Low-Frequency Measurement of Moistened Wood-Based Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference and Under-Test Materials
- Air (εr = 1.00);
- Polytetrafluoroethylene or PTFE (εr = 2.100);
- Polylactide or PLA (εr = 3.50);
- Bakelite (εr = 4.5–5.0);
- Lead Glasses (εr = 7.5–10.0).
2.2. Capacitive Probe
2.3. Measurement Chain
2.4. Moistening and Weighing Procedure
2.5. Measurement Procedure
3. Results and Discussions
3.1. Calibration Results
3.2. Wood Sample Results
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pavlogeorgatos, G. Environmental Parameters in Museums. Build. Environ. 2003, 38, 1457–1462. [Google Scholar] [CrossRef]
- Marconi, E.; Tuti, S.; Fidanza, M.R.; Leccese, F.; Galetti, A.; Geminiani, F. A Novel Approach for In-Situ Assessment of the Efficacy of Biocides on Building of Historical Interest by Bioluminescence. In Proceedings of the 2019 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Florence, Italy, 4 December 2019; Volume 1, pp. 429–434. [Google Scholar]
- Zhang, H. (Ed.) Wood. In Building Materials in Civil Engineering; Ma, S.; Wu, Y., Translators; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1, pp. 238–423. [Google Scholar] [CrossRef]
- S.U., S.L.; Singh, D.N.; Shojaei Baghini, M. A Critical Review of Soil Moisture Measurement. Measurement 2014, 54, 92–105. [Google Scholar] [CrossRef]
- Camuffo, D. Measuring Time of Wetness and Moisture in Materials. In Microclimate for Cultural Heritage; Elsevier: Amsterdam, The Netherlands, 2019; pp. 459–482. [Google Scholar]
- Torgovnikov, G.I. Dielectric Properties of Wood-Based Materials; Springer: Berlin/Heidelberg, Germany, 1993; pp. 135–159. [Google Scholar]
- Niemz, P.; Mannes, D. Non-Destructive Testing of Wood and Wood-Based Materials. J. Cult. Herit. 2012, 13, S26–S34. [Google Scholar] [CrossRef]
- Aguilar-Castro, K.M.; Flores-Prieto, J.J.; Macías-Melo, E.V. Near Infrared Reflectance Spectroscopy: Moisture Content Measurement for Ceramic Plaster. J. Mech. Sci. Technol. 2014, 28, 293–300. [Google Scholar] [CrossRef]
- Barreira, E.; Almeida, R.M.S.F.; Moreira, M. An Infrared Thermography Passive Approach to Assess the Effect of Leakage Points in Buildings. Energy Build. 2017, 140, 224–235. [Google Scholar] [CrossRef]
- Marynowicz, A.; Kucharczyk, A. Determination of the Water Absorption and Water Diffusion Coefficients by Means of Infrared Thermography Measurements. Measurement 2021, 185, 110054. [Google Scholar] [CrossRef]
- Casieri, C.; Senni, L.; Romagnoli, M.; Santamaria, U.; De Luca, F. Determination of Moisture Fraction in Wood by Mobile NMR Device. J. Magn. Reson. 2004, 171, 364–372. [Google Scholar] [CrossRef]
- Güneyli, H.; Karahan, S.; Güneyli, A.; Yapιcι, N. Water Content and Temperature Effect on Ultrasonic Pulse Velocity of Concrete. Russ. J. Nondestruct. Test. 2017, 53, 159–166. [Google Scholar] [CrossRef]
- Lencis, U.; Udris, A.; Korjakins, A. Moisture Effect on the Ultrasonic Pulse Velocity in Concrete Cured under Normal Conditions and at Elevated Temperature. Constr. Sci. 2013, 14, 71–78. [Google Scholar] [CrossRef]
- Luo, D.; Wang, S.; Du, X.; Zhao, P.; Lu, T.; Yang, H.; Frank Chen, Y. Health Detection Techniques for Historic Structures. Mater. Test. 2021, 63, 855–864. [Google Scholar] [CrossRef]
- Běťák, A.; Zach, J.; Misák, P.; Vaněrek, J. Comparison of Wood Moisture Meters Operating on Different Principles of Measurement. Buildings 2023, 13, 531. [Google Scholar] [CrossRef]
- Aichholzer, A.; Schuberth, C.; Mayer, H.; Arthaber, H. Microwave Testing of Moist and Oven-Dry Wood to Evaluate Grain Angle, Density, Moisture Content and the Dielectric Constant of Spruce from 8 GHz to 12 GHz. Eur. J. Wood Wood Prod. 2018, 76, 89–103. [Google Scholar] [CrossRef]
- Piuzzi, E.; Cannazza, G.; Cataldo, A.; De Benedetto, E.; De Giorgi, L.; Frezza, F.; Leucci, G.; Pisa, S.; Pittella, E.; Prontera, S.; et al. A Comparative Assessment of Microwave-Based Methods for Moisture Content Characterization in Stone Materials. Measurement 2018, 114, 493–500. [Google Scholar] [CrossRef]
- Aichholzer, A.; Arthaber, H.; Schuberth, C.; Mayer, H. Non-Destructive Evaluation of Grain Angle, Moisture Content and Density of Spruce with Microwaves. Eur. J. Wood Wood Prod. 2013, 71, 779–786. [Google Scholar] [CrossRef]
- Łukawski, D.; Dudkowiak, A.; Janczak, D.; Lekawa-Raus, A. Preparation and Applications of Electrically Conductive Wood Layered Composites. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105656. [Google Scholar] [CrossRef]
- Larsen, P.K. Determination of Water Content in Brick Masonry Walls Using a Dielectric Probe. J. Archit. Conserv. 2012, 18, 47–62. [Google Scholar] [CrossRef]
- Razafindratsima, S.; Sbartaï, Z.M.; Demontoux, F. Permittivity Measurement of Wood Material over a Wide Range of Moisture Content. Wood Sci. Technol. 2017, 51, 1421–1431. [Google Scholar] [CrossRef]
- Gallardo, D.; Reyes, N.; Monasterio, D.; Finger, R. Measurement of Wood Moisture Content Using Microwaves. In Proceedings of the 2018 IEEE MTT-S Latin America Microwave Conference (LAMC 2018), Arequipa, Peru, 12–14 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–3. [Google Scholar]
- D’Alvia, L.; Pittella, E.; Pisa, S.; Piuzzi, E.; Del Prete, Z. Effect of Applied Pressure on Patch Resonator-Based Measurements of Moisture Level for Cultural Heritage Materials. In MetroArchaeo 2018—Proceedings, Proceedings of the 2018 IEEE International Conference on Metrology for Archaeology and Cultural Heritage, Cassino, Italy, 22–24 October 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Pittella, E.; Cataldo, A.; Cavagnaro, M.; D’Alvia, L.; Fabbrocino, F.; Piuzzi, E. Wireless Sensing of Permittivity for Cultural Heritage Monitoring Using a Passive SRR. In Proceedings of the 2022 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Rome, Italy, 19–21 October 2023; IMEKO: Budapest, Romania, 2023; pp. 258–262. [Google Scholar]
- D’Alvia, L.; Piuzzi, E.; Cataldo, A.; Del Prete, Z. Permittivity-Based Water Content Calibration Measurement in Wood-Based Cultural Heritage: A Preliminary Study. Sensors 2022, 22, 2148. [Google Scholar] [CrossRef]
- D’Alvia, L.; Piuzzi, E.; Cataldo, A.; Del Prete, Z. Permittivity of Wood as a Function of Moisture for Cultural Heritage Applications: A Preliminary Study. J. Phys. Conf. Ser. 2022, 2204, 012052. [Google Scholar] [CrossRef]
- Dietsch, P.; Franke, S.; Franke, B.; Gamper, A.; Winter, S. Methods to Determine Wood Moisture Content and Their Applicability in Monitoring Concepts. J. Civ. Struct. Health Monit. 2015, 5, 115–127. [Google Scholar] [CrossRef]
- Moron, C.; Garcia-Fuentevilla, L.; Garcia, A.; Moron, A. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings. Sensors 2016, 16, 697. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, P.; Togni, M.; Uzielli, L. Drying Shrinkage and Mechanical Properties of Poplar Wood (Populus Alba L.) across the Grain. J. Cult. Herit. 2012, 13, S85–S89. [Google Scholar] [CrossRef]
- Irbe, I.; Karadelev, M.; Andersone, I.; Andersons, B. Biodeterioration of External Wooden Structures of the Latvian Cultural Heritage. J. Cult. Herit. 2012, 13, S79–S84. [Google Scholar] [CrossRef]
- Riparbelli, L.; Mazzanti, P.; Manfriani, C.; Uzielli, L.; Castelli, C.; Gualdani, G.; Ricciardi, L.; Santacesaria, A.; Rossi, S.; Fioravanti, M. Hygromechanical Behaviour of Wooden Panel Paintings: Classification of Their Deformation Tendencies Based on Numerical Modelling and Experimental Results. Herit. Sci. 2023, 11, 25. [Google Scholar] [CrossRef]
- Edvardsson, J.; Seim, A.; Davies, J.; Vander Auwera, J. The Rediscovery of an Adoration of the Shepherds by Jacques Jordaens: A Multidisciplinary Approach Combining Dendroarchaeology and Art History. Herit. Sci. 2021, 9, 39. [Google Scholar] [CrossRef]
- Piuzzi, E.; Chicarella, S.; Cataldo, A.; De Benedetto, E.; Cannazza, G. Design, Realization, and Experimental Characterization of an Admittance Cell for Low-Frequency Dielectric Permittivity Measurements on Liquids. IEEE Trans. Instrum. Meas. 2016, 65, 104–111. [Google Scholar] [CrossRef]
- Keysight Technologies. Basics of Measuring the Dielectric Properties of Materials; Keysight Technologies: Santa Rosa, CA, USA, 2017. [Google Scholar]
- D’Alvia, L.; Pittella, E.; Rizzuto, E.; Piuzzi, E.; Del Prete, Z. A Portable Low-Cost Reflectometric Setup for Moisture Measurement in Cultural Heritage Masonry Unit. Measurement 2022, 189, 110438. [Google Scholar] [CrossRef]
- D’alvia, L.; Palermo, E.; Del Prete, Z.; Pittella, E.; Pisa, S.; Piuzzi, E. A Comparative Evaluation of Patch Resonators Layouts for Moisture Measurement in Historic Masonry Units. In Proceedings of the 2019 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Florence, Italy, 4 December 2019. [Google Scholar]
- D’Alvia, L.; Castelli Gattinara Di Zubiena, F.; Palermo, E.; Del Prete, Z. Preliminary Low-Frequency Dielectric Measurement of 3D Printed Materials. In Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, ON, Canada, 16–19 May 2022; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
- PTEF Thecnical Data. Available online: https://www.smithmetal.com/pdf/plastics/ptfe.pdf (accessed on 15 October 2024).
- Huber, E.; Mirzaee, M.; Bjorgaard, J.; Hoyack, M.; Noghanian, S.; Chang, I. Dielectric Property Measurement of PLA. In Proceedings of the 2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks, ND, USA, 19–21 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 788–792. [Google Scholar]
- Aleem, A.; Ghaffar, A.; Kiani, N.M.; Irshad, M.; Mehmood, I.; Shahzad, M.; Shahbaz, A. Broad-Band Dielectric Properties of Teflon, Bakelite, and Air: Simulation and Experimental Study. Mater. Sci. Eng. B 2021, 272, 115347. [Google Scholar] [CrossRef]
- Young, H.D.; Freedman, R.A. University Physics with Modern Physics, Global Edition, 15th ed.; Pearson: London, UK, 2024; ISBN 9781292436517. [Google Scholar]
f [kHz] | AIR | PTFE | PLA | BAKELITE | LEAD GLASS | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
εr | ur | uinst | U | εr | ur | uinst | U | εr | ur | uinst | U | εr | ur | uinst | U | εr | ur | uinst | U | |
10 | 1.009 | 0.053 | 0.033 | 0.18 | 2.132 | 0.053 | 0.033 | 0.18 | 3.449 | 0.074 | 0.033 | 0.23 | 5.005 | 0.036 | 0.033 | 0.17 | 3.449 | 0.074 | 0.033 | 0.23 |
20 | 1.010 | 0.056 | 0.033 | 0.19 | 2.134 | 0.048 | 0.033 | 0.17 | 3.451 | 0.065 | 0.033 | 0.21 | 5.001 | 0.001 | 0.033 | 0.17 | 3.451 | 0.065 | 0.033 | 0.21 |
30 | 1.008 | 0.056 | 0.033 | 0.19 | 2.134 | 0.059 | 0.033 | 0.20 | 3.450 | 0.083 | 0.033 | 0.26 | 4.918 | 0.003 | 0.033 | 0.17 | 3.450 | 0.083 | 0.033 | 0.26 |
40 | 1.008 | 0.059 | 0.033 | 0.20 | 2.135 | 0.065 | 0.033 | 0.21 | 3.449 | 0.074 | 0.033 | 0.23 | 4.845 | 0.001 | 0.033 | 0.17 | 3.449 | 0.074 | 0.033 | 0.23 |
50 | 1.009 | 0.053 | 0.033 | 0.18 | 2.135 | 0.053 | 0.033 | 0.18 | 3.449 | 0.048 | 0.033 | 0.17 | 4.833 | 0.001 | 0.033 | 0.17 | 3.449 | 0.048 | 0.033 | 0.17 |
60 | 1.009 | 0.059 | 0.033 | 0.20 | 2.131 | 0.053 | 0.033 | 0.18 | 3.450 | 0.059 | 0.033 | 0.20 | 4.773 | 0.030 | 0.033 | 0.17 | 3.450 | 0.059 | 0.033 | 0.20 |
70 | 1.008 | 0.056 | 0.033 | 0.19 | 2.131 | 0.059 | 0.033 | 0.20 | 3.451 | 0.065 | 0.033 | 0.21 | 4.737 | 0.048 | 0.033 | 0.18 | 3.451 | 0.065 | 0.033 | 0.21 |
80 | 1.008 | 0.062 | 0.033 | 0.20 | 2.132 | 0.048 | 0.033 | 0.17 | 3.449 | 0.083 | 0.033 | 0.26 | 4.762 | 0.014 | 0.033 | 0.17 | 3.449 | 0.083 | 0.033 | 0.26 |
90 | 1.009 | 0.059 | 0.033 | 0.20 | 2.129 | 0.050 | 0.033 | 0.17 | 3.450 | 0.062 | 0.033 | 0.20 | 4.737 | 0.100 | 0.033 | 0.21 | 3.450 | 0.062 | 0.033 | 0.20 |
100 | 1.009 | 0.062 | 0.033 | 0.20 | 2.130 | 0.050 | 0.033 | 0.17 | 3.450 | 0.065 | 0.033 | 0.21 | 4.710 | 0.001 | 0.033 | 0.17 | 3.450 | 0.065 | 0.033 | 0.21 |
Materials | Temperature (°C) | ) Ref | Measured |
---|---|---|---|
air | 23 ± 1 | 1.00 | 1.01 ± 0.006 |
PTEF [38] | 24 ± 1 | 2.10 | 2.13 ± 0.004 |
PLA [39] | 23 ± 1 | 3.50 | 3.45 ± 0.007 |
Bakelite [40] | 22 ± 1 | 4.5–5.0 | 4.83 ± 0.12 |
LEAD GLASS [41] | 22± 1 | 7.5–10.0 | 9.45 ± 0.03 |
Poplar (WC%) | Vertical Shift | ||
---|---|---|---|
poplar 0.0% | 4.97 | 0.062 | 5.27 |
poplar 1.3 | 8.49 | 1.38 | 15.6 |
poplar 2.0% | 9.87 | 2.26 | 21.6 |
poplar 2.5 | 12.8 | 2.16 | 24.0 |
poplar 3.4% | 13.6 | 2.51 | 26.5 |
Oak (WC%) | Vertical Shift | ||
---|---|---|---|
Oak 0.0% | 8.51 | 0.139 | 9.2 |
Oak 0.4% | 9.73 | 0.584 | 12.7 |
Oak 1.1% | 11.1 | 1.57 | 19.1 |
Oak 1.5% | 12.3 | 1.96 | 22.3 |
Oak 2.0% | 12.8 | 1.95 | 22.8 |
Coefficients | Poplar | Oak |
---|---|---|
b | 5.27 | 9.23 |
t | 29.2 | 26.1 |
C50% | 1.46 | 0.859 |
s | 2.39 | 1.81 |
R2 | 0.98 | 0.99 |
Interpolation error | 0.3 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alvia, L. Low-Frequency Measurement of Moistened Wood-Based Materials. Metrology 2025, 5, 1. https://doi.org/10.3390/metrology5010001
D’Alvia L. Low-Frequency Measurement of Moistened Wood-Based Materials. Metrology. 2025; 5(1):1. https://doi.org/10.3390/metrology5010001
Chicago/Turabian StyleD’Alvia, Livio. 2025. "Low-Frequency Measurement of Moistened Wood-Based Materials" Metrology 5, no. 1: 1. https://doi.org/10.3390/metrology5010001
APA StyleD’Alvia, L. (2025). Low-Frequency Measurement of Moistened Wood-Based Materials. Metrology, 5(1), 1. https://doi.org/10.3390/metrology5010001