Neurological Sequelae of Long COVID: Mechanisms, Clinical Impact and Emerging Therapeutic Insights
Abstract
1. Introduction
2. Primary Neurological Effects of COVID-19
3. Hypothetical Mechanisms of Neurological Damage in COVID-19 and Long-Term COVID-19
4. Neurological Symptoms and Conditions Associated with Long COVID-19
5. Epidemiology of Neurological Manifestations
6. Clinical and Diagnostic Considerations
7. Therapeutic and Management Strategies
8. Risk Factors and Susceptibility
9. Long-Term Neurological Implications
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| 18F-FDG | Fluorine-18 Fluorodeoxyglucose |
| ACE2 | Angiotensin-Converting Enzyme 2 |
| ARDS | Acute Respiratory Distress Syndrome |
| BBB | Blood–Brain Barrier |
| bpm | Beats per Minute |
| CAM | Complementary and Alternative Medicine |
| CCL2 | CC-Chemokine Ligand 2 |
| CNS | Central Nervous System |
| COVID-19 | Coronavirus Disease 2019 |
| CRP | C-Reactive Protein |
| CTLA4 | Cytotoxic T-Lymphocyte Associated Protein 4 |
| CTNNB1 | Catenin Beta 1 |
| D614G | Aspartic Acid-to-Glycine Substitution at Position 614 of the SARS-CoV-2 Spike Protein |
| DS | Down Syndrome |
| EEG | Electroencephalography |
| ERK | Extracellular Signal-Regulated Kinase |
| FIRDA | Frontal Intermittent Rhythmic Delta Activity |
| fMRI | Functional Magnetic Resonance Imaging |
| GB | Guillain–Barré Syndrome |
| GFAP | Glial Fibrillary Acidic Protein |
| GPCR | G-Protein-Coupled Receptor |
| HIV | Human Immunodeficiency Virus |
| IFNAR | Interferon Alpha/Beta Receptor |
| IL-6 | Interleukin-6 |
| IQ | Intelligence Quotient |
| KIT | Proto-Oncogene Receptor Tyrosine Kinase |
| KRAS | Kirsten Rat Sarcoma Viral Oncogene Homolog |
| LPS | Lipopolysaccharide |
| mAb | Monoclonal Antibody |
| MAPK | Mitogen-Activated Protein Kinase |
| MAPK/ERK | Mitogen-Activated Protein Kinase / Extracellular Signal-Regulated Kinase |
| MERS-CoV | Middle East Respiratory Syndrome Coronavirus |
| MMSE | Mini-Mental State Examination |
| MRI | Magnetic Resonance Imaging |
| MR | Magnetic Resonance |
| mTORC2 | Mechanistic Target of Rapamycin Complex 2 |
| NF1 | Neurofibromin 1 |
| NFL | Neurofilament Light Chain |
| NIRS | Near-Infrared Spectroscopy |
| NICE | National Institute for Health and Care Excellence |
| NO | Nitric Oxide |
| OAS1 | 2′-5′-Oligoadenylate Synthetase 1 |
| PCS | Post-COVID Syndrome |
| PD | Parkinson’s Disease |
| PET | Positron Emission Tomography |
| PI3K | Phosphatidylinositol 3-Kinase |
| PI3K/Akt | Phosphatidylinositol 3-Kinase / Protein Kinase B Pathway |
| POTS | Postural Orthostatic Tachycardia Syndrome |
| PSQ | Perceived Stress Questionnaire |
| PTPN22 | Protein Tyrosine Phosphatase Non-Receptor Type 22 |
| RET | Rearranged during Transfection (Proto-Oncogene Receptor Tyrosine Kinase) |
| RNA | Ribonucleic Acid |
| S protein | Spike Protein |
| SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
| SRDS | Self-Rating Depression Scale |
| TMPRSS2 | Transmembrane Serine Protease 2 |
| TNF-α | Tumor Necrosis Factor Alpha |
| WHO | World Health Organization |
| WM | White Matter |
| ZER | Zerumbone |
References
- El-Sadr, W.M.; Vasan, A.; El-Mohandes, A. Facing the New Covid-19 Reality. N. Engl. J. Med. 2023, 388, 385–387. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization: WHO. Post COVID-19 Condition (Long COVID). 26 February 2025. Available online: https://www.who.int/news-room/fact-sheets/detail/post-covid-19-condition-%28long-covid%29?utm_source=chatgpt.com (accessed on 1 June 2025).
- Hampshire, A.; Azor, A.; Atchison, C.; Trender, W.; Hellyer, P.J.; Giunchiglia, V.; Husain, M.; Elliott, P. Cognition and Memory after Covid-19 in a Large Community Sample. N. Engl. J. Med. 2024, 390, 806–818. [Google Scholar] [CrossRef]
- Stefanou, M.-I.; Palaiodimou, L.; Bakola, E.; Smyrnis, N.; Papadopoulou, M.; Paraskevas, G.P.; Rizos, E.; Boutati, E.; Grigoriadis, N.; Krogias, C.; et al. Neurological manifestations of long-COVID syndrome: A narrative review. Ther. Adv. Chronic Dis. 2022, 13, 20406223221076890. [Google Scholar] [CrossRef] [PubMed]
- Wesselingh, R. Prevalence, pathogenesis and spectrum of neurological symptoms in COVID-19 and post-COVID-19 syndrome: A narrative review. Med. J. Aust. 2023, 219, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-M.; White, N.; Premraj, L.; Battaglini, D.; Fanning, J.; Suen, J.; Bassi, G.L.; Fraser, J.; Robba, C.; Griffee, M.; et al. Neurological manifestations of COVID-19 in adults and children: A prospective multicentre ISARIC study. Brain 2022, 146, 1648–1661. [Google Scholar] [CrossRef]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 2021, 8, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. 2022, 28, 2406–2415. [Google Scholar] [CrossRef]
- Stein, S.R.; Ramelli, S.C.; Grazioli, A.; Chung, J.-Y.; Singh, M.; Yinda, C.K.; Winkler, C.W.; Sun, J.; Dickey, J.M.; Ylaya, K.; et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 2022, 612, 758–763. [Google Scholar] [CrossRef]
- Vashisht, A.; Vashisht, V.; Singh, H.; Ahluwalia, P.; Mondal, A.K.; Williams, C.; Farmaha, J.; Woodall, J.; Kolhe, R. Neurological Complications of COVID-19: Unraveling the Pathophysiological Underpinnings and Therapeutic Implications. Viruses 2024, 16, 1183. [Google Scholar] [CrossRef]
- Kumar, S.; Wee, J.-J.; Senthil Kumar, K.J. Identification of Common Hub Genes in COVID-19 and Comorbidities: Insights into Shared Molecular Pathways and Disease Severity. COVID 2025, 5, 105. [Google Scholar] [CrossRef]
- Taruffi, L.; Muccioli, L.; Bisulli, F. Neurological Manifestations of Long COVID: A Single-Center One-Year Experience. Neuropsychiatr. Dis. Treat. 2023, 19, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Zhang, Y.; Tan, B.H. What Can Cerebrospinal Fluid Testing and Brain Autopsies Tell Us about Viral Neuroinvasion of SARS-CoV-2. J. Med. Virol. 2021, 93, 4247–4257. [Google Scholar] [CrossRef]
- Sabra, M.; Kobeissy, F.; Bizri, M.; Haidar, M.A.; Shakkour, Z.; Reslan, M.A.; Al-Haj, N.; Chamoun, P.; Habashy, K.; Kaafarani, H.; et al. SARS-CoV-2 Involvement in Central Nervous System Tissue Damage. Neural Regen. Res. 2022, 17, 1228. [Google Scholar] [CrossRef]
- Hsu, J.C.; Saenkham-Huntsinger, P.; Huang, P.; Octaviani, C.P.; Drelich, A.K.; Peng, B.-H.; Tseng, C.-T.K. Characterizing neuroinvasion and neuropathology of SARS-CoV-2 by using AC70 human ACE2 transgenic mice. Front. Microbiol. 2024, 15, 1455462. [Google Scholar] [CrossRef]
- Wan, D.; Du, T.; Hong, W.; Chen, L.; Que, H.; Lu, S.; Peng, X. Neurological complications and infection mechanism of SARS-CoV-2. Signal Transduct. Target. Ther. 2021, 6, 411. [Google Scholar] [CrossRef] [PubMed]
- Gorenshtein, A.; Liba, T.; Leibovitch, L.; Stern, S.; Stern, Y. Intervention modalities for brain fog caused by long-COVID: Systematic review of the literature. Neurol. Sci. 2024, 45, 2951–2968. [Google Scholar] [CrossRef]
- Ong, I.; Kolson, D.L.; Schindler, M.K. Mechanisms, Effects, and Management of Neurological Complications of Post-Acute Sequelae of COVID-19 (NC-PASC). Biomedicines 2023, 11, 377. [Google Scholar] [CrossRef]
- Song, E.; Zhang, C.; Israelow, B.; Lu-Culligan, A.; Prado, A.V.; Skriabine, S.; Lu, P.; Weizman, O.-E.; Liu, F.; Dai, Y.; et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 2021, 218, e20202135. [Google Scholar] [CrossRef] [PubMed]
- Hein, Z.M.; Kumar, S.; Che Ramli, M.D.; Che Mohd Nassir, C.M.N. Immunomodulatory Mechanisms Underlying Neurological Manifestations in Long COVID: Implications for Immune-Mediated Neurodegeneration. Int. J. Mol. Sci. 2025, 26, 6214. [Google Scholar] [CrossRef]
- Dixon, L.; Varley, J.; Gontsarova, A.; Mallon, D.; Tona, F.; Muir, D.; Luqmani, A.; Batty, R.; Mehta, P.R.; Gale, A.; et al. Cerebral microhaemorrhage in COVID-19: A critical illness related phenomenon? Stroke Vasc. Neurol. 2020, 5, e000652. [Google Scholar] [CrossRef] [PubMed]
- Shajahan, S.R.; Kumar, S.; Che Ramli, M.D. Unravelling the Connection between COVID-19 and Alzheimer’s Disease: A Comprehensive Review. Front. Aging Neurosci. 2024, 15, 1274452. [Google Scholar] [CrossRef]
- Taquet, M.; Sillett, R.; Zhu, L.; Mendel, J.; Camplisson, I.; Dercon, Q.; Harrison, P.J. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: An analysis of 2-year retrospective cohort studies including 1,284,437 patients. Lancet Psychiatry 2022, 9, 815–827. [Google Scholar] [CrossRef]
- Golzari-Sorkheh, M.; Weaver, D.F.; Reed, M.A. COVID-19 as a Risk Factor for Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2023, 91, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Breville, G.; Lascano, A.M.; Roux-Lombard, P.; Lalive, P.H. IL-8 as a potential biomarker in Guillain-Barre Syndrome. Eur. Cytokine Netw. 2019, 30, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Gunning, W.T., III; Stepkowski, S.M.; Kramer, P.M.; Karabin, B.L.; Grubb, B.P. Inflammatory Biomarkers in Postural Orthostatic Tachycardia Syndrome with Elevated G-Protein-Coupled Receptor Autoantibodies. J. Clin. Med. 2021, 10, 623. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.W.; Chen, C.M.; Chang, K.H. Biomarker of Neuroinflammation in Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 4148. [Google Scholar] [CrossRef]
- Parnetti, L.; Castrioto, A.; Chiasserini, D.; Persichetti, E.; Tambasco, N.; El-Agnaf, O.; Calabresi, P. Cerebrospinal fluid biomarkers in Parkinson disease. Nat. Rev. Neurol. 2013, 9, 131–140. [Google Scholar] [CrossRef]
- Fakhoury, M. Role of Immunity and Inflammation in the Pathophysiology of Neurodegenerative Diseases. Neuro Degener. Dis. 2015, 15, 63–69. [Google Scholar] [CrossRef]
- García-Fernández, P.; Höfflin, K.; Rausch, A.; Strommer, K.; Neumann, A.; Cebulla, N.; Reinhold, A.; Rittner, H.; Üçeyler, N.; Sommer, C. Systemic inflammatory markers in patients with polyneuropathies. Front. Immunol. 2023, 14, 1067714. [Google Scholar] [CrossRef]
- Aringer, M.; Dörner, T.; Leuchten, N.; Johnson, S.R. Toward new criteria for systemic lupus erythematosus-a standpoint. Lupus 2016, 25, 805–811. [Google Scholar] [CrossRef]
- Yu, H.; Nagafuchi, Y.; Fujio, K. Clinical and immunological biomarkers for systemic lupus erythematosus. Biomolecules 2021, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.; Zhao, Y.; Yan, W.; Li, C.; Lu, Q.; Liu, L.; Ni, S.-Y.; Mei, H.; Yuan, K.; Shi, L.; et al. A systematic review and meta-analysis of long term physical and mental sequelae of covid-19 pandemic: Call for research priority and action. Mol. Psychiatry 2022, 28, 423–433. [Google Scholar] [CrossRef]
- Sampogna, G.; Vincenzo, M.D.; Giallonardo, V.; Perris, F.; Volpicelli, A.; Vecchio, V.D.; Luciano, M.; Fiorillo, A. The psychiatric consequences of long-covid: A scoping review. J. Pers. Med. 2022, 12, 1767. [Google Scholar] [CrossRef]
- Calabria, M.; García-Sánchez, C.; Grunden, N.; Pons, C.; Arroyo, J.A.; Gómez-Ansón, B.; García, M.d.C.E.; Belvís, R.; Morollón, N.; Igual, J.V.; et al. Post-covid-19 fatigue: The contribution of cognitive and neuropsychiatric symptoms. J. Neurol. 2022, 269, 3990–3999. [Google Scholar] [CrossRef]
- Chen, A.; Wang, X.; McCluskey, L.P.; Morgan, J.C.; Switzer, J.A.; Mehta, R.; Tingen, M.; Su, S.; Harris, R.A.; Hess, D.C.; et al. Neuropsychiatric sequelae of long covid-19: Pilot results from the covid-19 neurological and molecular prospective cohort study in georgia, usa. Brain Behav. Immun.-Health 2022, 24, 100491. [Google Scholar] [CrossRef] [PubMed]
- Méndez, R.; Balanzá-Martínez, V.; Luperdi, S.C.; Estrada, I.; Latorre, A.; González-Jiménez, P.; Bouzas, L.; Yépez, K.; Ferrando, A.; Reyes, S.; et al. Long-term neuropsychiatric outcomes in covid-19 survivors: A 1-year longitudinal study. J. Intern. Med. 2021, 291, 247–251. [Google Scholar] [CrossRef]
- Rolin, S.; Chakales, A.; Verduzco-Gutierrez, M. Rehabilitation strategies for cognitive and neuropsychiatric manifestations of covid-19. Curr. Phys. Med. Rehabil. Rep. 2022, 10, 182–187. [Google Scholar] [CrossRef]
- Huff, H.V.; Roberts, H.; Bartrum, E.; Norato, G.; Grayson, N.; Fleig, K.; Wilkerson, M.J.; Stussman, B.J.; Nath, A.; Walitt, B. Prevalence and severity of neurologic symptoms in long-covid and the role of pre-existing conditions, hospitalization, and mental health. Front. Neurol. 2025, 16, 1562084. [Google Scholar] [CrossRef]
- Byrne, A.W.; Barber, R.; Lim, C.H. Impact of the covid-19 pandemic–a mental health service perspective. Prog. Neurol. Psychiatry 2021, 25, 27. [Google Scholar] [CrossRef]
- Coleman, B.; Casiraghi, E.; Callahan, T.J.; Blau, H.; Chan, L.; Laraway, B.; Clark, K.B.; Re’eM, Y.; Gersing, K.R.; Wilkins, K.J.; et al. Association of post-covid phenotypic manifestations with new-onset psychiatric disease. Transl. Psychiatry 2024, 14, 246. [Google Scholar] [CrossRef] [PubMed]
- Gorenshtein, A.; Leibovitch, L.; Liba, T.; Stern, S.; Stern, Y. Gender Disparities in Neurological Symptoms of Long COVID: A Systematic Review and Meta-Analysis. Neuroepidemiology 2025, 59, 426–440. [Google Scholar] [CrossRef]
- Foresta, C.; Rocca, M.S.; Di Nisio, A. Gender susceptibility to COVID-19: A review of the putative role of sex hormones and X chromosome. J. Endocrinol. Investig. 2021, 44, 951–956. [Google Scholar] [CrossRef]
- Ormiston, C.K.; Świątkiewicz, I.; Taub, P.R. Postural orthostatic tachycardia syndrome as a sequela of COVID-19. Hear. Rhythm 2022, 19, 1880–1889. [Google Scholar] [CrossRef]
- Taub, P.R.; Zadourian, A.; Lo, H.C.; Ormiston, C.K.; Golshan, S.; Hsu, J.C. Randomized Trial of Ivabradine in Patients with Hyperadrenergic Postural Orthostatic Tachycardia Syndrome. J. Am. Coll. Cardiol. 2021, 77, 861–871. [Google Scholar] [CrossRef]
- Gall, N.P.; James, S.; Kavi, L. Observational Case Series of Postural Tachycardia Syndrome (PoTS) in Post-COVID-19 Patients. Br. J. Cardiol. 2022, 29, 3. [Google Scholar] [PubMed]
- Blitshteyn, S.; Whitelaw, S. Postural Orthostatic Tachycardia Syndrome (POTS) and Other Autonomic Disorders after COVID-19 Infection: A Case Series of 20 Patients. Immunol. Res. 2021, 69, 205–211. [Google Scholar] [CrossRef]
- Campen, C.L.M.V.; Visser, F.C. Long-Haul COVID Patients: Prevalence of POTS Are Reduced but Cerebral Blood Flow Abnormalities Remain Abnormal with Longer Disease Duration. Healthcare 2022, 10, 2105. [Google Scholar] [CrossRef] [PubMed]
- Pezzini, A.; Padovani, A. Lifting the Mask on Neurological Manifestations of COVID-19. Nat. Rev. Neurol. 2020, 16, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Raahimi, M.M.; Kane, A.; Moore, C.E.G.; Alareed, A.W. Late Onset of Guillain-Barré Syndrome Following SARS-CoV-2 Infection: Part of “Long COVID-19 Syndrome”? BMJ Case Rep. 2021, 14, 240178. [Google Scholar] [CrossRef]
- Hahn, A.F. Guillain–Barré Syndrome. Lancet 1998, 352, 635–641. [Google Scholar] [CrossRef]
- Van Den Berg, B.; Walgaard, C.; Drenthen, J.; Fokke, C.; Jacobs, B.C.; Van Doorn, P.A. Guillain–Barré Syndrome: Pathogenesis, Diagnosis, Treatment and Prognosis. Nat. Rev. Neurol. 2014, 10, 469–482. [Google Scholar] [CrossRef]
- Kim, J.E.; Heo, J.H.; Kim, H.; Song, S.H.; Park, S.H.; Park, T.S. Neurological Complications during Treatment of Middle East Respiratory Syndrome. J. Clin. Neurol. 2017, 13, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Perez Giraldo, G.S.; Ali, S.T.; Kang, A.K.; Patel, T.R.; Budhiraja, S.; Gaelen, J.I.; Lank, G.K.; Clark, J.R.; Mukherjee, S.; Singer, T.; et al. Neurologic Manifestations of Long COVID Differ Based on Acute COVID-19 Severity. Ann. Neurol. 2023, 94, 146–159. [Google Scholar] [CrossRef]
- Butowt, R.; Bilinska, K.; von Bartheld, C.S. Olfactory Dysfunction in COVID-19: New Insights into the Underlying Mechanisms. Trends Neurosci. 2023, 46, 75–90. [Google Scholar] [CrossRef]
- Vaira, L.A.; Lechien, J.R.; Deiana, G.; Salzano, G.; Maglitto, F.; Piombino, P.; Mazzatenta, A.; Boscolo-Rizzo, P.; Hopkins, C.; De Riu, G. Prevalence of Olfactory Dysfunction in D614G, Alpha, Delta and Omicron Waves: A Psychophysical Case-Control Study. Rhinology 2023, 61, 32–38. [Google Scholar] [CrossRef]
- Bauer, L.; van Riel, D. Do SARS-CoV-2 Variants Differ in Their Neuropathogenicity? mBio 2023, 14, e02920-22. [Google Scholar] [CrossRef]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta Variant of SARS-CoV-2: A Comparative Computational Study of Spike Protein. J. Med. Virol. 2022, 94, 1641–1649. [Google Scholar] [CrossRef]
- Premraj, L.; Kannapadi, N.; Briggs, J.; Seal, S.; Battaglini, D.; Fanning, J.P.; Suen, J.; Robba, C.; Fraser, J.; Cho, S.-M. Mid and long-term neurological and neuropsychiatric manifestations of post-covid-19 syndrome: A meta-analysis. J. Neurol. Sci. 2022, 434, 120162. [Google Scholar] [CrossRef] [PubMed]
- Marchi, M.; Grenzi, P.; Serafini, V.; Capoccia, F.; Rossi, F.; Marrino, P.; Pingani, L.; Galeazzi, G.M.; Ferrari, S. Psychiatric symptoms in Long-COVID patients: A systematic review. Front. Psychiatry 2023, 14, 1138389. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Udeh, R.; Yon, D.K.; Lee, S.W.; Dolja-Gore, X.; McEVoy, M.; Kenna, T.; Jacob, L.; Sánchez, G.F.L.; Koyanagi, A.; et al. A systematic review and meta-analysis of long-term sequelae of COVID-19 2-year after SARS-CoV-2 infection: A call to action for neurological, physical, and psychological sciences. J. Med Virol. 2023, 95, e28852. [Google Scholar] [CrossRef]
- Yang, C.; Chang, C.; Yang, C.; Pariante, C.M.; Su, K. Long covid and long chain fatty acids (lcfas): Psychoneuroimmunity implication of omega-3 lcfas in delayed consequences of covid-19. Brain Behav. Immun. 2022, 103, 19–27. [Google Scholar] [CrossRef]
- Kong, W.; Li, J.; Chen, Y.; Zhao, L.; Zhang, C.; Xu, Q.; Zhang, H.; Liu, Y.; Shi, Y.; Li, L.; et al. Neuropilin-1 Mediates SARS-CoV-2 Infection of Astrocytes in Brain Organoids, Inducing Inflammation Leading to Dysfunction and Death of Neurons. mBio 2022, 13, e0317822. [Google Scholar] [CrossRef]
- Niemeyer, D.; Zapatka, M.; Moritz, F.; Rößler, F.; Kaufer, B.B.; Müller, M.A.; Drosten, C.; Hofmann, H.; Pöhlmann, S. SARS-CoV-2 Variant Alpha Has a Spike-Dependent Replication Advantage over the Ancestral B.1 Strain in Human Cells with Low ACE2 Expression. PLoS Biol. 2022, 20, e3001871. [Google Scholar] [CrossRef]
- Bauer, L.; Dietert, K.; Kimpel, J.; Döring, M.; Leitzen, E.; Ziegler, U.; Hoffmann, D.; Seehusen, F.; Flegel, T.; Köster, M.; et al. In Vitro and In Vivo Differences in Neurovirulence between D614G, Delta and Omicron BA.1 SARS-CoV-2 Variants. Acta Neuropathol. Commun. 2022, 10, 124. [Google Scholar] [CrossRef]
- Seehusen, F.; Bauer, L.; Dietert, K.; Kimpel, J.; Döring, M.; Leitzen, E.; Ziegler, U.; Hoffmann, D.; Flegel, T.; Köster, M.; et al. Neuroinvasion and Neurotropism by SARS-CoV-2 Variants in the K18-hACE2 Mouse. Viruses 2022, 14, 1020. [Google Scholar] [CrossRef] [PubMed]
- Natekar, J.P.; Geller, A.I.; Kibbey, S.M.; Balasubramanian, S.; McDonald, E.; Sordillo, E.M.; Diamond, M.S.; Krammer, F. Differential Pathogenesis of SARS-CoV-2 Variants of Concern in Human ACE2-Expressing Mice. Viruses 2022, 14, 1139. [Google Scholar] [CrossRef]
- Kumar, S.; Karuppanan, K.; Subramaniam, G. Omicron (BA.1) and Sub-Variants (BA.1.1, BA.2, and BA.3) of SARS-CoV-2 Spike Infectivity and Pathogenicity: A Comparative Sequence- and Structural-Based Computational Assessment. J. Med. Virol. 2022, 94, 4780–4791. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Jiang, X.; Liang, W.; Bai, H.; Xu, M.; Liu, Z.; Yi, L.; Liu, Y.; Huang, Y.; Zhang, Y.; et al. SARS-CoV-2 Omicron Variants Show Attenuated Neurovirulence Compared with the Wild-Type Strain in Elderly Human Brain Spheroids. Research 2024, 7, 0376. [Google Scholar] [CrossRef] [PubMed]
- Proust, A.; Queval, C.J.; Harvey, R.; Adams, L.; Bennett, M.; Wilkinson, R.J. Differential Effects of SARS-CoV-2 Variants on Central Nervous System Cells and Blood–Brain Barrier Functions. J. Neuroinflammation 2023, 20, 184. [Google Scholar] [CrossRef]
- Vicco, A.; Muscatello, A.; Mancini, F.; Locatelli, M.; Reale, C.; Piga, S.; Di Bella, S.; Muscatello, M.R.; Taliani, G.; Baldanti, F.; et al. Genomic Surveillance of SARS-CoV-2 in Patients Presenting Neurological Manifestations. PLoS ONE 2022, 17, e0270024. [Google Scholar] [CrossRef]
- Thomas, J.; Prgomet, M.; Weeding, S.; McGuire, P.; Goodger, B.; Joss, N.; Mackintosh, C.F.; McLeod, A.; Georgiou, A. A Qualitative Study of the General Practice Experience of Diagnosing and Managing Long COVID: Challenges and Practical Recommendations. Aust. J. Gen. Pract. 2024, 53, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Faghy, M.A.; Chidley, C.; Frost, J.; Hollingsworth, T.; Kengne, A.P.; O’Hara, D.; Saunders, C.; Singh, M.; White, J.; et al. Blood Biomarkers of Long COVID: A Systematic Review. Mol. Diagn. Ther. 2024, 28, 537–574. [Google Scholar] [CrossRef]
- Lai, Y.-J.; Liu, S.-H.; Manachevakul, S.; Lee, T.-A.; Kuo, C.-T.; Bello, D. Biomarkers in Long COVID-19: A Systematic Review. Front. Med. 2023, 10, 1085988. [Google Scholar] [CrossRef]
- Peluso, M.J.; Sans, H.M.; Forman, C.A.; Nylander, A.N.; Ho, H.; Lu, S.; Goldberg, S.A.; Hoh, R.; Tai, V.; Munter, S.E.; et al. Plasma Markers of Neurologic Injury and Inflammation in People with Self-Reported Neurologic Postacute Sequelae of SARS-CoV-2 Infection. Open Forum Infect. Dis. 2022, 9, e200003. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chen, A.; Chen, R.; Zheng, W. Association between depressive symptoms and cognitive function in the older population, and the mediating role of neurofilament light chain: Evidence from NHANES 2013–2014. J. Affect. Disord. 2024, 360, 221–228. [Google Scholar] [CrossRef]
- Tajiri, M.; Takasone, K.; Kodaira, M.; Kimura, A.; Shimohata, T.; Sekijima, Y. Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy Following SARS-CoV-2 Infection. Intern. Med. 2024, 63, 337–339. [Google Scholar] [CrossRef]
- Luvizutto, G.J.; Bazan, R. Electrophysiological and Neuroimaging Tools to Evaluate Neurological Symptoms, Manifestations, and Complications in Patients with Long COVID-19. Neurol. Neurochir. Pol. 2023, 57, 8–10. [Google Scholar] [CrossRef]
- Gogia, B.; Thottempudi, N.; Ajam, Y.; Singh, A.; Ghanayem, T.; Dabi, A.; Fang, X.; Masel, T.; Rai, P. EEG Characteristics in COVID-19 Survivors and Non-survivors With Seizures and Encephalopathy. Cureus 2021, 13, e18476. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Ellingjord-Dale, M.; Brunvoll, S.H.; Søraas, A. Prospective Memory Assessment before and after Covid-19. N. Engl. J. Med. 2024, 390, 863–865. [Google Scholar] [CrossRef] [PubMed]
- Arora, I.; White, S.; Mathews, R. Global Dietary and Herbal Supplement Use during COVID-19—A Scoping Review. Nutrients 2023, 15, 771. [Google Scholar] [CrossRef]
- Kim, T.-H.; Jeon, S.-R.; Kang, J.W.; Kwon, S. Complementary and Alternative Medicine for Long COVID: Scoping Review and Bibliometric Analysis. Evid.-Based Complement. Altern. Med. 2022, 2022, 7303393. [Google Scholar] [CrossRef]
- Bove, M.; Fogacci, F.; Quattrocchi, S.; Veronesi, M.; Cicero, A.F.G. Effect of Synaid on cognitive functions and mood in elderly subjects with self-perceived loss of memory after COVID-19 infection. Arch. Med. Sci. 2021, 17, 1797–1799. [Google Scholar] [CrossRef] [PubMed]
- Conti, V.; Corbi, G.; Sabbatino, F.; De Pascale, D.; Sellitto, C.; Stefanelli, B.; Bertini, N.; De Simone, M.; Liguori, L.; Di Paola, I.; et al. Long COVID: Clinical Framing, Biomarkers, and Therapeutic Approaches. J. Pers. Med. 2023, 13, 334. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Lin, K.; Ai, J.; Zhang, W. The efficacy of antivirals, corticosteroids, and monoclonal antibodies as acute COVID-19 treatments in reducing the incidence of Long COVID: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2024, 30, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Annane, D. Corticosteroids for COVID-19. J. Intensiv. Med. 2021, 1, 14–25. [Google Scholar] [CrossRef]
- Dehghan, M.; Ghanbari, A.; Ghaedi Heidari, F.; Mangalian, P.; Ali Zakeri, M. Use of complementary and alternative medicine in general population during COVID-19 outbreak: A survey in Iran. J. Integr. Med. 2021, 20, 45–51. [Google Scholar] [CrossRef]
- Lam, C.S.; Koon, H.K.; Chung, V.C.-H.; Cheung, Y.T. A public survey of traditional, complementary and integrative medicine use during the COVID-19 outbreak in Hong Kong. PLoS ONE 2021, 16, e0253890. [Google Scholar] [CrossRef]
- Bertuccio, P.; Degli Antoni, M.; Minisci, D.; Amadasi, S.; Castelli, F.; Odone, A.; Quiros-Roldan, E. The impact of early therapies for COVID-19 on death, hospitalization and persisting symptoms: A retrospective study. Infect. Dis. Rep. 2023, 15, 370–24626. [Google Scholar] [CrossRef]
- Tannous, J.; Pan, A.P.; Potter, T.; Bako, A.T.; Dlouhy, K.; Drews, A.; Sostman, H.D.; Vahidy, F.S. Real-world effectiveness of COVID-19 vaccines and anti-SARS-CoV-2 monoclonal antibodies against postacute sequelae of SARS-CoV-2: Analysis of a COVID-19 observational registry for a diverse US metropolitan population. BMJ Open 2023, 13, e067611. [Google Scholar] [CrossRef]
- Cardona-Pascual, I.; Pallero, M.; Berlana, D.; Villar, A.; Montoro-Ronsano, J.B.; Berastegui, C. Long-term effect of tocilizumab on mortality, readmissions, persistent symptoms and lung function in SARS-CoV-2 patients 1 year after hospital discharge: A matched cohort study. Respir. Med. Res. 2023, 84, 101064. [Google Scholar] [CrossRef]
- Price, J.K.; Gerber, L.H.; Stepanova, M.; de Avila, L.; Weinstein, A.A.; Pham, H.; Nader, F.; Afendy, M.; Terra, K.; Austin, P.; et al. Post-Acute SARS-CoV-2 Symptoms are Fewer, Less Intense Over Time in People Treated with Mono-Clonal Antibodies for Acute Infection. Int. J. Gen. Med. 2023, 16, 1479–1490. [Google Scholar] [CrossRef]
- Lippi, A.; Domingues, R.; Setz, C.; Outeiro, T.F.; Krisko, A. SARS-CoV-2: At the Crossroad Between Aging and Neurodegeneration. Mov. Disord. 2020, 35, 716–720. [Google Scholar] [CrossRef]
- Natoli, S.; Oliveira, V.; Calabresi, P.; Maia, L.F.; Pisani, A. Does SARS-CoV-2 Invade the Brain? Translational Lessons from Animal Models. Eur. J. Neurol. 2020, 27, 1764–1773. [Google Scholar] [CrossRef] [PubMed]
- Schirinzi, T.; Landi, D.; Liguori, C. COVID-19: Dealing with a Potential Risk Factor for Chronic Neurological Disorders. J. Neurol. 2021, 268, 1171–1178. [Google Scholar] [CrossRef]
- Tenforde, M.W.; Kim, S.S.; Lindsell, C.J.; Billig Rose, E.; Shapiro, N.I.; Files, D.C.; Gibbs, K.W.; Erickson, H.L.; Steingrub, J.S.; Smithline, H.A.; et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network—United States, March–June 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 993. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.E.; Tomlinson, R.; Reynolds, D.; Modat, M.; Jorge Cardoso, M.; et al. Attributes and Predictors of Long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef]
- Kamal, M.; Abo Omirah, M.; Hussein, A.; Saeed, H. Assessment and Characterization of Post-COVID-19 Manifestations. Int. J. Clin. Pract. 2021, 75, e13746. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID—Mechanisms, Risk Factors, and Management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhao, J.; Martin, W.; Kallianpur, A.; Chung, M.; Jehi, L.; Sharifi, N.; Erzurum, S.C.; Eng, C. New Insights into Genetic Susceptibility of COVID-19: An ACE2 and TMPRSS2 Polymorphism Analysis. BMC Med. 2020, 18, 216. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, L.; Feng, Z.; Wan, S.; Huang, P.; Sun, X.; Wen, F.; Huang, X.; Ning, G.; Wang, W. Comparative Genetic Analysis of the Novel Coronavirus (2019-nCoV/SARS-CoV-2) Receptor ACE2 in Different Populations. Cell Discov. 2020, 6, 11. [Google Scholar] [CrossRef]
- Lopresti, M.; Beck, D.B.; Duggal, P.; Cummings, D.A.T.; Solomon, B.D. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. Am. J. Hum. Genet. 2020, 107, 381–402. [Google Scholar] [CrossRef]
- Strafella, C.; Caputo, V.; Termine, A.; Barati, S.; Gambardella, S.; Borgiani, P.; Novelli, G.; Giardina, E. Analysis of ACE2 Genetic Variability among Populations Highlights a Possible Link with COVID-19-Related Neurological Complications. Genes 2020, 11, 741. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Jabeen, N.; Raza, F.; Shabbir, S.; Baig, A.A.; Amanullah, A.; Aziz, B. Structural Variations in Human ACE2 May Influence Its Binding with SARS-CoV-2 Spike Protein. J. Med. Virol. 2020, 92, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- de O Cruz, J.; Conceição, I.M.C.A.; Sousa, S.M.B.; Luizon, M.R. Functional Prediction and Frequency of Coding Variants in Human ACE2 at Binding Sites with SARS-CoV-2 Spike Protein on Different Populations. J. Med. Virol. 2021, 93, 71. [Google Scholar] [CrossRef]
- Salih, D.A.; Dobson, R.J.B.; Sims, R. Genetic Variability in Response to Amyloid Beta Deposition Influences Alzheimer’s Disease Risk. Brain Commun. 2019, 1, fcz001. [Google Scholar] [CrossRef]
- De Toma, I.; Dierssen, M. Network Analysis of Down Syndrome and SARS-CoV-2 Identifies Risk and Protective Factors for COVID-19. Sci. Rep. 2021, 11, 1930. [Google Scholar] [CrossRef]
- Jesuthasan, A.; Massey, F.; Manji, H.; Zandi, M.S.; Wiethoff, S. Emerging Potential Mechanisms and Predispositions to the Neurological Manifestations of COVID-19. J. Neurol. Sci. 2021, 428, 117608. [Google Scholar] [CrossRef]
- Samper-Pardo, M.; León-Herrera, S.; Oliván-Blázquez, B.; Gascón-Santos, S.; Sánchez-Recio, R. Clinical Characterization and Factors Associated with Quality of Life in Long COVID Patients: Secondary Data Analysis from a Randomized Clinical Trial. PLoS ONE 2023, 18, e0278728. [Google Scholar] [CrossRef] [PubMed]
- Malesevic, S.; Peric, R.; Milic, J.; Milovanovic, B.; Petrovic, M.; Bojovic, R.; Stojanovic, M.; Mitrovic, A.; Mitrovic, K.; Jovanovic, M.; et al. Impaired Health-Related Quality of Life in Long-COVID Syndrome after Mild to Moderate COVID-19. Sci. Rep. 2023, 13, 7717. [Google Scholar] [CrossRef]
- Poenaru, S.; Abdallah, S.J.; Corrales-Medina, V.; Cowan, J. COVID-19 and post-infectious myalgic encephalomyelitis/chronic fatigue syndrome: A narrative review. Ther. Adv. Infect. Dis. 2021, 8, 20499361211009385. [Google Scholar] [CrossRef] [PubMed]
- Viveiros, A.; Rasmuson, J.; Vu, J.; Mulvagh, S.L.; Yip, C.Y.Y.; Norris, C.M.; Oudit, G.Y. Sex differences in COVID-19: Candidate pathways, genetics of ACE2, and sex hormones. Am. J. Physiol. Circ. Physiol. 2021, 320, H296–H304. [Google Scholar] [CrossRef] [PubMed]

| Neurological Complication | Disease/Disorder | Neurodysfunction | Psychological Assessment | Inflammatory Biomarkers | References |
|---|---|---|---|---|---|
| Migraine, Confusion, Depression | Alzheimer/Dementia Disease | Cognitive decline and memory loss | Fatigue, Mood alterations and Anxiety | Inflammation markers such as IL-6, IL-1, galectin-3 (GAL3), and galectin-9 (GAL-9) | [24] |
| Lethargy onset of paraesthesia, sensory deficits, Muscle weakness, Respiratory symptoms | Guillan-BarreSyndrome (GBS) | Impaired functioning of the nervous system, which is a hallmark of this autoimmune disorder | Cognitive impairment, Emotional adjustment and Executive functions. | IL-8, IL-6, and TNF- alpha were assessed using commercially available multiplex bead immunoassays. | [25] |
| Tachycardia, Orthostatic intolerance | Postural Orthostatic Tachycardia Syndrome (POTS) | Hypermobility–related, Neuropathic, Hypovolemic, and Immune-related | Abnormal cerebral blood flow reduction, Exhibit a normal heart rate and blood pressure response. | IL1β, IL-12, TNFα, CD30, P-selectin and monocyte chemoattractant protein1 (MCP-1). | [26] |
| Resting tremors, rigidity, Shuffling gait, and Bradykinesia | Parkinson’s Disease. | There is a loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc) | Psychotic disorders, and Epilepsy or Seizures. | α-synuclein, Tau, and Aβ42, IL-1β, IL-2, IL-6, IL-10, high- sensitivity C-reactive protein (hsCRP), TNF- α/soluble TNF- receptors (sTNFRs). | [27,28] |
| Seizures, Meningitis, and Encephalitis | Acute Polyneuropathy | Damage to nerves outside the brain and spinal cord and impaired coordination. | Muscle weakness, Numbness and Tingling. | Toll-like receptor (TLR) 4, TNF-α, IL-1β, IL-6, IL-8, IL-10, or chemokines such as the CC-chemokine ligand (CCL) 2. | [29,30] |
| Stroke, seizure, Transverse myelitis | Systemic Lupus Erythematosus (SLE). | Inflammation of blood vessels in the brain (vasculitis), leading to an increased risk of stroke or transient ischemic attacks (TIAs). | Muscle weakness, Numbness and Tingling. Psychosis, Mood disorders (depression, anxiety), and Cognitive dysfunction. | C-reactive protein, Procalcitonin, IL-6, IL- 10, IL-15, IL-18 and IFNγ. | [31,32] |
| Variant/Mutation | Key Findings | Neuronal Dysfunction | Inflammatory Markers | Level of Neurovirulence | References |
|---|---|---|---|---|---|
| OMICRON | Least commonly linked to Long COVID and anosmia. Reduced effectiveness of olfactory nerve entry into the CNS. | Damages Blood- brain barriers components, raises stress levels in CNS cell, and alters extracellular glutamate levels | - | Significantly greater as a result of cytopathic effects on pericytes and endothelial cells. | [55,57] |
| D614G Mutation | Anosmia and Long COVID are more common. Effective olfactory nerve CNS entry. | Disturbance of neural equilibrium, enhances neuronal dysfunction and cytotoxicity. | Initiates the transcription of proinflammatory chemokines, interferons, and interferon-stimulated genes. | Higher due to proinflammatory response and effective CNS entrance | [63] |
| ALPHA | Improves replication in human ACE2 receptor-deficient cell. Reduces negative effects on neurological health in comparison to Omicron. | Reduced level of neuronal cell infection contrast to Omicron. | Glutamate level and the blood–brain barrier are not considerable affected. | Moderate and less neurovirulent. | [64] |
| DELTA | Risks comparatively similar to Omicron in neurological and psychiatric outcomes as Omicron. Efficient CNS entry via olfactory nerve. | Infects various neuronal cells, but lower cytopathic effects than Omicron | No significant breakdown of blood- brain barrier. | Relatively high and similar to D614G. | [57,65] |
| BETA | Decrease in impact on neurological health in comparison to Omicron. | Least neuronal cell death or glutamate level alteration. | No significant breakdown of blood- brain barrier. | Moderate and less neurovirulent compared to Omicron. | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che Ramli, M.D.; Darmindar Singh, B.K.; Zainal Abidin, Z.; Azlan, A.; Nurjannah, A.; Hein, Z.M.; Che Mohd Nassir, C.M.N.; Thangarajan, R.; Mohammed Izham, N.A.B.; Kumar, S. Neurological Sequelae of Long COVID: Mechanisms, Clinical Impact and Emerging Therapeutic Insights. COVID 2025, 5, 207. https://doi.org/10.3390/covid5120207
Che Ramli MD, Darmindar Singh BK, Zainal Abidin Z, Azlan A, Nurjannah A, Hein ZM, Che Mohd Nassir CMN, Thangarajan R, Mohammed Izham NAB, Kumar S. Neurological Sequelae of Long COVID: Mechanisms, Clinical Impact and Emerging Therapeutic Insights. COVID. 2025; 5(12):207. https://doi.org/10.3390/covid5120207
Chicago/Turabian StyleChe Ramli, Muhammad Danial, Beevenna Kaur Darmindar Singh, Zakirah Zainal Abidin, Athirah Azlan, Amanina Nurjannah, Zaw Myo Hein, Che Mohd Nasril Che Mohd Nassir, Rajesh Thangarajan, Noor Aishah Bt. Mohammed Izham, and Suresh Kumar. 2025. "Neurological Sequelae of Long COVID: Mechanisms, Clinical Impact and Emerging Therapeutic Insights" COVID 5, no. 12: 207. https://doi.org/10.3390/covid5120207
APA StyleChe Ramli, M. D., Darmindar Singh, B. K., Zainal Abidin, Z., Azlan, A., Nurjannah, A., Hein, Z. M., Che Mohd Nassir, C. M. N., Thangarajan, R., Mohammed Izham, N. A. B., & Kumar, S. (2025). Neurological Sequelae of Long COVID: Mechanisms, Clinical Impact and Emerging Therapeutic Insights. COVID, 5(12), 207. https://doi.org/10.3390/covid5120207

