What Nephrologists Should Know about the Use of Continuous Glucose Monitoring in Type 2 Diabetes Mellitus Patients on Chronic Hemodialysis
Abstract
:1. Introduction
2. Types of CGM Devices
3. Why Are Diabetes Management and Glycemic Goal Attainment Challenging in Hemodialysis (HD) Patients?
4. What Are the Limitations and Caveats of Conventional Markers of Glycemic Control (SMBG, HbA1C) and Alternative Markers (Fructosamine and Glycated Albumin) in HD Diabetic Patients?
5. What Are the General Principles of CGM?
6. Interpretation of CGM: New Standardized Glucose Metrics
- -
- Percentage of time CGM is active. A minimum of 14 consecutive days of data with approximately 70% of possible CGM readings over those 14 days is mandatory for optimal analysis and decision making.
- -
- Glucose management indicator (GMI), previously termed estimated HbA1C: a metric derived from converting mean glucose (from CGM) into an estimate of concurrent (laboratory) glycated hemoglobin (HbA1c) using a population-based formula [29]. Discordance between GMI and measured HbA1C can be observed, and may be increased in advanced chronic kidney disease (eGFR < 60 mL/min) [30]. According to the 2020 KDIGO Clinical Practice Guideline on Diabetes Management in Chronic Kidney Disease, GMI can be used to evaluate glycemic control for CKD/ESKD individuals in whom HbA1c is unreliable [17].
- -
- Glycemic variability (% CV, coefficient of variation). Increased CV is a marker of non-reproducible daily glucose curves, a pattern that is generally due to wide and recurrent glucose excursions, especially post-prandial hyperglycemia and/or recurrent hypoglycemia. Data that cannot be reproduced from day to day impact the possibility of adjusting the insulin regimen adequately and safely. Glycemic variability is correlated with risk of hypoglycemia and is an additional risk factor for diabetes complications [31,32]. The goal is a CV≤36%.
- -
- Time in range (TIR): % of readings and time per day 70–180 mg/dL (3.9–10.0 mmol/L). A TIR of 70% and 50% was shown to strongly correspond with an HbA1C of approximately 7% and 8%, respectively, in two cohorts of T1D and T2D. Recent studies support TIR as a predictive marker of diabetic microvascular complications [28].
- -
- Frequency and time spent in hypoglycemia (time below range, TBR %): % of readings and time <54–69 mg/dL (3.0–3.8 mmol/L). Level 2, % of readings and time < 54 mg/dL (3.0 mmol/L)
- -
- Frequency and time spent in hyperglycemia (time above range, TAR %): % of readings and time >181–250 mg/dL (10.1–13.9 mmol/L). Level 2, % of readings and time >250 mg/dL (>13.9 mmol/L)
- -
- Ambulatory glucose profile (AGP) is a summary of the average daily glucose values by time of day over the report period (7-14-30-90 days), with median (50%) and other percentiles shown (Figure 1). This graph enables us to observe the pattern and the kinetics of hypo- and hyperglycemia.
- -
- Daily glucose profiles.
7. What Have Studies Shown with CGM in the Setting of Chronic Hemodialysis?
8. What Is the Role of CGM in Improving Diabetes Management in HD Patients?
9. What Is the Accuracy of CGM/FSL in HD Diabetic Patients?
10. Conclusion and Practical Tips for Optimal Use of CGM in Type 2 Diabetes Mellitus Patients on Chronic Hemodialysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Didyuk, O.; Econom, N.; Guardia, A.; Livingston, K.; Klueh, U. Continuous Glucose Monitoring Devices: Past, Present, and Future Focus on the History and Evolution of Technological Innovation. J. Diabetes Sci. Technol. 2021, 15, 676–683. [Google Scholar] [CrossRef]
- Galindo, R.J.; Aleppo, G. Continuous glucose monitoring: The achievement of 100 years of innovation in diabetes technology. Diabetes Res. Clin. Pract. 2020, 170, 108502. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Brown, F.; James, S.; Jones, J.; Ekinci, E. Continuous glucose monitoring: A review of the evidence in type 1 and 2 diabetes mellitus. Diabet. Med. 2021, 38, e14528. [Google Scholar] [CrossRef]
- Holt, R.I.G.; DeVries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; et al. The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2021, 64, 2609–2652, Erratum in Diabetologia 2022, 65, 255. [Google Scholar] [CrossRef] [PubMed]
- Bomholt, T.; Adrian, T.; Nørgaard, K.; Ranjan, A.G.; Almdal, T.; Larsson, A.; Vadstrup, M.; Rix, M.; Feldt-Rasmussen, B.; Hornum, M. The Use of HbA1c, Glycated Albumin and Continuous Glucose Monitoring to Assess Glucose Control in the Chronic Kidney Disease Population Including Dialysis. Nephron 2021, 145, 14–19. [Google Scholar] [CrossRef]
- Mottl, A.K.; Alicic, R.; Argyropoulos, C.; Brosius, F.C.; Mauer, M.; Molitch, M.; Nelson, R.G.; Perreault, L.; Nicholas, S.B. KDOQI US Commentary on the KDIGO 2020 Clinical Practice Guideline for Diabetes Management in CKD. Am. J. Kidney Dis. 2022, 79, 457–479. [Google Scholar] [CrossRef]
- Frankel, A.H.; Kazempour-Ardebili, S.; Bedi, R.; Chowdhury, T.A.; De, P.; El-Sherbini, N.; Game, F.; Gray, S.; Hardy, D.; James, J.; et al. Management of adults with diabetes on the haemodialysis unit: Summary of guidance from the Joint British Diabetes Societies and the Renal Association. Diabet. Med. 2018, 35, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Saran, R.; Robinson, B.; Abbott, K.C.; Agodoa, L.Y.C.; Bhave, N.; Bragg-Gresham, J.; Balkrishnan, R.; Dietrich, X.; Eckard, A.; Eggers, P.W.; et al. US Renal Data System 2017 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2018, 71 (3 Suppl. 1), A7, Erratum in Am. J. Kidney Dis. 2018, 71, 501. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Boenink, R.; Stel, V.S.; de Santiuste Pablos, C.; Tomović, F.; Golan, E.; Kerschbaum, J.; Seyahi, N.; Ioanou, K.; Beltrán, P.; et al. The ERA-EDTA Registry Annual Report 2018: A summary. Clin. Kidney J. 2021, 14, 107–123. [Google Scholar] [CrossRef]
- Lu, Y.; Stamm, C.; Nobre, D.; Pruijm, M.; Teta, D.; Cherpillod, A.; Halabi, G.; Phan, O.; Fumeaux, Z.; Bullani, R.; et al. Changing trends in end-stage renal disease patients with diabetes. Swiss Med. Wkly. 2017, 147, w14458. [Google Scholar] [CrossRef]
- Ramirez, S.P.; McCullough, K.P.; Thumma, J.R.; Nelson, R.G.; Morgenstern, H.; Gillespie, B.W.; Inaba, M.; Jacobson, S.H.; Vanholder, R.; Pisoni, R.L.; et al. Hemoglobin A(1c) levels and mortality in the diabetic hemodialysis population: Findings from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Diabetes Care 2012, 35, 2527–2532. [Google Scholar] [CrossRef] [PubMed]
- Tzamaloukas, A.H.; Ing, T.S.; Siamopoulos, K.C.; Rohrscheib, M.; Elisaf, M.S.; Raj, D.S.; Murata, G.H. Body fluid abnormalities in severe hyperglycemia in patients on chronic dialysis: Review of published reports. J. Diabetes Its Complicat. 2008, 22, 29–37. [Google Scholar] [CrossRef]
- Galindo, R.J.; Pasquel, F.J.; Fayfman, M.; Tsegka, K.; Dhruv, N.; Cardona, S.; Wang, H.; Vellanki, P.; Umpierrez, G.E. Clinical characteristics and outcomes of patients with end-stage renal disease hospitalized with diabetes ketoacidosis. BMJ Open Diabetes Res. Care 2020, 8, e000763. [Google Scholar] [CrossRef]
- International Hypoglycaemia Study Group. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: Epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol. 2019, 7, 385–396, Erratum in Lancet Diabetes Endocrinol. 2019, 7, e18. [Google Scholar] [CrossRef]
- Abe, M.; Kalantar-Zadeh, K. Haemodialysis-induced hypoglycaemia and glycaemic disarrays. Nat. Rev. Nephrol. 2015, 11, 302–313. [Google Scholar] [CrossRef]
- Galindo, R.J.; Beck, R.W.; Scioscia, M.F.; Umpierrez, G.E.; Tuttle, K.R. Glycemic Monitoring and Management in Advanced Chronic Kidney Disease. Endocr. Rev. 2020, 41, 756–774. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, S.D.; Zoungas, S.; Caramori, M.L.; Chan, J.C.N.; Heerspink, H.J.L.; Hurst, C.; Liew, A.; Michos, E.D.; Olowu, W.A.; Sadusky, T.; et al. Diabetes Management in Chronic Kidney Disease: Synopsis of the 2020 KDIGO Clinical Practice Guideline. Ann. Intern. Med. 2021, 174, 385–394. [Google Scholar] [CrossRef]
- Foundation, N.K. KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am. J. Kidney Dis. 2012, 60, 850–886, Erratum in Am. J. Kidney Dis. 2013, 61, 1049. [Google Scholar] [CrossRef]
- Jin, Y.P.; Su, X.F.; Yin, G.P.; Xu, X.H.; Lou, J.Z.; Chen, J.J.; Zhou, Y.; Lan, J.; Jiang, B.; Li, Z.; et al. Blood glucose fluctuations in hemodialysis patients with end stage diabetic nephropathy. J. Diabetes Its Complicat. 2015, 29, 395–399. [Google Scholar] [CrossRef]
- Rhee, C.M.; Leung, A.M.; Kovesdy, C.P.; Lynch, K.E.; Brent, G.A.; Kalantar-Zadeh, K. Updates on the management of diabetes in dialysis patients. Semin. Dial. 2014, 27, 135–145. [Google Scholar] [CrossRef]
- Divani, M.; Georgianos, P.I.; Didangelos, T.; Iliadis, F.; Makedou, A.; Hatzitolios, A.; Liakopoulos, V.; Grekas, D.M. Comparison of Glycemic Markers in Chronic Hemodialysis Using Continuous Glucose Monitoring. Am. J. Nephrol. 2018, 47, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Schmelzeisen-Redeker, G.; Schoemaker, M.; Kirchsteiger, H.; Freckmann, G.; Heinemann, L.; Del Re, L. Time Delay of CGM Sensors: Relevance, Causes, and Countermeasures. J. Diabetes Sci. Technol. 2015, 9, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, R.; von Sengbusch, S.; Kröger, J.; Schubert, O.; Werkmeister, P.; Deiss, D.; Siegmund, T. Therapy Adjustments Based on Trend Arrows Using Continuous Glucose Monitoring Systems. J. Diabetes Sci. Technol. 2019, 13, 763–773. [Google Scholar] [CrossRef]
- Calhoun, P.; Johnson, T.K.; Hughes, J.; Price, D.; Balo, A.K. Resistance to Acetaminophen Interference in a Novel Continuous Glucose Monitoring System. J. Diabetes Sci. Technol. 2018, 12, 393–396. [Google Scholar] [CrossRef]
- Denham, D. Effect of Repeated Doses of Acetaminophen on a Continuous Glucose Monitoring System with Permselective Membrane. J. Diabetes Sci. Technol. 2021, 15, 517–518. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, C.; Sandoval, W.; Mortellaro, M. Interference Assessment of Various Endogenous and Exogenous Substances on the Performance of the Eversense Long-Term Implantable Continuous Glucose Monitoring System. Diabetes Technol. Ther. 2018, 20, 344–352. [Google Scholar] [CrossRef]
- Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemann, L.; Hirsch, I.; Amiel, S.A.; et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care 2017, 40, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef]
- Bergenstal, R.M.; Beck, R.W.; Close, K.L.; Grunberger, G.; Sacks, D.B.; Kowalski, A.; Brown, A.S.; Heinemann, L.; Aleppo, G.; Ryan, D.B.; et al. Glucose Management Indicator (GMI): A New Term for Estimating A1C From Continuous Glucose Monitoring. Diabetes Care 2018, 41, 2275–2280. [Google Scholar] [CrossRef] [PubMed]
- Perlman, J.E.; Gooley, T.A.; McNulty, B.; Meyers, J.; Hirsch, I.B. HbA1c and Glucose Management Indicator Discordance: A Real-World Analysis. Diabetes Technol. Ther. 2021, 23, 253–258. [Google Scholar] [CrossRef]
- Monnier, L.; Colette, C.; Owens, D. Glucose variability and diabetes complications: Risk factor or biomarker? Can we disentangle the ”Gordian Knot”? Diabetes Metab. 2021, 47, 101225. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Monnier, L.; Owens, D. Glycaemic variability in diabetes: Clinical and therapeutic implications. Lancet Diabetes Endocrinol. 2019, 7, 221–230. [Google Scholar] [CrossRef]
- Gallieni, M.; De Salvo, C.; Lunati, M.E.; Rossi, A.; D’Addio, F.; Pastore, I.; Sabiu, G.; Miglio, R.; Zuccotti, G.V.; Fiorina, P. Continuous glucose monitoring in patients with type 2 diabetes on hemodialysis. Acta Diabetol. 2021, 58, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Kazempour-Ardebili, S.; Lecamwasam, V.L.; Dassanyake, T.; Frankel, A.H.; Tam, F.W.; Dornhorst, A.; Frost, G.; Turner, J.J. Assessing glycemic control in maintenance hemodialysis patients with type 2 diabetes. Diabetes Care 2009, 32, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Gai, M.; Merlo, I.; Dellepiane, S.; Cantaluppi, V.; Leonardi, G.; Fop, F.; Guarena, C.; Grassi, G.; Biancone, L. Glycemic pattern in diabetic patients on hemodialysis: Continuous glucose monitoring (CGM) analysis. Blood Purif. 2014, 38, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Kim, H.I.; Kim, M.J.; Yoon, J.W.; Ahn, H.Y.; Cho, Y.M.; Oh, K.H.; Joo, K.W.; Lee, J.G.; Kim, S.Y.; et al. Analysis of hemodialysis-associated hypoglycemia in patients with type 2 diabetes using a continuous glucose monitoring system. Diabetes Technol. Ther. 2010, 12, 801–807. [Google Scholar] [CrossRef]
- Riveline, J.P.; Teynie, J.; Belmouaz, S.; Franc, S.; Dardari, D.; Bauwens, M.; Caudwell, V.; Ragot, S.; Bridoux, F.; Charpentier, G.; et al. Glycaemic control in type 2 diabetic patients on chronic haemodialysis: Use of a continuous glucose monitoring system. Nephrol. Dial. Transplant. 2009, 24, 2866–2871. [Google Scholar] [CrossRef]
- Mori, K.; Emoto, M.; Abe, M.; Inaba, M. Visualization of Blood Glucose Fluctuations Using Continuous Glucose Monitoring in Patients Undergoing Hemodialysis. J. Diabetes Sci. Technol. 2019, 13, 413–414. [Google Scholar] [CrossRef]
- Divani, M.; Georgianos, P.I.; Didangelos, T.; Liakopoulos, V.; Makedou, K.; Iliadis, F.; Savopoulos, C.; Grekas, D.M. Assessment of Hyperglycemia, Hypoglycemia and Inter-Day Glucose Variability Using Continuous Glucose Monitoring among Diabetic Patients on Chronic Hemodialysis. J. Clin. Med. 2021, 10, 4116. [Google Scholar] [CrossRef]
- Chantrel, F.; Sissoko, H.; Képénékian, L.; Smagala, A.; Meyer, L.; Imhoff, O.; Serb, L.; Fleury, D.; Dorey, F.; Krummel, T.; et al. Influence of dialysis on the glucose profile in patients with diabetes: Usefulness of continuous glucose monitoring. Horm. Metab. Res. 2014, 46, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Mirani, M.; Berra, C.; Finazzi, S.; Calvetta, A.; Radaelli, M.G.; Favareto, F.; Graziani, G.; Badalamenti, S. Inter-day glycemic variability assessed by continuous glucose monitoring in insulin-treated type 2 diabetes patients on hemodialysis. Diabetes Technol. Ther. 2010, 12, 749–753. [Google Scholar] [CrossRef]
- Hayashi, A.; Shimizu, N.; Suzuki, A.; Matoba, K.; Momozono, A.; Masaki, T.; Ogawa, A.; Moriguchi, I.; Takano, K.; Kobayashi, N.; et al. Hemodialysis-Related Glycemic Disarray Proven by Continuous Glucose Monitoring; Glycemic Markers and Hypoglycemia. Diabetes Care 2021, 44, 1647–1656. [Google Scholar] [CrossRef]
- Képénékian, L.; Smagala, A.; Meyer, L.; Imhoff, O.; Alenabi, F.; Serb, L.; Fleury, D.; Dorey, F.; Krummel, T.; Le Floch, J.P.; et al. Continuous glucose monitoring in hemodialyzed patients with type 2 diabetes: A multicenter pilot study. Clin. Nephrol. 2014, 82, 240–246. [Google Scholar] [CrossRef]
- Joubert, M.; Fourmy, C.; Henri, P.; Ficheux, M.; Lobbedez, T.; Reznik, Y. Effectiveness of continuous glucose monitoring in dialysis patients with diabetes: The DIALYDIAB pilot study. Diabetes Res. Clin. Pract. 2015, 107, 348–354. [Google Scholar] [CrossRef]
- Narasaki, Y.; Park, E.; You, A.S.; Daza, A.; Peralta, R.A.; Guerrero, Y.; Novoa, A.; Amin, A.N.; Nguyen, D.V.; Price, D.; et al. Continuous glucose monitoring in an end-stage renal disease patient with diabetes receiving hemodialysis. Semin. Dial. 2021, 34, 388–393. [Google Scholar] [CrossRef]
- Genua, I.; Sánchez-Hernandez, J.; Martínez, M.J.; Pujol, I.; Places, J.; González, C.; Martinez, E.; Díaz, J.M.; Chico, A. Accuracy of Flash Glucose Monitoring in Patients with Diabetes Mellitus on Hemodialysis and Its Relationship with Hydration Status. J. Diabetes Sci. Technol. 2021, 15, 1308–1312. [Google Scholar] [CrossRef]
- Toyoda, M.; Murata, T.; Saito, N.; Kimura, M.; Takahashi, H.; Ishida, N.; Kitamura, M.; Hida, M.; Hayashi, A.; Moriguchi, I.; et al. Assessment of the accuracy of an intermittent-scanning continuous glucose monitoring device in patients with type 2 diabetes mellitus undergoing hemodialysis (AIDT2H) study. Ther. Apher. Dial. 2021, 25, 586–594, Erratum in Ther. Apher. Dial. 2022, 26, 484. [Google Scholar] [CrossRef]
- Matoba, K.; Hayashi, A.; Shimizu, N.; Moriguchi, I.; Kobayashi, N.; Shichiri, M. Comparison of accuracy between flash glucose monitoring and continuous glucose monitoring in patients with type 2 diabetes mellitus undergoing hemodialysis. J. Diabetes Its Complicat. 2020, 34, 107680. [Google Scholar] [CrossRef] [PubMed]
- Yajima, T.; Takahashi, H.; Yasuda, K. Comparison of Interstitial Fluid Glucose Levels Obtained by Continuous Glucose Monitoring and Flash Glucose Monitoring in Patients With Type 2 Diabetes Mellitus Undergoing Hemodialysis. J. Diabetes Sci. Technol. 2020, 14, 1088–1094. [Google Scholar] [CrossRef]
- Hissa, M.R.N.; Hissa, P.N.G.; Guimarães, S.B.; Hissa, M.N. Use of continuous glucose monitoring system in patients with type 2 mellitus diabetic during hemodialysis treatment. Diabetol. Metab. Syndr. 2021, 13, 104. [Google Scholar] [CrossRef]
- Mambelli, E.; Cristino, S.; Mosconi, G.; Göbl, C.; Tura, A. Flash Glucose Monitoring to Assess Glycemic Control and Variability in Hemodialysis Patients: The GIOTTO Study. Front. Med. 2021, 8, 617891. [Google Scholar] [CrossRef]
- Villard, O.; Breton, M.D.; Rao, S.; Voelmle, M.K.; Fuller, M.R.; Myers, H.E.; McFadden, R.K.; Luke, Z.S.; Wakeman, C.A.; Clancy-Oliveri, M.; et al. Accuracy of a Factory-Calibrated Continuous Glucose Monitor in Individuals With Diabetes on Hemodialysis. Diabetes Care 2022, 45, 1666–1669. [Google Scholar] [CrossRef]
- Galperin, T.A.; Cronin, A.J.; Leslie, K.S. Cutaneous manifestations of ESRD. Clin. J. Am. Soc. Nephrol. 2014, 9, 201–218. [Google Scholar] [CrossRef]
- Cobo, G.; Lindholm, B.; Stenvinkel, P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol. Dial. Transplant. 2018, 33 (Suppl. 3), iii35–iii40. [Google Scholar] [CrossRef]
Dexcom | Freestyle Libre (Abbott) | Eversense (Sensesonics) | Medtronic | ||
---|---|---|---|---|---|
Dexcom G6® G7® | Freestyle Libre Freestyle Libre 2® | Freestyle Libre 3 | Eversense XL® | Medtronic Guardian Connect® (sensor: Enlite/Guardian sensor 3) | |
Sensor technology | Glucose oxydase | Glucose oxydase | Glucose oxydase | Fluorescence | Glucose oxydase |
CGM type | Real-time (rt CGM) | Flash monitoring system (should be scanned at least every 8 h) | Real-time CGM | Real-time CGM | Real-time CGM |
Calibration (capillary glycemia) for maintaining sensor accuracy | No | No | Twice/day | Every 12 h | |
Sensor set up | By the patient using an automatic applicator | By the patient using an automatic applicator | Inserted under the skin/removed by a health care provider under local anesthesia | By the patient using an automatic applicator | |
Insertion sites | Abdomen and back of the upper arm Upper buttocks in children | Back of the upper arm | Upper arm | Guardian 3: abdomen, upper buttocks, lower back, back of the upper arm Enlite: abdomen | |
Sensor wear, days | 10 days | 14 days | 180 days | Guardian sensor 3: 7 days Enlite: 6 days | |
Warm up period | 2 h (G6), 30 min (G7) | 1 h | 24 h | 2 h | |
Receiver | Dexcom-dedicated receiver/ compatible smartphone (Android or iOS) or SmartWatch | FSL/FSL2-dedicated receiver/ compatible smartphone (Android or iOS) | Compatible smartphone -Android: April 2022 -iOS: June 2022 (for Switzerland) | Compatible smartphone (Android or iOS), or Apple Watch | Guardian connect: compatible smartphone (iOS or Android) |
Memory storage of the sensor | N/A | 8 h | N/A | None | NA |
Memory storage of the receiver | 30 days (G6), 180 days (G7) (receiver), (90 days, in the cloud Dexcom Clarity) | 90 days | Life of the transmitter (360 days) No limit in the cloud | 90 days (in the cloud, Carelink) 30 days in the pump | |
Low/high glucose level alerts and alarm | Yes | Yes for Freestyle Libre 2 | Yes | Yes | Yes |
Interferences with medical, X-rays or computed tomography (CT) scans or MRI * | All components must be removed before an X-ray or MRI, or (CT) scan, or high-frequency electrical heat (diathermy) treatments. | All components must be removed before an X-ray or MRI, or (CT) scan | The transmitter must be removed before MRI or medical X-rays or CT scan procedure | All components must be removed in the presence of X-rays, CT, MRI or high-frequency electrical heat (diathermy) treatments | |
Device-drug interactions relevant for dialysis patients * | Paracetamol (acetaminophen): falsely raises glucose readings if >1 g every 6 h Hydroxyurea or hydroxycarbamide may cause falsely elevated glucose readings (source: dexcom.com/interference) | Potential interference with vitamin C at high dosage (falsely raises glucose readings) Salicylic acid: falsely lowers glucose readings Source: https://www.freestyle.abbott/us-en/safety-information.html accessed on 26 May 2022 | Tetracycline (falsely lowers glucose readings)
| Guardian 3: Paracetamol (acetaminophen): falsely raises glucose readings) Fever reducer or cold medicine: falsely raises glucose readings Vitamin C (ascorbic acid) and Xylose can interfere with the meter: do not use the BG meter readings to calibrate the sensor Enlite: paracetamol (acetaminophen): falsely raises glucose readings) https://www.medtronic.com/us-en/healthcare-professionals/products/diabetes/indications-safety-warnings.html accessed on 26 May 2022 |
Number of Days CGM is Worn | Recommend 14 Days |
---|---|
Percentage of time CGM is active | Recommend 70% of days for 14 days |
Mean glucose | |
Glucose management indicator (GMI), previously termed estimated HbA1C | GMI can be used as a surrogate of HbA1C |
Glycemic variability (%CV) target | ≤36% |
Time in range (TIR) target: % of readings and time per day 70–180 mg/dL (3.9–10.0 mmol/L) | Type 1 and type 2 diabetes *: >70% (16 h 48 min) Older/high-risk patients: >50% (>12 h) |
Time below range (TBR) target: level 1, % of readings and time per day 54–69 mg/dL (3.0–3.8 mmol/L) | Type 1 and type 2 diabetes *: <4% (<1 h) Older/high-risk patients: <1% (<15 mn) |
Time below range (TBR) target: level 2, % of readings and time < 54 mg/dL (3.0 mmol/L) | Type 1 and type 2 diabetes *: <1% (<15 mn) Older/high-risk patients: <0% |
Time above range (TAR): level 1 target, % of readings and time >181–250 mg/dL (10.1–13.9 mmol/L) | Type 1 and type 2 diabetes *: <25% (<6 h) Older/high-risk patients: <50% (<12 h) |
Time above range (TAR): level 2 target, % of readings and time >250 mg/dL (13.9 mmol/L) | Type 1 and type 2 diabetes *: <5% (<1 h, 12 min) Older/high-risk patients: <10% (<2 h, 24 min) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamine, F.; Pruijm, M.; Bahon, V.; Zanchi, A. What Nephrologists Should Know about the Use of Continuous Glucose Monitoring in Type 2 Diabetes Mellitus Patients on Chronic Hemodialysis. Kidney Dial. 2022, 2, 459-473. https://doi.org/10.3390/kidneydial2030042
Lamine F, Pruijm M, Bahon V, Zanchi A. What Nephrologists Should Know about the Use of Continuous Glucose Monitoring in Type 2 Diabetes Mellitus Patients on Chronic Hemodialysis. Kidney and Dialysis. 2022; 2(3):459-473. https://doi.org/10.3390/kidneydial2030042
Chicago/Turabian StyleLamine, Faiza, Menno Pruijm, Virginie Bahon, and Anne Zanchi. 2022. "What Nephrologists Should Know about the Use of Continuous Glucose Monitoring in Type 2 Diabetes Mellitus Patients on Chronic Hemodialysis" Kidney and Dialysis 2, no. 3: 459-473. https://doi.org/10.3390/kidneydial2030042
APA StyleLamine, F., Pruijm, M., Bahon, V., & Zanchi, A. (2022). What Nephrologists Should Know about the Use of Continuous Glucose Monitoring in Type 2 Diabetes Mellitus Patients on Chronic Hemodialysis. Kidney and Dialysis, 2(3), 459-473. https://doi.org/10.3390/kidneydial2030042