoglobin concentration. Asian Pac. J. Cancer Prev. 2020, 21, 1069–1072. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.A.F.; Prats, J.M.; Vicente, J.; Artero, M.; Mora, A.C.; Fariñas, A.V.; Espinal, A.; Méndez, J.A.G. Systemic inflammation in 222.841 healthy employed smokers and nonsmokers: White blood cell count and relationship to spirometry. Tob. Induc. Dis. 2012, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.M.; Çolak, Y.; Ellervik, C.; Hasselbalch, H.C.; Bojesen, S.E.; Nordestgaard, B.G. Smoking and increased white and red blood cells. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 965–977. [Google Scholar] [CrossRef]
- Pace, E.; Ferraro, M.; Vincenzo, S.D.; Gerbino, S.; Bruno, A.; Lanata, L.; Gjomarkaj, M. Oxidative stress and innate immunity responses in cigarette smoke stimulated nasal epithelial cells. Toxicol. In Vitro 2014, 28, 292–299. [Google Scholar] [CrossRef]
- Tsoumakidou, M.; Elston, W.; Zhu, J.; Wang, Z.; Gamble, E.; Siafakas, N.M.; Barnes, N.C.; Jeffery, P.K. Cigarette smoking alters bronchial mucosal immunity in asthma. Am. J. Respir. Crit. Care Med. 2007, 175, 919–925. [Google Scholar] [CrossRef]
- Barnes, K.; Ball, L.; Desbrow, B.; Alsharairi, N.; Ahmed, F. Consumption and reasons for use of dietary supplements in an Australian university population. Nutrition 2016, 32, 524–530. [Google Scholar] [CrossRef]
- Gahche, J.J.; Bailey, R.L.; Potischman, N.; Dwyer, J.T. Dietary supplement use was very high among older adults in the United States in 2011–2014. J. Nutr. 2017, 147, 1968–1976. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, M.F.; Beydoun, M.A.; Shupe, E.S.; Pohlig, R.T.; Zonderman, A.B.; Evans, M.K. Use of dietary supplements improved diet quality but not cardiovascular and nutritional biomarkers in socioeconomically diverse African American and white adults. J. Nutr. Gerontol. Geriatr. 2017, 36, 92–110. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Shin, A.; Kang, M.; Shin, D.; Chung, H.; Kim, W. Sociodemographic and lifestyle factors are associated with the use of dietary supplements in a Korean population. J. Epidemiol. 2010, 20, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Kofoed, C.L.F.; Christensen, J.; Dragsted, L.O.; Tjønneland, A.; Roswall, N. Determinants of dietary supplement use-Healthy individuals use dietary supplements. Br. J. Nutr. 2015, 113, 1993–2000. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.J.; Livingstone, K.M.; Woods, J.L.; McNaughton, S.A. Dietary supplement use among Australian adults: Findings from the 2011–2012 National Nutrition and Physical Activity Survey. Nutrients 2017, 9, 1248. [Google Scholar] [CrossRef] [PubMed]
- Cowan, A.E.; Jun, S.; Gahche, J.J.; Tooze, J.A.; Dwyer, J.T.; Eicher-Miller, H.A.; Bhadra, A.; Guenther, P.M.; Potischman, N.; Dodd, K.W.; et al. Dietary supplement use differs by socioeconomic and health-related characteristics among U.S. adults, NHANES 2011–2014. Nutrients 2018, 10, 1114. [Google Scholar] [CrossRef] [PubMed]
- Alsharairi, N. The effects of dietary supplements on asthma and lung cancer risk in smokers and non-smokers: A review of the literature. Nutrients 2019, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Jänne, P.A.; van den Heuvel, M.M.; Barlesi, F.; Cobo, M.; Mazieres, J.; Crinò, L.; Orlov, S.; Blackhall, F.; Wolf, J.; Garrido, P.; et al. Selumetinib plus Docetaxel compared with Docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: The SELECT-1 Randomized Clinical Trial. JAMA 2017, 317, 1844–1853. [Google Scholar] [CrossRef]
- Blumenschein, G.R., Jr.; Smit, E.F.; Planchard, D.; Kim, D.-W.; Cadranel, J.; de Pas, T.; Dunphy, F.; Udud, K.; Ahn, M.-J.; Hanna, N.H.; et al. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC). Ann. Oncol. 2015, 26, 894–901. [Google Scholar] [CrossRef]
- Chenard-Poirier, M.; Kaiser, M.; Boyd, K.; Sriskandarajah, P.; Constantinidou, A.; Harris, S.J.; Fandos, S.S.; Ryan, A.; Witt, K.; Dawes, J.C.; et al. Results from the biomarker-driven basket trial of RO5126766 (CH5127566), a potent RAF/MEK inhibitor, in RAS- or RAF-mutated malignancies including multiple myeloma. J. Clin. Oncol. 2017, 35, 2506. [Google Scholar] [CrossRef]
- Metro, G.; Crinò, L. Advances on EGFR mutation for lung cancer. Transl. Lung Cancer Res. 2012, 1, 5–13. [Google Scholar] [PubMed]
- Shen, Y.; Tseng, G.; Tu, C.; Chen, W.; Liao, W.; Chen, W.; Li, C.; Chen, H.; Hsia, T. Comparing the effects of afatinib with gefitinib or Erlotinib in patients with advanced-stage lung adenocarcinoma harboring non-classical epidermal growth factor receptor mutations. Lung Cancer 2017, 110, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, P.; Kowalski, D.M.; Ramlau, R.; Kalinka-Warzocha, E.; Winiarczyk, K.; Stencel, K.; Powrózek, T.; Reszka, K.; Wojas-Krawczyk, K.; Bryl, M.; et al. Comparison of the effectiveness of erlotinib, gefitinib, and afatinib for treatment of non-small cell lung cancer in patients with common and rare EGFR gene mutations. Oncol. Lett. 2017, 13, 4433–4444. [Google Scholar] [CrossRef] [PubMed]
- Sutandyo, N.; Hanafi, A.; Jayusman, M. Comparison of effectiveness of Gefitinib, Erlotinib, and Afatinib in advanced non-small cell lung cancer patients with EGFR mutation positive in Indonesian population. Zhongguo Fei Ai Za Zhi 2019, 22, 562–567. [Google Scholar]
- Takeda, M.; Nakagawa, K. First- and second-generation EGFR-TKIs are all replaced to Osimertinib in chemo-naive EGFR mutation-positive non-small cell lung cancer? Int. J. Mol. Sci. 2019, 20, 146. [Google Scholar] [CrossRef]
- Institute of Medicine (US) and National Research Council (US) Committee on the Framework for Evaluating the Safety of Dietary Supplements. Dietary Supplements: A Framework for Evaluating Safety; National Academies Press (US): Washington, DC, USA, 2005. [Google Scholar]
- Sax, J.K. Dietary supplements are not all safe and not all food: How the low cost of dietary supplements preys on the consumer. Am. J. Law Med. 2015, 41, 374–394. [Google Scholar] [CrossRef]
- Binns, C.W.; Lee, M.K.; Lee, A.H. Problems and prospects: Public health regulation of dietary supplements. Ann. Rev. Public Health 2018, 39, 403–420. [Google Scholar] [CrossRef]
- Dzeparoski, M.; Trajkovic-Jolevska, S. Analysis of marketing strategy for food supplements and over-the-counter medicines. Open Access Maced. J. Med. Sci. 2016, 4, 499–503. [Google Scholar] [CrossRef]
- Kamiński, M.; Kręgielska-Narożna, M.; Bogdański, P. Determination of the popularity of dietary supplements using Google search rankings. Nutrients 2020, 12, 908. [Google Scholar] [CrossRef]
- Barnes, J. Quality, efficacy and safety of complementary medicines: Fashions, facts and the future. Part I. Regulation and quality. Br. J. Clin. Pharmacol. 2003, 55, 226–233. [Google Scholar] [CrossRef]
- Ventola, C.L. Current issues regarding complementary and alternative medicine (CAM) in the United States: Part 2: Regulatory and safety concerns and proposed governmental policy changes with respect to dietary supplements. Pharm. Ther. 2010, 35, 514–522. [Google Scholar]
- Miller, P.E.; Vasey, J.J.; Short, P.F.; Hartman, T.J. Description of dietary supplement use in adult cancer survivors. Oncol. Nurs. Forum. 2009, 36, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Macias, H.; Romieu, I. Effects of antioxidant supplements and nutrients on patients with asthma and allergies. J. Allergy Clin. Immunol. 2014, 133, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Youn, J.; Lee, Y.J.; Kang, M.; Hyun, T.; Song, Y.; Lee, J.E. Dietary supplement use among cancer survivors and the general population: A nation-wide cross-sectional study. BMC Cancer 2017, 17, 891. [Google Scholar] [CrossRef] [PubMed]
- Opportunities for Vitamins and Dietary Supplements in Asia Pacific. 2017. Available online: https://www.slideshare.net/Euromonitor/opportunities-for-vitamins-and-dietary-supplements-in-asia-pacific?from_action=save (accessed on 28 November 2020).
- Thakkar, S.; Anklam, E.; Xu, A.; Ulberth, F.; Li, J.; Li, B.; Hugas, M.; Sarma, N.; Crerar, S.; Swift, S.; et al. Regulatory landscape of dietary supplements and herbal medicines from a global perspective. Regul. Toxicol. Pharmacol. 2020, 114, 104647. [Google Scholar] [CrossRef] [PubMed]
- Rautiainen, S.; Manson, J.E.; Lichtenstein, A.H.; Sesso, H.D. Dietary supplements and disease prevention—A global overview. Nat. Rev. Endocrinol. 2016, 12, 407–420. [Google Scholar] [CrossRef]
- Lentjes, M.A.H. The balance between food and dietary supplements in the general population. Proc. Nutr. Soc. 2019, 78, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.E.; Jacobs, E.T.; Baron, J.A.; Marshall, J.R.; Byers, T. Dietary supplements and cancer prevention: Balancing potential benefits against proven harms. J. Natl. Cancer Inst. 2012, 104, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.E.; Flemmer, M. Do dietary supplements have beneficial health effects in industrialized nations: What is the evidence? JPEN J. Parenter. Enteral. Nutr. 2012, 36, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Brasky, T.M.; White, E.; Chen, C. Long-term, supplemental, one-carbon metabolism-related vitamin B use in relation to lung cancer risk in the vitamins and lifestyle (VITAL) cohort. J. Clin. Oncol. 2017, 35, 3440–3448. [Google Scholar] [CrossRef]
- Lammersfeld, C.A.; Levin, M.D.; Reilly, P.; Coyne, J.W.; Birdsall, T.C.; Markman, M. Assuring quality of dietary supplements for cancer patients: An integrative formulary systems approach. Integr. Med. 2017, 16, 38–44. [Google Scholar]
- Bailey, R.L. Current regulatory guidelines and resources to support research of dietary supplements in the United States. Crit. Rev. Food Sci. Nutr. 2020, 60, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Vettorazzi, A.; López de Cerain, A.; Sanz-Serrano, J.; Gil, A.G.; Azqueta, A. European regulatory framework and safety assessment of food-related bioactive compounds. Nutrients 2020, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- Maixent, J.M. Opinion paper food supplements: The European regulation and its application in France. Thoughts on safety of food supplements. Cell Mol. Biol. 2012, 58. [Google Scholar] [CrossRef]
- Figueiredo, A.; Costa, I.M.; Fernandes, T.A.; Gonçalves, L.L.; Brito, J. Food supplements for weight loss: Risk assessment of selected impurities. Nutrients 2020, 12, 954. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA J. 2017, 15, e04908. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipicč, M.; Frutos, M.J.; Galtier, P.; Gundert-Remy, U.; et al. Guidance on safety evaluation of sources of nutrients and bioavailability of nutrient from the sources. EFSA J. 2018, 16, e05294. [Google Scholar] [CrossRef]
- Newmaster, S.G.; Grguric, M.; Shanmughanandhan, D.; Ramalingam, S.; Ragupathy, S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013, 11, 222. [Google Scholar] [CrossRef]
- Lo, H.; Li, C.; Huang, H.; Lin, L.; Hsiang, C.; Ho, T. Application of transcriptomics in Chinese herbal medicine studies. J. Tradit. Complement Med. 2012, 2, 105–114. [Google Scholar] [CrossRef]
- Heinrich, M.; Scotti, F.; Booker, A.; Fitzgerald, M.; Kum, K.Y.; Löbel, K. Unblocking high-value botanical value chains: Is there a role for blockchain systems? Front. Pharmacol. 2019, 10, 396. [Google Scholar] [CrossRef] [PubMed]
- Little, J.G.; Marsman, D.S.; Baker, T.R.; Mahony, C. In silico approach to safety of botanical dietary supplement ingredients utilizing constituent-level characterization. Food Chem. Toxicol. 2017, 107, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, N.V.; Kuzmina, M.L.; Braukmann, T.W.A.; Borisenko, A.V.; Zakharov, E.V. Authentication of herbal supplements using next-generation sequencing. PLoS ONE 2016, 11, e0156426. [Google Scholar] [CrossRef] [PubMed]
- Saitta, D.; Ferro, G.A.; Polosa, R. Achieving appropriate regulations for electronic cigarettes. Ther. Adv. Chronic. Dis. 2014, 5, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Basáñez, T.; Majmundar, A.; Cruz, T.B.; Allem, J.; Unger, J.B. E-cigarettes are being marketed as “vitamin delivery” devices. Am. J. Public Health 2019, 109, 194–196. [Google Scholar] [CrossRef] [PubMed]
- Tucker, J.; Fischer, T.; Upjohn, L.; Mazzera, D.; Kumar, M. Unapproved pharmaceutical ingredients included in dietary supplements associated with US Food and Drug Administration warnings. JAMA Netw. Open 2018, 1, e183337. [Google Scholar] [CrossRef]
- Brown, R.A.; Abrantes, A.M.; Strong, D.R.; Niaura, R.; Kahler, C.W.; Miller, I.W.; Price, L.H. Efficacy of sequential use of fluoxetine for smoking cessation in elevated depressive symptom smokers. Nicotine Tob. Res. 2014, 16, 197–207. [Google Scholar] [CrossRef]
- Friedman, G.D.; Udaltsova, N.; Chan, J.; Quesenberry, C.P., Jr.; Habel, L.A. Screening pharmaceuticals for possible carcinogenic effects: Initial positive results for drugs not previously screened. Cancer Causes Control 2009, 20, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Blatter, J.; Brehm, J.M.; Forno, E.; Litonjua, A.A.; Celedón, J.C. Diet and asthma: Vitamins and methyl donors. Lancet Respir. 2013, 1, 813–822. [Google Scholar] [CrossRef]
- Sharma, S.; Litonjua, A. Asthma, allergy, and responses to methyl donor supplements and nutrients. J. Allergy Clin. Immunol. 2014, 133, 1246–1254. [Google Scholar]
- Yeh, G.Y.; Horwitz, R. Integrative medicine for respiratory conditions: Asthma and COPD. Med. Clin. N. Am. 2017, 101, 925–941. [Google Scholar] [CrossRef]
- Jafarinia, M.; Hosseini, M.S.; Kasiri, N.; Fazel, N.; Fathi, F.; Hakemi, M.G.; Eskandari, N. Quercetin with the potential effect on allergic diseases. Allergy Asthma Clin. Immunol. 2020, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Zolfaghari, B. Pharmaceutical and nutraceutical effects of Pinus pinaster bark extract. Res. Pharm. Sci. 2011, 6, 1–11. [Google Scholar] [PubMed]
- Clapp, P.W.; Jaspers, I. Electronic cigarettes: Their constituents and potential links to asthma. Curr. Allergy Asthma Rep. 2017, 17, 79. [Google Scholar] [CrossRef] [PubMed]
- Belok, S.H.; Parikh, R.; Bernardo, J.; Kathuria, H. E-cigarette, or vaping, product use-associated lung injury: A review. Pneumonia 2020, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Paik, S.Y. Association between electronic cigarette use and asthma among high school students in South Korea. PLoS ONE 2016, 11, e0151022. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Bernat, D. E-Cigarette use among Florida youth with and wthout asthma. Am. J. Prev. Med. 2016, 51, 446–453. [Google Scholar] [CrossRef]
- Schweitzer, R.J.; Wills, T.A.; Tam, E.; Pagano, I.; Choi, K. E-cigarette use and asthma in a multiethnic sample of adolescents. Prev. Med. 2017, 105, 226–231. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Re-evaluation of glycerol (E 422) as a food additive. EFSA J. 2017, 15, e04720. [Google Scholar] [CrossRef]
- Kerasioti, E.; Veskoukis, A.S.; Skaperda, Z.; Zacharias, A.; Poulas, K.; Lazopoulos, G.; Kouretasa, D. The flavoring and not the nicotine content is a decisive factor for the effects of refill liquids of electronic cigarette on the redox status of endothelial cells. Toxicol. Rep. 2020, 7, 1095–1102. [Google Scholar]
- Bengalli, R.; Ferri, E.; Labra, M.; Mantecca, P. Lung toxicity of condensed aerosol from E-CIG liquids: Influence of the flavor and the In vitro model used. Int. J. Environ. Res. Public Health. 2017, 14, 1254. [Google Scholar] [CrossRef]
- Grootveld, M.; Percival, B.C.; Leenders, J.; Wilson, P.B. Potential adverse public health effects afforded by the ingestion of dietary lipid oxidation product toxins: Significance of fried food sources. Nutrients 2020, 12, 974. [Google Scholar] [CrossRef] [PubMed]
- Clapp, P.W.; Lavrich, K.S.; van Heusden, C.A.; Lazarowski, E.R.; Carson, J.L.; Jaspers, I. Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316, L470–L486. [Google Scholar] [CrossRef] [PubMed]
- Alsharairi, N.A. Diet and food allergy as risk factors for asthma in the Arabian Gulf Region: Current evidence and future research needs. Int. J. Environ. Res. Public Health 2019, 16, 3852. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharairi, N.A. Supplements for Smoking-Related Lung Diseases. Encyclopedia 2021, 1, 76-86. https://doi.org/10.3390/encyclopedia1010010
Alsharairi NA. Supplements for Smoking-Related Lung Diseases. Encyclopedia. 2021; 1(1):76-86. https://doi.org/10.3390/encyclopedia1010010
Chicago/Turabian StyleAlsharairi, Naser A. 2021. "Supplements for Smoking-Related Lung Diseases" Encyclopedia 1, no. 1: 76-86. https://doi.org/10.3390/encyclopedia1010010
APA StyleAlsharairi, N. A. (2021). Supplements for Smoking-Related Lung Diseases. Encyclopedia, 1(1), 76-86. https://doi.org/10.3390/encyclopedia1010010