Exploratory, Cross-Sectional Observations on Post-COVID-19 Respiratory Symptoms: A Multivariable Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.4. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. Respiratory Symptoms by Infection Episode (Table 2)
| Symptoms | Total (n = 240) | First Episode (n = 216) | Second Episode (n = 24) | Univariate Analysis | Multivariate Analysis | ||
|---|---|---|---|---|---|---|---|
| Crude OR | 95% CI | Adjusted OR | 95% CI | ||||
| Dyspnea | 65 (27.1) | 58 (26.9) | 7 (29.2) | 1.12 | 0.44, 2.84 | 7.61 | 1.54, 37.66 * |
| Fever | 240 (100.0) | 216 (100.0) | 24 (100.0) | - | - | - | - |
| Cough | 111 (46.3) | 100 (46.3) | 11 (45.8) | 0.98 | 0.42, 2.29 | 1.59 | 0.62, 4.05 |
| Fatigue | 19 (7.9) | 17 (7.9) | 2 (8.3) | 1.06 | 0.23, 4.91 | 4.68 | 0.46, 47.51 |
| Secretion | 117 (48.8) | 105 (48.6) | 12 (50.0) | 1.06 | 0.46, 2.46 | 1.60 | 0.65, 3.99 |
3.3. Respiratory Symptoms by Vaccine Doses (Table 3)
| Symptoms | Total (n = 240) | Two Doses (n = 198) | Three Doses (n = 42) | Univariate Analysis | Multivariate Analysis | ||
|---|---|---|---|---|---|---|---|
| Crude OR | 95% CI | Adjusted OR | 95% CI | ||||
| Dyspnea | 65 (27.1) | 59 (29.6) | 6 (14.3) | 0.39 | 0.16, 0.98 * | 0.46 | 0.13, 1.63 |
| Fever | 240 (100.0) | 198 (100.0) | 42 (100.0) | - | - | - | - |
| Cough | 111 (46.3) | 95 (48.0) | 16 (38.1) | 0.67 | 0.54, 1.32 | 0.90 | 0.42, 1.91 |
| Fatigue | 19 (7.9) | 17 (8.6) | 2 (4.8) | 0.53 | 0.12, 2.40 | 1.45 | 0.25, 8.57 |
| Secretion | 117 (48.8) | 101 (51.0) | 16 (38.1) | 0.59 | 0.30, 1.67 | 0.74 | 0.35, 1.55 |
3.4. Respiratory Symptoms by Exercise Habit (Table 4)
| Symptoms | Total (n = 240) | Exercise (n = 198) | No Exercise (n = 42) | Univariate Analysis | Multivariate Analysis | ||
|---|---|---|---|---|---|---|---|
| Crude OR | 95% CI | Adjusted OR | 95% CI | ||||
| Dyspnea | 65 (27.1) | 61 (30.8) | 4 (9.5) | 4.23 | 1.45, 12.32 | 0.33 | 0.64, 1.65 |
| Fever | 240 (100.0) | 198 (100.) | 42 (100.0) | - | - | - | - |
| Cough | 111 (46.3) | 95 (48.0) | 16 (38.1) | 1.50 | 0.76, 2.97 | 0.48 | 0.20, 1.15 |
| Fatigue | 19 (7.9) | 19 (19.6) | 0 (0) | - | - | - | - |
| Secretion | 117 (48.8) | 96 (48.5) | 21 (50.0) | 0.94 | 0.48, 1.83 | 0.30 | 0.12, 0.73 * |
4. Discussion
Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higgins, V.; Sohaei, D.; Diamandis, E.P.; Prassas, I. COVID-19: From an acute to chronic disease? Potential long-term health consequences. Crit. Rev. Clin. Lab. Sci. 2021, 58, 297–310. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Ma, Y.T.; Zhang, J.Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Pablos, J.L.; Abasolo, L.; Alvaro-Gracia, J.M.; Blanco, F.J.; Blanco, R.; Castrejón, I.; Fernandez-Fernandez, D.; Fernandez-Gutierrez, B.; Galindo-Izquierdo, M.; Gonzalez-Gay, M.A.; et al. Prevalence of hospital PCR-confirmed COVID-19 cases in patients with chronic inflammatory and autoimmune rheumatic diseases. Ann. Rheum. Dis. 2020, 79, 1170–1173. [Google Scholar] [CrossRef]
- Emami, A.; Javanmardi, F.; Pirbonyeh, N.; Akbari, A. Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Arch. Acad. Emerg. Med. 2020, 8, e35. [Google Scholar]
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Patidar, R.; Younis, K.; Desai, P.; Hosein, Z.; Padda, I.; Mangat, J.; Altaf, M. Comorbidity and its Impact on Patients with COVID-19. SN Compr. Clin. Med. 2020, 2, 1069–1076. [Google Scholar] [CrossRef]
- Gallo, G.; Calvez, V.; Savoia, C. Hypertension and COVID-19: Current Evidence and Perspectives. High Blood Press. Cardiovasc. Prev. 2022, 29, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Bhowmik, B.; do Vale Moreira, N.C. COVID-19 and diabetes: Knowledge in progress. Diabetes Res. Clin. Pract. 2020, 162, 108142. [Google Scholar] [CrossRef] [PubMed]
- Bajgain, K.T.; Badal, S.; Bajgain, B.B.; Santana, M.J. Prevalence of comorbidities among individuals with COVID-19: A rapid review of current literature. Am. J. Infect. Control 2021, 49 2, 238–246. [Google Scholar] [CrossRef]
- Improta-Caria, A.C.; Soci, Ú.P.R.; Pinho, C.S.; Aras Júnior, R.; De Sousa, R.A.; De Sousa, R.A.L.; Bessa, T.C.B. Physical Exercise and Immune System: Perspectives on the COVID-19 pandemic. Rev. Assoc. Médica 6Bras. 2021, 67 (Suppl. 1), 102–107. [Google Scholar] [CrossRef]
- da Silveira, M.P.; da Silva Fagundes, K.K.; Bizuti, M.R.; Starck, É.; Rossi, R.C.; de Resende, E.S.D.T. Physical exercise as a tool to help the immune system against COVID-19: An integrative review of the current literature. Clin. Exp. Med. 2021, 21, 15–28. [Google Scholar] [CrossRef]
- Martin, S.A.; Pence, B.D.; Woods, J.A. Exercise and respiratory tract viral infections. Exerc. Sport Sci. Rev. 2009, 37, 157–164. [Google Scholar] [CrossRef]
- Arazi, H.; Falahati, A.; Suzuki, K. Moderate Intensity Aerobic Exercise Potential Favorable Effect Against COVID-19: The Role of Renin-Angiotensin System and Immunomodulatory Effects. Front. Physiol. 2021, 12, 747200. [Google Scholar] [CrossRef]
- Dixit, S. Can moderate intensity aerobic exercise be an effective and valuable therapy in preventing and controlling the pandemic of COVID-19? Med. Hypotheses 2020, 143, 109854. [Google Scholar] [CrossRef]
- Gleeson, M. Immune function in sport and exercise. J. Appl. Physiol. 2007, 103, 693–699. [Google Scholar] [CrossRef]
- Li, N.; Huang, F.; Li, H.; Lin, S.; Yuan, Y.; Zhu, P. Examining the independent and interactive association of physical activity and sedentary behaviour with frailty in Chinese community-dwelling older adults. BMC Public Health 2022, 22, 1414. [Google Scholar] [CrossRef]
- Sallis, R.; Young, D.R.; Tartof, S.Y.; Sallis, J.F.; Sall, J.; Li, Q.; Smith, G.N.; Cohen, D.A. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: A study in 48 440 adult patients. Br. J. Sports Med. 2021, 55, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; An, S.; Tao, Y.; Austin, L. Correlation and Change in Physical Activity and Physical Fitness across Four Years of College Students after One Year of COVID-19 Lockdown. Healthcare 2022, 10, 1691. [Google Scholar] [CrossRef] [PubMed]
- Grewal, J.S.; Carlsten, C.; Johnston, J.C.; Shah, A.S.; Wong, A.W.; Ryerson, C.J. Post-COVID dyspnea: Prevalence, predictors, and outcomes in a longitudinal, prospective cohort. BMC Pulm. Med. 2023, 23, 84. [Google Scholar] [CrossRef] [PubMed]
- Al-Aly, Z.; Bowe, B.; Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 2022, 28, 1461–1467. [Google Scholar] [CrossRef]
- Peghin, M.; Palese, A.; Venturini, M.; De Martino, M.; Gerussi, V.; Graziano, E.; Bontempo, G.; Marrella, F.; Tommasini, A.; Fabris, M.; et al. Post-COVID-19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients. Clin. Microbiol. Infect. 2021, 27, 1507–1513. [Google Scholar] [CrossRef]
- Morgan, S.; Smith, J.M.; Thomas, B.; Moreno, M.; Visovsky, C.; Beckie, T. Risk Factors and Predictors for Persistent Dyspnea Post-COVID-19: A Systematic Review. Clin. Nurs. Res. 2025, 34, 195–212. [Google Scholar] [CrossRef]
- Mleczko, M.; Gerkowicz, A.; Krasowska, D. Chronic Inflammation as the Underlying Mechanism of the Development of Lung Diseases in Psoriasis: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 1767. [Google Scholar] [CrossRef]
- Monge, S.; Pastor-Barriuso, R.; Hernán, M.A. The imprinting effect of covid-19 vaccines: An expected selection bias in observational studies. BMJ 2023, 381, e074404. [Google Scholar] [CrossRef]
- Hause, A.M.; Baggs, J.; Marquez, P.; Myers, T.R.; Su, J.R.; Blanc, P.G.; Baumblatt, J.A.G.; Woo, E.J.; Gee, J.; Shimabukuro, T.T.; et al. Safety Monitoring of COVID-19 Vaccine Booster Doses Among Adults—United States, September 22, 2021-February 6, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Penfold, R.S.; Merino, J.; Sudre, C.H.; Molteni, E.; Berry, S.; Canas, L.S.; Graham, M.S.; Klaser, K.; Modat, M.; et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: A prospective, community-based, nested, case-control study. Lancet Infect. Dis. 2022, 22, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.M.; Morrison, L.; Robinson, K.A. Airway clearance techniques for cystic fibrosis: An overview of Cochrane systematic reviews. Cochrane Database Syst. Rev. 2019, 1, Cd011231. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.S.A.; Ramos, D.; Bertolini, G.N.; Freire, A.; Leite, M.R.; Camillo, C.A.; Gobbo, L.; Ramos, E. Resistance exercise training improves mucociliary clearance in subjects with COPD: A randomized clinical trial. Pulmonology 2019, 25, 340–347. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Sankari, A. Postural Drainage and Vibration. In StatPearls; StatPearls Publishing LLC: Boca Raton, FL, USA, 2025. [Google Scholar]
- Shen, M.; Li, Y.; Ding, X.; Xu, L.; Li, F.; Lin, H. Effect of active cycle of breathing techniques in patients with chronic obstructive pulmonary disease: A systematic review of intervention. Eur. J. Phys. Rehabil. Med. 2020, 56, 625–632. [Google Scholar] [CrossRef]
- Romer, L.M.; Polkey, M.I. Exercise-induced respiratory muscle fatigue: Implications for performance. J. Appl. Physiol. 2008, 104, 879–888. [Google Scholar] [CrossRef]
- Bissett, B.; Gosselink, R.; van Haren, F.M.P. Respiratory Muscle Rehabilitation in Patients with Prolonged Mechanical Ventilation: A Targeted Approach. Crit. Care 2020, 24, 103. [Google Scholar] [CrossRef] [PubMed]
| Parameters | n (%) | Mean ± SD (Min–Max) | |
|---|---|---|---|
| Gender | Male Female | 120 (50.00) 120 (50.00) | |
| Health Status | |||
| Underlying disease with HT | 13 (5.40) | ||
| Underlying disease with DM | 8 (3.30) | ||
| Both underlying disease | 7 (2.90) | ||
| No underlying disease | 212 (88.30) | ||
| Number of SARS-CoV-2 Infection Episodes | |||
| 1 time | 216 (90.00) | ||
| 2 times | 24 (10.00) | ||
| Number of Vaccine Doses Received | |||
| 2 times | 198 (82.50) | ||
| 3 times | 42 (17.50) | ||
| Exercise Habit | |||
| 1 time/week | 35 (14.60) | ||
| 2 times/week | 81 (33.80) | ||
| 3 times/week | 81 (33.90) | ||
| 4 times/week | 1 (0.40) | ||
| No exercise habit | 42 (17.50) | ||
| Age | 47.79 ± 12.67 (20.00–69.00) | ||
| Weight (kg) | 57.07 ± 9.72 (6.00–18.00) | ||
| Height (m) | 1.63 ± 0.07 (1.50–1.78) | ||
| Body Mass Index (kg/m2) | 21.38 ± 2.38 (16.73–25.95) | ||
| Duration of Symptomatic Periods in COVID-19 Disease (Day) | 5.10 ± 0.30 (5.00–6.00) | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amput, P.; Srithawong, A.; Thammachai, A.; Wongphon, S. Exploratory, Cross-Sectional Observations on Post-COVID-19 Respiratory Symptoms: A Multivariable Analysis. COVID 2025, 5, 191. https://doi.org/10.3390/covid5110191
Amput P, Srithawong A, Thammachai A, Wongphon S. Exploratory, Cross-Sectional Observations on Post-COVID-19 Respiratory Symptoms: A Multivariable Analysis. COVID. 2025; 5(11):191. https://doi.org/10.3390/covid5110191
Chicago/Turabian StyleAmput, Patchareeya, Arunrat Srithawong, Ajchamon Thammachai, and Sirima Wongphon. 2025. "Exploratory, Cross-Sectional Observations on Post-COVID-19 Respiratory Symptoms: A Multivariable Analysis" COVID 5, no. 11: 191. https://doi.org/10.3390/covid5110191
APA StyleAmput, P., Srithawong, A., Thammachai, A., & Wongphon, S. (2025). Exploratory, Cross-Sectional Observations on Post-COVID-19 Respiratory Symptoms: A Multivariable Analysis. COVID, 5(11), 191. https://doi.org/10.3390/covid5110191

