Agent-Based Modeling to Simulate Aerosolized Transmission of SARS-CoV-2 inside Small Ventilated Spaces
Abstract
:1. Introduction
2. Model Construction
2.1. Agents
2.2. Infection Model
2.3. Spatial Construction
2.4. Fomite vs. Aerosol Transmission
2.5. Filtration
Scaling Airflow Rate
3. Results
3.1. Ningbo Bus
3.1.1. Assumptions
3.1.2. Sensitivity Analysis for Ventilation Effects
3.1.3. Sensitivity Analysis for Spread Vectors
3.1.4. Testing Best Guess
3.1.5. Differing Placement of Index Infector
4. Discussion and Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Statistical Tables for Differing Placement of Infector
Cell | Mean | 95% CI Left Bound | 95% CI Right Bound |
---|---|---|---|
6 | 1.988 | 1.926 | 2.050 |
8 | 2.231 | 2.188 | 2.274 |
11 | 1.703 | 1.641 | 1.765 |
13 | 1.115 | 1.071 | 1.159 |
16 | 1.619 | 1.557 | 1.681 |
18 | 1.567 | 1.511 | 1.623 |
21 | 1.484 | 1.424 | 1.544 |
23 | 1.357 | 1.302 | 1.412 |
26 | 1.434 | 1.374 | 1.494 |
28 | 0.735 | 0.692 | 0.778 |
31 | 1.2 | 1.144 | 1.256 |
33 | 0.908 | 0.859 | 0.957 |
36 | 1.229 | 1.172 | 1.286 |
38 | 0.557 | 0.518 | 0.596 |
41 | 1.002 | 0.948 | 1.056 |
43 | 0.721 | 0.675 | 0.767 |
46 | 0.954 | 0.900 | 1.008 |
48 | 0.683 | 0.638 | 0.728 |
51 | 0.477 | 0.438 | 0.516 |
53 | 0.467 | 0.427 | 0.507 |
58 | 0.084 | 0.067 | 0.101 |
61 | 0.087 | 0.070 | 0.104 |
Overall | 0.347 | 0.344 | 0.351 |
Cell | Mean | 95% CI Left Bound | 95% CI Right Bound |
---|---|---|---|
6 | 2.229 | 2.168 | 2.290 |
8 | 1.595 | 1.541 | 1.649 |
11 | 2.024 | 1.962 | 2.086 |
13 | 1.011 | 0.967 | 1.055 |
16 | 2.083 | 2.021 | 2.145 |
18 | 1.518 | 1.464 | 1.572 |
21 | 1.861 | 1.797 | 1.925 |
23 | 1.342 | 1.286 | 1.398 |
26 | 1.925 | 1.864 | 1.986 |
28 | 0.848 | 0.804 | 0.892 |
31 | 1.773 | 1.711 | 1.835 |
33 | 1.115 | 1.062 | 1.168 |
36 | 2.511 | 2.458 | 2.564 |
38 | 0.655 | 0.613 | 0.697 |
41 | 1.652 | 1.591 | 1.713 |
43 | 0.755 | 0.710 | 0.800 |
46 | 1.457 | 1.397 | 1.517 |
48 | 0.721 | 0.674 | 0.768 |
51 | 0.791 | 0.743 | 0.839 |
53 | 0.492 | 0.453 | 0.531 |
58 | 0.081 | 0.064 | 0.098 |
61 | 0.07 | 0.054 | 0.086 |
Overall | 0.419 | 0.415 | 0.423 |
Cell | Mean | 95% CI Left Bound | 95% CI Right Bound |
---|---|---|---|
6 | 2.196 | 2.133 | 2.259 |
8 | 1.696 | 1.642 | 1.750 |
11 | 2.067 | 2.006 | 2.128 |
13 | 0.998 | 0.954 | 1.042 |
16 | 2.027 | 1.965 | 2.089 |
18 | 1.559 | 1.505 | 1.613 |
21 | 1.852 | 1.789 | 1.915 |
23 | 1.432 | 1.378 | 1.486 |
26 | 1.788 | 1.726 | 1.850 |
28 | 0.968 | 0.923 | 1.013 |
31 | 1.453 | 1.394 | 1.512 |
33 | 1.396 | 1.341 | 1.451 |
36 | 1.342 | 1.283 | 1.401 |
38 | 1.522 | 1.491 | 1.553 |
41 | 1.008 | 0.954 | 1.062 |
43 | 1.29 | 1.237 | 1.343 |
46 | 0.907 | 0.854 | 0.960 |
48 | 1.098 | 1.046 | 1.150 |
51 | 0.441 | 0.404 | 0.478 |
53 | 0.831 | 0.782 | 0.880 |
58 | 0.076 | 0.060 | 0.092 |
61 | 0.081 | 0.064 | 0.098 |
Overall | 0.412 | 0.408 | 0.416 |
Cell | Mean | 95% CI Left Bound | 95% CI Right Bound |
---|---|---|---|
6 | 1.3 | 1.242 | 1.358 |
8 | 1.026 | 0.975 | 1.077 |
11 | 1.244 | 1.188 | 1.300 |
13 | 0.631 | 0.590 | 0.672 |
16 | 1.205 | 1.148 | 1.262 |
18 | 0.926 | 0.876 | 0.976 |
21 | 1.117 | 1.060 | 1.174 |
23 | 0.831 | 0.781 | 0.881 |
26 | 1.029 | 0.976 | 1.082 |
28 | 0.561 | 0.522 | 0.600 |
31 | 0.998 | 0.942 | 1.054 |
33 | 0.772 | 0.724 | 0.820 |
36 | 0.936 | 0.884 | 0.988 |
38 | 0.484 | 0.446 | 0.522 |
41 | 0.778 | 0.729 | 0.827 |
43 | 0.666 | 0.620 | 0.712 |
46 | 0.694 | 0.648 | 0.740 |
48 | 0.671 | 0.625 | 0.717 |
51 | 0.318 | 0.284 | 0.352 |
53 | 0.62 | 0.577 | 0.663 |
61 | 0.041 | 0.029 | 0.053 |
Overall | 0.262 | 0.259 | 0.266 |
Appendix B. Expanded Model Construction
Appendix B.1. Cell Population
Appendix B.2. Cell Virions
Distribution of Virions
Appendix B.3. Ventilation Cells
Appendix B.3.1. Inlet Cells
Appendix B.3.2. Outlet Cells
Appendix B.3.3. Spreading Virions through Breathing
Appendix B.3.4. Spreading Virions through Talking
Appendix B.3.5. Spreading Virions through Coughing and Sneezing
References
- Jones, R.M. Aerosol transmission of infectious disease. Occup. Environ. Med. 2015, 5, 501–508. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard. 2023. Available online: https://covid19.who.int/ (accessed on 25 April 2023).
- Chia, P.Y.; Coleman, K.K.; Tan, Y.K.; Ong, S.W.X.; Gum, M.; Lau, S.K.; Lim, X.F.; Lim, A.S.; Sutjipto, S.; Lee, P.H.; et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 2020, 11, 2800. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, M.U.; Colaneri, M.; Seminari, E.M.; Baldanti, F.; Bruno, R. Low risk of SARS-CoV-2 transmission by fomites in real-life conditions. Lancet Infect. Dis. 2021, 21, e112. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Luo, K.; Xiao, S.; Yang, H.; Hang, J.; Ou, C.; Cowling, B.J.; Yen, H.L.; Hui, D.S.C.; Hu, S.; et al. Predominant airborne transmission and insignificant fomite transmission of SARS-CoV-2 in a two-bus COVID-19 outbreak originating from the same pre-symptomatic index case. J. Hazard. Mater. 2022, 425, 128051. [Google Scholar] [CrossRef]
- Liu, H.; He, S.; Shen, L.; Hong, J. Simulation-based study of COVID-19 outbreak associated with air-conditioning in a restaurant. Phys. Fluids 2021, 33, 023301. [Google Scholar] [CrossRef]
- Bertozzi, A.L.; Franco, E.; Mohler, G.; Short, M.B.; Sledge, D. The challenges of modeling and forecasting the spread of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 16732–16738. [Google Scholar] [CrossRef]
- Tovissodé, C.F.; Lokonon, B.E.; Kakaï, R.G. On the use of growth models to understand epidemic outbreaks with application to COVID-19 data. PLoS ONE 2020, 15, e0240578. [Google Scholar] [CrossRef]
- Motamedi, H.; Shirzadi, M.; Tominaga, Y.; Mirzaei, P.A. CFD modeling of airborne pathogen transmission of COVID-19 in confined spaces under different ventilation strategies. Sustain. Cities Soc. 2022, 76, 103397. [Google Scholar] [CrossRef]
- Hussein, T.; Löndahl, J.; Thuresson, S.; Alsved, M.; Al-Hunaiti, A.; Saksela, K.; Aqel, H.; Junninen, H.; Mahura, A.; Kulmala, M. Indoor Model Simulation for COVID-19 Transport and Exposure. Int. J. Environ. Res. Public Health 2021, 18, 2927. [Google Scholar] [CrossRef]
- Yanev, N.M.; Stoimenova, V.K.; Atanasov, D.V. Branching stochastic processes as models of COVID-19 epidemic development. arXiv 2020, arXiv:2004.14838. [Google Scholar]
- Cooper, I.; Mondal, A.; Antonopoulos, C.G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals 2020, 139, 110057. [Google Scholar] [CrossRef] [PubMed]
- Ud Din, R.; Algehyne, E.A. Mathematical analysis of COVID-19 by using SIR model with convex incidence rate. Results Phys. 2021, 23, 103970. [Google Scholar] [CrossRef]
- Mariam; Magar, A.; Joshi, M.; Rajagopal, P.S.; Khan, A.; Rao, M.M.; Sapra, B.K. CFD Simulation of the Airborne Transmission of COVID-19 Vectors Emitted during Respiratory Mechanisms: Revisiting the Concept of Safe Distance. ACS Omega 2021, 6, 16876–16889. [Google Scholar] [CrossRef]
- Sarhan, A.R.; Naser, P.; Naser, J. COVID-19 aerodynamic evaluation of social distancing in indoor environments, a numerical study. J. Environ. Health Sci. Eng. 2021, 19, 1969–1978. [Google Scholar] [CrossRef]
- Ren, C.; Xi, C.; Wang, J.; Feng, Z.; Nasiri, F.; Cao, S.J.; Haghighat, F. Mitigating COVID-19 infection disease transmission in indoor environment using physical barriers. Sustain. Cities Soc. 2021, 74, 103175. [Google Scholar] [CrossRef]
- Gaddis, M.D.; Manoranjan, V.S. Modeling the Spread of COVID-19 in Enclosed Spaces. Math. Comput. Appl. 2021, 26, 79. [Google Scholar] [CrossRef]
- Shen, Y.; Li, C.; Dong, H.; Wang, Z.; Martinez, L.; Sun, Z.; Handel, A.; Chen, Z.; Chen, E.; Ebell, M.H.; et al. Community Outbreak Investigation of SARS-CoV-2 Transmission among Bus Riders in Eastern China. JAMA Intern. Med. 2020, 180, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yan, K.; Zhang, J.; Cai, T.; Zheng, J. A super-spreader of COVID-19 in Ningbo city in China. J. Infect. Public Health 2020, 13, 935–937. [Google Scholar] [CrossRef]
- Evans, M.J. Avoiding COVID-19: Aerosol Guidelines. medRxiv 2020. [Google Scholar] [CrossRef]
- Syder, W.S.; Cook, M.J.; Nasset, E.S.; Karhausen, L.R.; Howells, G.P.; Tipton, I.H. Report on the Task Group of Reference Men; International Commission on Radiological Protection: London, UK, 1974. [Google Scholar]
- Wells, W.F. On air-borne infectionstudy II. droplets and droplet nuclei. Am. J. Epidemiol. 1934, 20, 611–618. [Google Scholar] [CrossRef]
- Watanabe, T.; Bartrand, T.A.; Weir, M.H.; Omura, T.; Haas, C.N. Development of a Dose-Response Model for SARS Coronavirus. Risk Anal. 2010, 30, 1129–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.Z.; Bobrovitz, N.; Premji, Z.; Koopmans, M.; Fisman, D.N.; Gu, F.X. Heterogeneity in transmissibility and shedding SARS-CoV-2 via droplets and aerosols. eLife 2021, 10, e65774. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Li, Y.; Chwang, A.T.Y.; Ho, P.L.; Seto, W.H. How far droplets can move in indoor environments—Revisiting the Wells evaporation–falling curve. Indoor Air 2007, 17, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Tellier, R. Aerosol transmission of influenza A virus: A review of new studies. J. R. Soc. Interface 2009, 6, S783–S790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutter, J.S.; Spronken, M.I.; Fraaij, P.L.; Fouchier, R.A.M.; Herfst, S. Transmission routes of respiratory viruses among humans. Curr. Opin. Virol. 2018, 28, 142–151. [Google Scholar] [CrossRef]
- Teunis, P.F.M.; Brienen, N.; Kretzschmar, M.E.E. High infectivity and pathogenicity of influenza A virus via aerosol and droplet transmission. Epidemics 2010, 2, 215–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhand, R.; Li, J. Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, Including SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020, 202, 651–659. [Google Scholar] [CrossRef]
- El Hassan, M.; Assoum, H.; Bukharin, N.; Al Otaibi, H.; Mofijur, M.; Sakout, A. A review on the transmission of COVID-19 based on cough/sneeze/breath flows. Eur. Phys. J. Plus 2021, 137, 1–36. [Google Scholar] [CrossRef]
- Mousavi, E.; Pollitt, K.; Sherman, J.; Martinello, R. Performance analysis of portable HEPA filters and temporary plastic anterooms on the spread of surrogate coronavirus. Build. Environ. 2020, 183, 107186. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Position Document on Infectious Aerosols; ASHRAE: Peachtree Corners, GA, USA, 2022. [Google Scholar]
- EPA. What Is a MERV Rating? EPA: Washington, DC, USA, 2022. [Google Scholar]
- EPA. How Much Ventilation Do I Need in My Home to Improve Indoor Air Quality? EPA: Washington, DC, USA, 2022. [Google Scholar]
- Zhang, Z.; Han, T.; Yoo, K.H.; Capecelatro, J.; Boehman, A.L.; Maki, K. Disease transmission through expiratory aerosols on an urban bus. Phys. Fluids 2021, 33, 015116. [Google Scholar] [CrossRef]
- COVID-19, Cold, Allergies and the Flu: What Are the Differences? 2021. Available online: https://www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/covid-19-cold-flu-and-allergies-differences/art-20503981 (accessed on 4 September 2022).
- Asadi, S.; Wexler, A.S.; Cappa, C.D.; Barreda, S.; Bouvier, N.M.; Ristenpart, W.D. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 2019, 9, 2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binazzi, B.; Lanini, B.; Bianchi, R.; Romagnoli, I.; Nerini, M.; Gigliotti, F.; Duranti, R.; Milic-Emili, J.; Scano, G. Breathing pattern and kinematics in normal subjects during speech, singing and loud whispering. Acta Physiol. 2006, 186, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Bake, B.; Larsson, P.; Ljungkvist, G.; Ljungström, E.; Olin, A.C. Exhaled particles and small airways. Respir. Res. 2019, 20, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaddis, M.; Manoranjan, V.; Streipel, J. Agent-Based Modeling to Simulate Aerosolized Transmission of SARS-CoV-2 inside Small Ventilated Spaces. COVID 2023, 3, 937-955. https://doi.org/10.3390/covid3070068
Gaddis M, Manoranjan V, Streipel J. Agent-Based Modeling to Simulate Aerosolized Transmission of SARS-CoV-2 inside Small Ventilated Spaces. COVID. 2023; 3(7):937-955. https://doi.org/10.3390/covid3070068
Chicago/Turabian StyleGaddis, Matthew, Valipuram Manoranjan, and Jakob Streipel. 2023. "Agent-Based Modeling to Simulate Aerosolized Transmission of SARS-CoV-2 inside Small Ventilated Spaces" COVID 3, no. 7: 937-955. https://doi.org/10.3390/covid3070068
APA StyleGaddis, M., Manoranjan, V., & Streipel, J. (2023). Agent-Based Modeling to Simulate Aerosolized Transmission of SARS-CoV-2 inside Small Ventilated Spaces. COVID, 3(7), 937-955. https://doi.org/10.3390/covid3070068