Evaluation of Psychosomatic, Respiratory, and Neurocognitive Health in COVID-19 Survivors 12 Months after ICU Discharge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening and Informed Consent
2.2. Study Procedure and Data Collection
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eythorsson, E.; Helgason, D.; Ingvarsson, R.F.; Bjornsson, H.K.; Olafsdottir, L.B.; Bjarnadottir, V.; Runolfsdottir, H.L.; Bjarnadottir, S.; Agustsson, A.S.; Oskarsdottir, K.; et al. Clinical Spectrum of Coronavirus Disease 2019 in Iceland: Population Based Cohort Study. BMJ 2020, 371, m4529. [Google Scholar] [CrossRef]
- Phua, J.; Weng, L.; Ling, L.; Egi, M.; Lim, C.-M.; Divatia, J.V.; Shrestha, B.R.; Arabi, Y.M.; Ng, J.; Gomersall, C.D.; et al. Intensive Care Management of Coronavirus Disease 2019 (COVID-19): Challenges and Recommendations. Lancet Respir. Med. 2020, 8, 506–517. [Google Scholar] [CrossRef]
- Hajjar, L.A.; Costa, I.B.S.D.S.; Rizk, S.I.; Biselli, B.; Gomes, B.R.; Bittar, C.S.; De Oliveira, G.Q.; De Almeida, J.P.; De Oliveira Bello, M.V.; Garzillo, C.; et al. Intensive Care Management of Patients with COVID-19: A Practical Approach. Ann. Intensive Care 2021, 11, 36. [Google Scholar] [CrossRef]
- Anderegg, N.; Panczak, R.; Egger, M.; Low, N.; Riou, J. Survival among People Hospitalized with COVID-19 in Switzerland: A Nationwide Population-Based Analysis. BMC Med. 2022, 20, 164. [Google Scholar] [CrossRef]
- Roelens, M.; Martin, A.; Friker, B.; Sousa, F.M.; Thiabaud, A.; Vidondo, B.; Buchter, V.; Gardiol, C.; Vonlanthen, J.; Balmelli, C.; et al. Evolution of COVID-19 Mortality over Time: Results from the Swiss Hospital Surveillance System (CH-SUR). Swiss Med. Wkly 2021, 151, w30105. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Qin, E.S.; Hough, C.L.; Andrews, J.; Bunnell, A.E. Intensive Care Unit-Acquired Weakness and the COVID-19 Pandemic: A Clinical Review. PMR 2022, 14, 227–238. [Google Scholar] [CrossRef]
- Carola, V.; Vincenzo, C.; Morale, C.; Pelli, M.; Rocco, M.; Nicolais, G. Psychological Health in COVID-19 Patients after Discharge from an Intensive Care Unit. Front. Public Health 2022, 10, 951136. [Google Scholar] [CrossRef]
- Aguila, E.J.T.; Lontok, M.A.D.; Francisco, C.P.D. Follow Your Gut: Challenges in Nutritional Therapy During the COVID-19 Pandemic. Clin. Gastroenterol. Hepatol. 2020, 18, 2638–2639. [Google Scholar] [CrossRef]
- Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Krznaric, Z.; Nitzan, D.; Pirlich, M.; Singer, P.; Endorsed by the ESPEN Council. ESPEN Expert Statements and Practical Guidance for Nutritional Management of Individuals with SARS-CoV-2 Infection. Clin. Nutr. 2020, 39, 1631–1638. [Google Scholar] [CrossRef]
- PHOSP-COVID Collaborative Group. Clinical Characteristics with Inflammation Profiling of Long COVID and Association with 1-Year Recovery Following Hospitalisation in the UK: A Prospective Observational Study. Lancet Respir. Med. 2022, 10, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zang, C.; Xu, Z.; Zhang, Y.; Xu, J.; Bian, J.; Morozyuk, D.; Khullar, D.; Zhang, Y.; Nordvig, A.S.; et al. Data-Driven Identification of Post-Acute SARS-CoV-2 Infection Subphenotypes. Nat. Med. 2023, 29, 226–235. [Google Scholar] [CrossRef]
- Sahanic, S.; Tymoszuk, P.; Ausserhofer, D.; Rass, V.; Pizzini, A.; Nordmeyer, G.; Hüfner, K.; Kurz, K.; Weber, P.M.; Sonnweber, T.; et al. Phenotyping of Acute and Persistent Coronavirus Disease 2019 Features in the Outpatient Setting: Exploratory Analysis of an International Cross-Sectional Online Survey. Clin. Infect. Dis. 2022, 75, e418–e431. [Google Scholar] [CrossRef] [PubMed]
- CDC. Post-COVID Conditions. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html (accessed on 12 May 2024).
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A Clinical Case Definition of Post-COVID-19 Condition by a Delphi Consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Coronavirus Disease (COVID-19): Post COVID-19 Condition. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-post-covid-19-condition (accessed on 12 May 2024).
- Pfaff, E.R.; Girvin, A.T.; Bennett, T.D.; Bhatia, A.; Brooks, I.M.; Deer, R.R.; Dekermanjian, J.P.; Jolley, S.E.; Kahn, M.G.; Kostka, K.; et al. Who Has Long-COVID? A Big Data Approach. medRxiv 2021. [Google Scholar] [CrossRef]
- Albrich, W.C.; Ghosh, T.S.; Ahearn-Ford, S.; Mikaeloff, F.; Lunjani, N.; Forde, B.; Suh, N.; Kleger, G.-R.; Pietsch, U.; Frischknecht, M.; et al. A High-Risk Gut Microbiota Configuration Associates with Fatal Hyperinflammatory Immune and Metabolic Responses to SARS-CoV-2. Gut Microbes 2022, 14, 2073131. [Google Scholar] [CrossRef]
- Fischer, T.; Baz, Y.E.; Scanferla, G.; Graf, N.; Waldeck, F.; Kleger, G.-R.; Frauenfelder, T.; Bremerich, J.; Kobbe, S.S.; Pagani, J.-L.; et al. Comparison of Temporal Evolution of Computed Tomography Imaging Features in COVID-19 and Influenza Infections in a Multicenter Cohort Study. Eur. J. Radiol. Open 2022, 9, 100431. [Google Scholar] [CrossRef]
- Goyal, N.; Chung, M.; Bernheim, A.; Keir, G.; Mei, X.; Huang, M.; Li, S.; Kanne, J.P. Computed Tomography Features of Coronavirus Disease 2019 (COVID-19): A Review for Radiologists. J. Thorac. Imaging 2020, 35, 211–218. [Google Scholar] [CrossRef] [PubMed]
- de Abreu, D.; Guessous, I.; Vaucher, J.; Preisig, M.; Waeber, G.; Vollenweider, P.; Marques-Vidal, P. Low Compliance with Dietary Recommendations for Food Intake among Adults. Clin. Nutr. 2013, 32, 783–788. [Google Scholar] [CrossRef]
- Morin, C.M.; Belleville, G.; Bélanger, L.; Ivers, H. The Insomnia Severity Index: Psychometric Indicators to Detect Insomnia Cases and Evaluate Treatment Response. Sleep 2011, 34, 601–608. [Google Scholar] [CrossRef]
- Valko, P.O.; Bassetti, C.L.; Bloch, K.E.; Held, U.; Baumann, C.R. Validation of the Fatigue Severity Scale in a Swiss Cohort. Sleep 2008, 31, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W.; Löwe, B. The Patient Health Questionnaire Somatic, Anxiety, and Depressive Symptom Scales: A Systematic Review. Gen. Hosp. Psychiatry 2010, 32, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, M.; Wilner, N.; Alvarez, W. Impact of Event Scale: A Measure of Subjective Stress. Psychosom Med. 1979, 41, 209–218. [Google Scholar] [CrossRef] [PubMed]
- EQ-5D-5L—EQ-5D. Available online: https://euroqol.org/eq-5d-instruments/eq-5d-5l-about/ (accessed on 4 December 2023).
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Hindmarch, I.; Lehfeld, H.; de Jongh, P.; Erzigkeit, H. The Bayer Activities of Daily Living Scale (B-ADL). Dement. Geriatr. Cogn. Disord. 1998, 9 (Suppl. 2), 20–26. [Google Scholar] [CrossRef]
- Jaeger, J. Digit Symbol Substitution Test: The Case for Sensitivity Over Specificity in Neuropsychological Testing. J. Clin. Psychopharmacol. 2018, 38, 513–519. [Google Scholar] [CrossRef]
- Pang, K.P.; Gourin, C.G.; Terris, D.J. A Comparison of Polysomnography and the WatchPAT in the Diagnosis of Obstructive Sleep Apnea. Otolaryngol. Head Neck Surg. 2007, 137, 665–668. [Google Scholar] [CrossRef]
- Erdfelder, E.; Faul, F.; Buchner, A. GPOWER: A General Power Analysis Program. Behav. Res. Methods Instrum. Comput. 1996, 28, 1–11. [Google Scholar] [CrossRef]
- Buuren, S.V.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Soft. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- von Hippel, P.T. 4. Regression with Missing Ys: An Improved Strategy for Analyzing Multiply Imputed Data. Sociol. Methodol. 2007, 37, 83–117. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. “Package ‘Gplots’.” Various R Programming Tools for Plotting Data. R Package Version 2009, 2, 1. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; MSOR Connect; R Core Team: Vienna, Austria, 2014. [Google Scholar]
- Armstrong, R.A. When to Use the Bonferroni Correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.R.; Olmstead, R.; Carroll, J.E. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biol. Psychiatry 2016, 80, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Gaines, J.; Vgontzas, A.N.; Fernandez-Mendoza, J.; He, F.; Calhoun, S.L.; Liao, D.; Bixler, E.O. Increased Inflammation from Childhood to Adolescence Predicts Sleep Apnea in Boys: A Preliminary Study. Brain Behav. Immun. 2017, 64, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Jokela, M.; Virtanen, M.; Batty, G.D.; Kivimäki, M. Inflammation and Specific Symptoms of Depression. JAMA Psychiatry 2016, 73, 87–88. [Google Scholar] [CrossRef] [PubMed]
- Orre, I.J.; Reinertsen, K.V.; Aukrust, P.; Dahl, A.A.; Fosså, S.D.; Ueland, T.; Murison, R. Higher Levels of Fatigue Are Associated with Higher CRP Levels in Disease-Free Breast Cancer Survivors. J. Psychosom. Res. 2011, 71, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Seeman, T.E.; Bower, J.E.; Kiefe, C.I.; Irwin, M.R. Prospective Association between C-Reactive Protein and Fatigue in the Coronary Artery Risk Development in Young Adults Study. Biol. Psychiatry 2009, 66, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Karshikoff, B.; Sundelin, T.; Lasselin, J. Role of Inflammation in Human Fatigue: Relevance of Multidimensional Assessments and Potential Neuronal Mechanisms. Front. Immunol. 2017, 8, 21. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Al-Rubaye, H.T.; Al-Hadrawi, D.S.; Almulla, A.F.; Maes, M. Long-COVID Post-Viral Chronic Fatigue and Affective Symptoms Are Associated with Oxidative Damage, Lowered Antioxidant Defenses and Inflammation: A Proof of Concept and Mechanism Study. Mol. Psychiatry 2023, 28, 564–578. [Google Scholar] [CrossRef]
- Hartung, T.J.; Neumann, C.; Bahmer, T.; Chaplinskaya-Sobol, I.; Endres, M.; Geritz, J.; Haeusler, K.G.; Heuschmann, P.U.; Hildesheim, H.; Hinz, A.; et al. Fatigue and Cognitive Impairment after COVID-19: A Prospective Multicentre Study. eClinicalMedicine 2022, 53, 101651. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Shahbaz, S.; Osman, M.; Redmond, D.; Bozorgmehr, N.; Rosychuk, R.J.; Lam, G.; Sligl, W.; Cohen Tervaert, J.W.; Elahi, S. Diverse Immunological Dysregulation, Chronic Inflammation, and Impaired Erythropoiesis in Long COVID Patients with Chronic Fatigue Syndrome. J. Autoimmun. 2024, 147, 103267. [Google Scholar] [CrossRef] [PubMed]
- Swanink, C.M.; Vercoulen, J.H.; Galama, J.M.; Roos, M.T.; Meyaard, L.; van der Ven-Jongekrijg, J.; de Nijs, R.; Bleijenberg, G.; Fennis, J.F.; Miedema, F.; et al. Lymphocyte Subsets, Apoptosis, and Cytokines in Patients with Chronic Fatigue Syndrome. J. Infect. Dis. 1996, 173, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional Exhaustion of Antiviral Lymphocytes in COVID-19 Patients. Cell. Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef]
- Naudé, P.J.W.; Roest, A.M.; Stein, D.J.; de Jonge, P.; Doornbos, B. Anxiety Disorders and CRP in a Population Cohort Study with 54,326 Participants: The LifeLines Study. World J. Biol. Psychiatry 2018, 19, 461–470. [Google Scholar] [CrossRef]
- de Azevedo Cardoso, T.; Silva, R.H.; Fernandes, J.L.; Arent, C.O.; Amboni, G.; Borba, L.A.; Padilha, A.P.Z.; Botelho, M.E.M.; Maciel, A.L.; Barichello, T.; et al. Stress Levels, Psychological Symptoms, and C-Reactive Protein Levels in COVID-19: A Cross-Sectional Study. J. Affect. Disord. 2023, 330, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Bienvenu, O.J.; Friedman, L.A.; Colantuoni, E.; Dinglas, V.D.; Sepulveda, K.A.; Mendez-Tellez, P.; Shanholz, C.; Pronovost, P.J.; Needham, D.M. Psychiatric Symptoms after Acute Respiratory Distress Syndrome: A 5-Year Longitudinal Study. Intensive Care Med. 2018, 44, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Palakshappa, J.A.; Krall, J.T.W.; Belfield, L.T.; Files, D.C. Long-Term Outcomes in Acute Respiratory Distress Syndrome: Epidemiology, Mechanisms, and Patient Evaluation. Crit. Care Clin. 2021, 37, 895–911. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.; Tomlinson, G.; Chu, L.; Robles, P.; Matte, A.; Burns, S.; Thomas, C.; Lamontagne, F.; Adhikari, N.K.J.; Ferguson, N.; et al. Determinants of Depressive Symptoms at 1 Year Following ICU Discharge in Survivors of ≥7 Days of Mechanical Ventilation: Results From the RECOVER Program, a Secondary Analysis of a Prospective Multicenter Cohort Study. Chest 2019, 156, 466–476. [Google Scholar] [CrossRef]
- Lever-van Milligen, B.A.; Vogelzangs, N.; Smit, J.H.; Penninx, B.W.J.H. Hemoglobin Levels in Persons with Depressive and/or Anxiety Disorders. J. Psychosom. Res. 2014, 76, 317–321. [Google Scholar] [CrossRef]
- Chen, H.-H.; Yeh, H.-L.; Tsai, S.-J. Association of Lower Hemoglobin Levels with Depression, Though Not with Cognitive Performance, in Healthy Elderly Men. Psychiatry Clin. Neurosci. 2012, 66, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Jackowska, M.; Kumari, M.; Steptoe, A. Sleep and Biomarkers in the English Longitudinal Study of Ageing: Associations with C-Reactive Protein, Fibrinogen, Dehydroepiandrosterone Sulfate and Hemoglobin. Psychoneuroendocrinology 2013, 38, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; El Salamony, O. Depression, Quality of Life and Malnutrition-Inflammation Scores in Hemodialysis Patients. Am. J. Nephrol. 2008, 28, 784–791. [Google Scholar] [CrossRef]
- Simic Ogrizovic, S.; Jovanovic, D.; Dopsaj, V.; Radovic, M.; Sumarac, Z.; Bogavac, S.N.; Stosovic, M.; Stanojevic, M.; Nesic, V. Could Depression Be a New Branch of MIA Syndrome? Clin. Nephrol. 2009, 71, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Bossola, M.; Ciciarelli, C.; Di Stasio, E.; Conte, G.L.; Vulpio, C.; Luciani, G.; Tazza, L. Correlates of Symptoms of Depression and Anxiety in Chronic Hemodialysis Patients. Gen. Hosp. Psychiatry 2010, 32, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Ringdal, M.; Plos, K.; Lundberg, D.; Johansson, L.; Bergbom, I. Outcome after Injury: Memories, Health-Related Quality of Life, Anxiety, and Symptoms of Depression after Intensive Care. J. Trauma 2009, 66, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Mazeraud, A.; Polito, A.; Sivanandamoorthy, S.; Porcher, R.; Heming, N.; Stoclin, A.; Hissem, T.; Antona, M.; Blot, F.; Gaillard, R.; et al. Groupe d’Explorations Neurologiques en Réanimation (GENER). Association Between Anxiety and New Organ Failure, Independently of Critical Illness Severity and Respiratory Status: A Prospective Multicentric Cohort Study. Crit. Care Med. 2020, 48, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Yamamoto, H.; Ozono, R.; Maeda, R.; Kihara, Y. Sleeping Difficulty and Subjective Short Sleep Duration Are Associated with Serum N-Terminal Pro-Brain Natriuretic Peptide Levels in the Elderly Population. Intern. Med. 2020, 59, 2213–2219. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Cooper, D.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep Duration Predicts Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Studies. Eur. Heart J. 2011, 32, 1484–1492. [Google Scholar] [CrossRef]
- Laugsand, L.E.; Vatten, L.J.; Platou, C.; Janszky, I. Insomnia and the Risk of Acute Myocardial Infarction. Circulation 2011, 124, 2073–2081. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Winkelman, J.W.; Redline, S.; Hu, F.B.; Stampfer, M.; Ma, J.; Gao, X. Association Between Insomnia Symptoms and Mortality: A Prospective Study of US Men. Circulation 2014, 129, 737–746. [Google Scholar] [CrossRef]
- Laugsand, L.E.; Strand, L.B.; Platou, C.; Vatten, L.J.; Janszky, I. Insomnia and the Risk of Incident Heart Failure: A Population Study. Eur. Heart J. 2014, 35, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Hübner, R.-H.; El Mokhtari, N.E.; Freitag, S.; Rausche, T.; Göder, R.; Tiroke, A.; Lins, M.; Simon, R.; Bewig, B. NT-proBNP Is Not Elevated in Patients with Obstructive Sleep Apnoea. Respir. Med. 2008, 102, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Tasci, S.; Manka, R.; Scholtyssek, S.; Lentini, S.; Troatz, C.; Stoffel-Wagner, B.; Lüderitz, B. NT-pro-BNP in Obstructive Sleep Apnea Syndrome Is Decreased by Nasal Continuous Positive Airway Pressure. Clin. Res. Cardiol. 2006, 95, 23–30. [Google Scholar] [CrossRef]
- Vartany, E.; Imevbore, M.; O’Malley, M.; Manfredi, C.; Pasquarella, C.; Scinto, L.; Fine, J. N-terminal Pro-brain Natriuretic Peptide for Detection of Cardiovascular Stress in Patients with Obstructive Sleep Apnea Syndrome. J. Sleep Res. 2006, 15, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Lazzarino, A.I.; Hamer, M.; Gaze, D.; Collinson, P.; Rumley, A.; Lowe, G.; Steptoe, A. The Interaction between Systemic Inflammation and Psychosocial Stress in the Association with Cardiac Troponin Elevation: A New Approach to Risk Assessment and Disease Prevention. Prev. Med. 2016, 93, 46–52. [Google Scholar] [CrossRef]
- Lazzarino, A.I.; Hamer, M.; Gaze, D.; Collinson, P.; Steptoe, A. The Association Between Cortisol Response to Mental Stress and High-Sensitivity Cardiac Troponin T Plasma Concentration in Healthy Adults. J. Am. Coll. Cardiol. 2013, 62, 1694–1701. [Google Scholar] [CrossRef] [PubMed]
- Boyd, B.; Solh, T. Takotsubo Cardiomyopathy: Review of Broken Heart Syndrome. JAAPA 2020, 33, 24–29. [Google Scholar] [CrossRef]
- Raut, S.; Gupta, G.; Narang, R.; Ray, A.; Pandey, R.M.; Malhotra, A.; Sinha, S. The Impact of Obstructive Sleep Apnoea Severity on Cardiac Structure and Injury. Sleep Med. 2021, 77, 58–65. [Google Scholar] [CrossRef]
- Einvik, G.; Røsjø, H.; Randby, A.; Namtvedt, S.K.; Hrubos-Strøm, H.; Brynildsen, J.; Somers, V.K.; Omland, T. Severity of Obstructive Sleep Apnea Is Associated with Cardiac Troponin I Concentrations in a Community-Based Sample: Data from the Akershus Sleep Apnea Project. Sleep 2014, 37, 1111–1116. [Google Scholar] [CrossRef]
- Huang, L.; Yao, Q.; Gu, X.; Wang, Q.; Ren, L.; Wang, Y.; Hu, P.; Guo, L.; Liu, M.; Xu, J.; et al. 1-Year Outcomes in Hospital Survivors with COVID-19: A Longitudinal Cohort Study. Lancet 2021, 398, 747–758. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Al-Jassas, H.K.; Morris, G.; Maes, M. Increased ACE2, sRAGE, and Immune Activation, but Lowered Calcium and Magnesium in COVID-19. Recent Adv. Inflamm. Allergy Drug Discov. 2022, 16, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-las-Peñas, C.; Martín-Guerrero, J.D.; Pellicer-Valero, Ó.J.; Navarro-Pardo, E.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Arias-Navalón, J.A.; Cigarán-Méndez, M.; Hernández-Barrera, V.; Arendt-Nielsen, L. Female Sex Is a Risk Factor Associated with Long-Term Post-COVID Related-Symptoms but Not with COVID-19 Symptoms: The LONG-COVID-EXP-CM Multicenter Study. J. Clin. Med. 2022, 11, 413. [Google Scholar] [CrossRef] [PubMed]
- The Prevalence and Long-Term Health Effects of Long Covid Among Hospitalised and Non-Hospitalised Populations: A Systematic Review and Meta-Analysis—eClinicalMedicine. Available online: https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(22)00491-6/fulltext (accessed on 17 May 2024).
Patient Characteristics | Cases (N = 17) |
---|---|
Demographics | |
Male sex, N (%) | 13 (76.5) |
Age, years, mean (SD) | 60 (11.4) |
18–30 years, N (%) | 0 (0) |
31–45 years, N (%) | 2 (11.8) |
46–60 years, N (%) | 7 (41.2) |
61–75 years, N (%) | 8 (47) |
>75 years, N (%) | 0 (0) |
Weight, kg, mean (SD) | 90.8 (18) |
Height, cm, mean (SD) | 172.2 (7.3) |
Body mass index (BMI), kg/m2, mean (SD) | 30.5 (5.2) |
Years of primary and secondary education, mean (SD) | 11.4 (3.3) |
Personal medical history, N (%) | |
Any comorbidity | 13 (76.5) |
Hypertension | 9 (52.9) |
Cardiovascular disease | 1 (5.9) |
Chronic lung disease | 2 (11.8) |
Asthma | 2 (11.8) |
Dyslipidemia/statin use | 3 (17.6) |
Symptoms at COVID-19 onset, N (%) | |
Fever | 10 (58.8) |
Cough | 13 (76.5) |
Headache | 11 (64.7) |
Night sweats | 9 (52.9) |
Chills | 10 (58.8) |
Shivering | 10 (58.8) |
Myalgia | 8 (47.1) |
Joint pain | 8 (47.1) |
Dyspnea | 9 (52.9) |
Inspiratory chest pain | 10 (58.8) |
Retrosternal chest pain | 9 (52.9) |
Loss of appetite | 10 (58.8) |
Weight loss | 8 (47.1) |
Findings on lung CT scans at ICU admission, mean (SD) | |
Ground-glass opacity in % of normal lung | 39.0 (4.3) |
Crazy-paving in % of normal lung | 26.9 (5.8) |
Light consolidation in % of normal lung | 8.0 (4.1) |
Heavy consolidation in % of normal lung | 0.4 (0.2) |
Laboratory data at ICU admission, mean (SD) | |
Hemoglobin in g/L | 128.4 (18.2) |
Thrombocytes in g/L (109/L (giga/L)) | 271.1 (117.2) |
Troponin in ng/L (109 g/L (ng/L)) | 30.5 (49.7) |
NT-probnp in ng/L | 758.6 (615.7) |
Creatinine in μmol/L (106 mol/L (micromole/L)) | 73.2 (24.4) |
Bilirubin in μmol/L | 9.3 (6.1) |
Crp in mg/L | 208.1 (93.6) |
Leukocytes in g/L | 10.2 (3.6) |
interleukin-6 in pg/mL (1012 g/mL (picogram/mL)) | 103.9 (119.3) |
lymphocytes in g/L | 0.9 (0.5) |
D-dimers in ng/mL | 2045 (1384.5) |
Ldh in IU/L | 602.6 (224.8) |
Clinical scores, syndromes, and complications during ICU stay | |
Admission sofa (sequential organ failure assessment score) score (SD) | 5.8 (3.4) |
Discharge sofa score (SD) | 2.5 (0.9) |
Admission SAPS (simplified acute physiology score) II (SD) | 33.6 (12.7) |
Hospital-acquired pneumonia (HAP) more than 48 h after hospital admission, N (%) | 3 (17.6) |
Community-acquired pneumonia (CAP) at hospital admission or within 48h (other than COVID-19), N (%) | 2 (11.8) |
Acute confusional syndrome, N (%) | 5 (29.4) |
Acute respiratory distress syndrome (ARDS), N (%) | 10 (58.8) |
Other complications (acute kidney/hepatic injury, septic shock), N (%) | 3 (17.6) |
Partial arterial oxygen pressure (PAO2) in mmhg (mean, SD) | 59.3 (8.0) |
Fraction of inspired oxygen (FIO2) in % (mean, SD) | 53.1 (18.4) |
Highest body temperature in °C (mean, SD) | 38.2 (0.8) |
ICU stay duration in days (mean, SD) | 13 (9.5) |
Hospital stay duration in days (mean, SD) | 23 (12.6) |
Intubation duration in mechanically ventilated patients in days (mean, SD) | 10 (4.1) |
ICU treatment, N (%) | |
Corticosteroid treatment | 15 (88.2) |
Noradrenalin treatment | 5 (29.4) |
Prophylactic LMW heparin | 12 (70.6) |
Low-flow oxygen treatment | 3 (17.6) |
Non-invasive ventilation (NIV) | 5 (29.4) |
Mechanical ventilation | 7 (41.2) |
Extracorporeal membrane oxygenation (ECMO) | 2 (11.8) |
Intubation | 9 (52.9) |
Prone position ventilation | 8 (47.1) |
Tracheostomy | 3 (17.6) |
Hemofiltration/hemodialysis | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Germann, N.; Amozova, D.; Göhl-Freyn, K.; Fischer, T.; Frischknecht, M.; Kleger, G.-R.; Pietsch, U.; Filipovic, M.; Brutsche, M.H.; Frauenfelder, T.; et al. Evaluation of Psychosomatic, Respiratory, and Neurocognitive Health in COVID-19 Survivors 12 Months after ICU Discharge. COVID 2024, 4, 1172-1185. https://doi.org/10.3390/covid4080082
Germann N, Amozova D, Göhl-Freyn K, Fischer T, Frischknecht M, Kleger G-R, Pietsch U, Filipovic M, Brutsche MH, Frauenfelder T, et al. Evaluation of Psychosomatic, Respiratory, and Neurocognitive Health in COVID-19 Survivors 12 Months after ICU Discharge. COVID. 2024; 4(8):1172-1185. https://doi.org/10.3390/covid4080082
Chicago/Turabian StyleGermann, Nicolas, Daria Amozova, Kristina Göhl-Freyn, Tim Fischer, Manuel Frischknecht, Gian-Reto Kleger, Urs Pietsch, Miodrag Filipovic, Martin H. Brutsche, Thomas Frauenfelder, and et al. 2024. "Evaluation of Psychosomatic, Respiratory, and Neurocognitive Health in COVID-19 Survivors 12 Months after ICU Discharge" COVID 4, no. 8: 1172-1185. https://doi.org/10.3390/covid4080082
APA StyleGermann, N., Amozova, D., Göhl-Freyn, K., Fischer, T., Frischknecht, M., Kleger, G. -R., Pietsch, U., Filipovic, M., Brutsche, M. H., Frauenfelder, T., Kahlert, C. R., Schmid, D. A., & Albrich, W. C. (2024). Evaluation of Psychosomatic, Respiratory, and Neurocognitive Health in COVID-19 Survivors 12 Months after ICU Discharge. COVID, 4(8), 1172-1185. https://doi.org/10.3390/covid4080082