Assessing COVID-19 Effects on Inflation, Unemployment, and GDP in Africa: What Do the Data Show via GIS and Spatial Statistics?
Abstract
:1. Introduction
Study Background
2. Data Source and Methodology
2.1. Study Area and Period
2.2. The Data
2.3. Variable Identification
2.4. Spatial Statistical Analysis
2.4.1. Concept of Spatial Autocorrelation/Dependence
2.4.2. Methods of Measuring Spatial Autocorrelation
Contiguity Spatial Weight Matrix
2.4.3. Test of Global and Local Spatial Autocorrelation
Moran’s I Correlation Analysis
Moran Scatter Plot
2.5. Spatial Statistical Methods of Analysis
3. Results and Discussion
3.1. Descriptive Results
3.2. The Top Seven African Countries Affected by COVID-19
3.3. Death Rate and GDP before and after the Outbreak
3.4. Testing for Spatial Autocorrelation
3.4.1. Tests of Spatial Autocorrelation Using Global Moran’s I
3.4.2. Result of Multivariate Analysis of Covariance Methods
3.4.3. Inflation and Unemployment Rate (before and during COVID-19)
3.5. Result of Spatial Autoregressive Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, K.; Agarwal, A. Impact of weather indicators on the COVID-19 outbreak: A Multi-state study in India. medRxiv 2020, 2020-06. [Google Scholar] [CrossRef]
- WHO. Naming the Coronavirus Disease (COVID-19) and the Virus That Causes It. 2019. Available online: https://www.who.int/emergencies/diseases/novelcoronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it (accessed on 10 May 2023).
- Gupta, A.; Banerjee, S.; Das, S. Significance of geographical factors to the COVID-19 outbreak in India. Model. Earth Syst. Environ. 2020, 6, 2645–2653. [Google Scholar] [CrossRef] [PubMed]
- To, T.; Zhang, K.; Maguire, B.; Terebessy, E.; Fong, I.; Parikh, S.; Zhu, J. Correlation of Ambient temperature and COVID-19 incidence in Canada. Sci. Total Environ. 2020, 750, 141484. [Google Scholar] [CrossRef] [PubMed]
- Rashed, E.A.; Kodera, S.; Gomez-Tames, J.; Hirata, A. Influence of absolute humidity, temperature and population density on COVID-19 spread and decay durations: Multi-prefecture study in Japan. Int. J. Environ. Res. Public Health 2020, 17, 5354. [Google Scholar] [CrossRef]
- Azuma, K.; Kagi, N.; Kim, H.; Hayashi, M. Impact of climate and ambient air pollution on the epidemic growth during COVID-19 outbreak in Japan. Environ. Res. 2020, 190, 110042. [Google Scholar] [CrossRef]
- Menebo, M.M. Temperature and precipitation associate with COVID-19 new daily cases: A correlation study between weather and COVID-19 pandemic in Oslo, Norway. Sci. Total. Environ. 2020, 737, 139659. [Google Scholar] [CrossRef]
- Rendana, M. Impact of the wind conditions on COVID-19 pandemic: A new insight for direction of the spread of the virus. Urban Clim. 2020, 34, 100680. [Google Scholar] [CrossRef]
- Suhaimi, N.F.; Jalaludin, J.; Latif, M.T. Demystifying a possible relationship between COVID-19, air quality and meteorological factors: Evidence from Kuala Lumpur, Malaysia. Aerosol Air Qual. Res. 2020, 20, 1520–1529. [Google Scholar] [CrossRef]
- Wong, D.W.; Li, Y. Spreading of COVID-19: Density matters. PLoS ONE 2020, 15, e0242398. [Google Scholar] [CrossRef]
- Bhadra, A.; Mukherjee, A.; Sarkar, K. Impact of population density on COVID-19 infected and mortality rate in India. Model. Earth Syst. Environ. 2021, 7, 623–629. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, H.; Yang, Y.; Wan, H.; Wang, Y. Impacts of geographic factors and population density on the COVID-19 spreading under the lockdown policies of China. Sci. Total Environ. 2020, 746, 141347. [Google Scholar] [CrossRef] [PubMed]
- World Bank. Available online: https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS?Contextual=max&end=2017&locations=ZG-1W&start=2000 (accessed on 30 May 2020).
- Rodriguez-Morales, A.J.; Bonilla-Aldana, D.K.; Balbin-Ramon, G.J.; Rabaan, A.; Sah, R.; Paniz-Mondolfi, A.; Pagliano, P.; Esposito, S. History is repeating itself, a probable zoonotic spillover as a cause of an epidemic: The case of 2019 novel Coronavirus. Infez Med. 2020, 28, 3–5. [Google Scholar] [PubMed]
- Martellucci, C.A.; Sah, R.; Rabaan, A.A.; Dhama, K.; Casalone, C.; Arteaga-Livias, K.; Sawano, T.; Ozaki, A.; Bhandari, D.; Higuchi, A.; et al. Changes in the spatial distribution of COVID-19 incidence in Italy using GIS-based maps. Ann. Clin. Microbiol. Antimicrob. 2021, 19, 30. [Google Scholar] [CrossRef]
- Rodriguez-Morales, A.J.; MacGregor, K.; Kanagarajah, S.; Patel, D.; Schlagen-hauf, P. Going global—Travel and the 2019 novel coronavirus. Travel Med. Infect. Dis. 2020, 33, 101578. [Google Scholar] [CrossRef] [PubMed]
- Habte Tadesse Likassa. The impacts of covariates on spatial distribution of corona virus 2019 (COVID-19): What do the data show through ANCOVA and MANCOVA. EJMO 2020, 4, 141–148. [Google Scholar]
- Likassa, H.T.; Xain, W.; Tang, X.; Gobebo, G. Predictive models on COVID-19: What Africans should do? Infect. Dis. Model. 2021, 6, 302–312. [Google Scholar] [CrossRef]
- Nuwagira, E.; Muzoora, C. Is Sub-Saharan Africa prepared for COVID-19? Trop. Med. Health 2020, 48, 18. [Google Scholar] [CrossRef] [Green Version]
- Czernin, J.; Fanti, S.; Meyer, P.T.; Allen-Auerbach, M.; Hacker, M.; Sathekge, M.; Hicks, R.; Scott, A.M.; Hatazawa, J.; Yun, M.; et al. Imaging clinic operations in the times of COVID-19: Strategies, Precautions and Experiences. J. Nucl. Med. 2020, 61, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Zhang, N.; Lv, H.L.; Zhou, Y.B. Preliminary Analysis on the Incidence Trend of Novel Coronavirus Pneumonia in Shanghai. Search.Bvsalud.Org. Available online: https://search.bvsalud.org/global-literature-on-novel-coronavirus2019-ncov/resource/en/covidwho-6040 (accessed on 10 May 2023).
- Snow, J. On the Mode of Communication of Cholera. 1855. Available online: http://www.ph.ucla.edu/epi/snow/snowbook.html (accessed on 10 May 2023).
- Boulos, M.N.K.; Geraghty, E.M. Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. Int. J. Health Geogr. 2020, 19, 8. [Google Scholar]
- Mollalo, A.; Khodabandehloo, E. Zoonotic cutaneous leishmaniasis in northeastern Iran: A GIS-based spatio-temporal multi-criteria decision-making approach. Epidemiol. Infect. 2016, 144, 2217–2229. [Google Scholar] [CrossRef]
- Mollalo, A.; Alimohammadi, A.; Shirzadi, M.R.; Malek, M.R. Geographic information system-based analysis of the spatial and spatio-temporal distribution of zoonotic cutaneous leishmaniasis in Golestan Province, north-east of Iran. Zoonoses Public Health 2015, 62, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Yin, J.; Wu, X.; Wang, D.; Li, C. Environment and COVID-19 incidence: A critical review. J. Environ. Sci. 2023, 124, 933–951. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Rashid, A.; Guo, S.; Jing, Y.; Zeng, Q.; Li, Y.; Adyari, B.; Yang, J.; Tang, L.; Yu, C.P.; et al. Spatial autocorrelation and temporal variation of contaminants of emerging concern in a typical Spatial autocorrelation and temporal variation of contaminants of emerging concern in a typical urbanizing river. Water Res. 2022, 212, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Model Validation in Spatial Econometrics: A Review and Evaluation of Alternative Approaches. Int. Reg. Sci. Rev. 1988, 11, 279–316. [Google Scholar] [CrossRef]
- Cressie, N.A.C. Statistics for spatial data. In Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics; John Wiley & Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- International Monetary Fund. World Economic Outlook Update; International Monetary Fund: Washington, DC, USA, 2021; p. 6. [Google Scholar]
- United Nations. Egypt COVID-19 Response and Recovery Interventions of the United Nations in Egypt; United Nations: Cairo, Egypt, 2020. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Anselin, L.; Le Gallo, J.; Jayet, H. Spatial Panel Econometrics. In The Econometrics of Panel Data: Fundamentals and Recent Developments in Theory and Practice; Mátyás, L., Sevestre, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 625–660. [Google Scholar] [CrossRef]
- Anselin, L. Spatial econometrics. In Handbook of Spatial Analysis in the Social Sciences; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 101–122. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer: New York, NY, USA, 1988. [Google Scholar]
- Anselin, L. The Moran Scatter Plot as an Exploratory Spatial Data Analysis Tool to Assess Local Instability in Spatial Association; Taylor & Francis Group: Oxford, NY, USA, 1996; pp. 111–125. [Google Scholar]
- Anselin, L. Lagrange Multiplier Test Diagnostics for Spatial Dependence and Spatial Heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Martellucci, C.A.; Flacco, M.E.; Cappadona, R.; Bravi, F.; Mantovani, L.; Manzoli, L. SARS-CoV-2 pandemic: An overview. Adv. Biol. Regul. 2020, 77, 100736. [Google Scholar] [CrossRef]
- Diaye, M.A.; Ho, S.H.; Oueghlissi, R. ESG performance and economic growth: A panel co-integration analysis. Empirica 2021, 49, 99–122. [Google Scholar] [CrossRef]
Category | Variables | Descriptions |
---|---|---|
Meteorological factors | Temperature | The yearly average temperature in degrees Celsius |
Relative humidity | The daily average relative humidity in percentage | |
Precipitation | Daily average wind speed in km/hr | |
Population size | Population density for each country in Africa | |
Inflation | Consumer price index | Global database |
Unemployment rate | Unemployment rate based on the total labor force | Global database (unemployment data and total labor force) |
Variables | Number of Countries | Mean |
---|---|---|
GDP per capita (USD) | 54 | 62.78 |
Deaths per 1000 people | 54 | 4.154 |
COVID-19 cases (per 1000 people) | 54 | 206.013 |
Country | GDP in USD (before COVID-19: 2019) | GDP in USD (during COVID-19: 2021) | Percentage Decrease |
---|---|---|---|
Angola | 2177.8 | 2137.9 | −1.8 |
Algeria | 3989.7 | 3765.0 | −5.6 |
Egypt | 3019.1 | 3876.4 | 28.4 |
Kenya | 2006.8 | 1909.3 | −4.9 |
South Africa | 6624.8 | 5655.9 | −14.6 |
Tunisia | 3691 | 3597 | −2.6 |
Seychelles | 17,252 | 13,306.7 | −22.9 |
Variable | Moran I Correlation under Normalization | |||||
---|---|---|---|---|---|---|
Coefficient | Observed | Expected | Std | Z Value | p-Value | |
Death per 1000 people | Moran’s I statistic | 0.3895 | −0.0204 | −0.0397 | 6.088 | 0.01 |
COVID-19 cases per 1000 people | Moran’s I statistic | 0.3432 | −0.0204 | 0.0993 | 3.6373 | 0.01 |
Tests Between-Subjects Effects | ||||||
---|---|---|---|---|---|---|
Source | Dependent Variable | Type III Sum of Squares | DF | Mean Square | F | Sig. |
Corrected | Confirmed | 725,709,352.30 | 5 | 145,141,870.50 | 7.514 | 0.000 |
Model | Death | 88,008.786 | 5 | 17,601.757 | 21.241 | 0.000 |
Intercept | Confirmed | 143,780,213.00 | 1 | 143,780,213.00 | 7.443 | 0.009 |
Death | 15,338.553 | 1 | 15,338.553 | 18.51 | 0.000 | |
Population density | Confirmed | 36,485,798.84 | 1 | 36,485,798.840 | 1.889 | 0.175 |
Death | 8391.913 | 1 | 8391.913 | 10.127 | 0.002 | |
Temperature | Confirmed | 258,922,007.10 | 1 | 258,922,007.10 | 13.40 | 0.001 |
Death | 19,730.240 | 1 | 19,730.240 | 23.810 | 0.000 | |
Precipitation | Confirmed | 40,568,504.63 | 1 | 40,568,504.63 | 2.100 | 0.153 |
Death | 3227.607 | 1 | 3227.607 | 3.895 | 0.054 | |
Humidity | Confirmed | 77,339,061.270 | 1 | 77,339,061.270 | 4.004 | 0.051 |
Death | 1544.560 | 1 | 1544.560 | 1.864 | 0.178 | |
Wind | Confirmed | 7,421,844.831 | 1 | 7,421,844.831 | 0.384 | 0.538 |
Death | 4768.626 | 1 | 4768.626 | 5.755 | 0.020 | |
Error | Confirmed | 102,381,7543.0 | 47 | 19,317,312.140 | ||
Death | 43,918.572 | 47 | 828.652 | |||
Total | Confirmed | 198,669,3983 | 54 | |||
Death | 174,588.504 | 54 |
Country | Inflation before COVID-19 | Inflation after COVID-19 |
---|---|---|
Angola | 18.35 | 23.85 |
Benin | −0.05 | 5.92 |
Burkina Faso | −0.64 | 3.85 |
Botswana | 3.03 | 7.24 |
Central African | 2.15 | 3.34 |
Côte d’Ivoire | 0.62 | 4.09 |
Cameroon | 1.76 | 2.27 |
Congo | 16.99 | 21.89 |
Congo, Rep. | 1.68 | 1.97 |
Djibouti | 1.73 | 2.35 |
Algeria | 2.73 | 7.23 |
Egypt | 14.14 | 5.21 |
Ethiopia | 14.83 | 26.84 |
Gabon | 3.40 | 5.13 |
Ghana | 8.51 | 9.97 |
Guinea | 9.65 | 12.60 |
Gambia | 6.82 | 7.37 |
Guinea-Bissau | 0.84 | 3.25 |
Equatorial Guinea | 1.15 | 12.10 |
Kenya | 4.95 | 6.11 |
Liberia | 25.26 | 30.86 |
Libya | 1.68 | 18.24 |
Sri Lanka | 3.22 | 7.01 |
Lesotho | 4.60 | 6.05 |
Madagascar | 6.46 | 5.40 |
Mozambique | 3.35 | 5.69 |
Malawi | 9.30 | 9.47 |
Namibia | 4.00 | 3.62 |
Niger | 0.25 | 3.84 |
Nigeria | 11.75 | 16.95 |
Rwanda | 1.89 | 10.39 |
Sudan | 57.14 | 59.09 |
Senegal | 0.74 | 2.18 |
Chad | 1.65 | 10.77 |
Togo | 0.81 | 4.55 |
Tonga | 3.10 | 10.15 |
Tunisia | 7.00 | 15.71 |
Tanzania | 3.48 | 3.69 |
Uganda | 2.74 | 12.21 |
South Africa | 4.32 | 4.61 |
Zambia | 8.65 | 22.02 |
Zimbabwe | 32.95 | 98.55 |
Paired Samples Test | ||||||||
---|---|---|---|---|---|---|---|---|
Paired Differences | t | df | Sig. (2-Tailed) | |||||
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | |||||
Lower | Upper | |||||||
Inflation before and during the outbreak of COVID-19 | −5.39643 | 10.52967 | 1.62476 | −8.67770 | −2.11515 | −3.321 | 41 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gotu, B.; Tadesse, H. Assessing COVID-19 Effects on Inflation, Unemployment, and GDP in Africa: What Do the Data Show via GIS and Spatial Statistics? COVID 2023, 3, 956-974. https://doi.org/10.3390/covid3070069
Gotu B, Tadesse H. Assessing COVID-19 Effects on Inflation, Unemployment, and GDP in Africa: What Do the Data Show via GIS and Spatial Statistics? COVID. 2023; 3(7):956-974. https://doi.org/10.3390/covid3070069
Chicago/Turabian StyleGotu, Butte, and Habte Tadesse. 2023. "Assessing COVID-19 Effects on Inflation, Unemployment, and GDP in Africa: What Do the Data Show via GIS and Spatial Statistics?" COVID 3, no. 7: 956-974. https://doi.org/10.3390/covid3070069
APA StyleGotu, B., & Tadesse, H. (2023). Assessing COVID-19 Effects on Inflation, Unemployment, and GDP in Africa: What Do the Data Show via GIS and Spatial Statistics? COVID, 3(7), 956-974. https://doi.org/10.3390/covid3070069