The Role of Climate in the Spread of COVID-19 in Different Latitudes across the World
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Statistical Analysis
3. Results and Discussion
3.1. Number of Cases and R0 of COVID-19 Infection
3.2. Relationship of R0 of COVID-19 Infection and Climatic Variables Based on MLR Method
3.3. Relationship between R0 of COVID-19 Infection and Climatic Variables Based on GWR Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bukhari, Q.; Jameel, Y. Will Coronavirus Pandemic Diminish by Summer? SSRN Electron. J. 2020. Available online: http://dx.doi.org/10.2139/ssrn.3556998 (accessed on 18 August 2022). [CrossRef]
- Wu, D.; Wu, T.; Liu, Q.; Yang, Z. The SARS-CoV-2 Outbreak: What We Know. Int. J. Infect. Dis. 2020, 94, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Johns Hopkins University COVID-19 Map. Available online: https://coronavirus.jhu.edu/map.html (accessed on 30 June 2021).
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN Electron. J. 2020. Available online: http://dx.doi.org/10.2139/ssrn.3550308 (accessed on 18 August 2022). [CrossRef] [PubMed]
- Caspi, G.; Shalit, U.; Kristensen, S.L.; Aronson, D.; Caspi, L.; Rossenberg, O.; Shina, A.; Caspi, O. Climate Effect on COVID-19 Spread Rate: An Online Surveillance Tool. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Prettner, K.; Kuhn, M.; Geldsetzer, P.; Wang, C.; Bärnighausen, T.; Bloom, D.E. Climate and the Spread of COVID-19. Sci. Rep. 2021, 11, 9042. [Google Scholar] [CrossRef] [PubMed]
- Mahase, E. COVID-19: What is the R number? BMJ 2020, 369, m1891. [Google Scholar] [PubMed]
- Dharmaratne, S.; Sudaraka, S.; Abeyagunawardena, I.; Manchanayake, K.; Kothalawala, M.; Gunathunga, W. Estimation of the Basic Reproduction Number (R0) for the Novel Coronavirus Disease in Sri Lanka. Virol. J. 2020, 17, 144. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Sharifi, A.; Dorosti, S.; Ghoushchi, S.J.; Ghanbari, N. Investigation of Effective Climatology Parameters on COVID-19 Outbreak in Iran. Sci. Total Environ. 2020, 729, 138705. [Google Scholar] [CrossRef] [PubMed]
- Rasul, A.; Ibrahim, S. Relationship between Weather and Sociodemographic Indicators and COVID-19 Infection in Iraq; Social Science Research Network: Rochester, NY, USA, 2020. [Google Scholar]
- Wang, J.; Tang, K.; Feng, K.; Lv, W. Impact of Temperature and Relative Humidity on the Transmission of COVID-19: A Modeling Study in China and the United States. SSRN Electron. J. 2021. Available online: http://dx.doi.org/10.2139/ssrn.3551767 (accessed on 18 August 2022). [CrossRef] [PubMed]
- Novel Coronavirus (COVID-19) Cases Data—Humanitarian Data Exchange. Available online: https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases (accessed on 20 April 2020).
- Carslaw, D. Worldmet: Import Surface Meteorological Data from NOAA Integrated Surface Database (ISD). GitHub Repos. 2020. Available online: https://davidcarslaw.github.io/worldmet/ (accessed on 18 August 2022).
- Smit, A.J.; Fitchett, J.M.; Engelbrecht, F.A.; Scholes, R.J.; Dzhivhuho, G.; Sweijd, N.A. Winter Is Coming: A Southern Hemisphere Perspective of the Environmental Drivers of SARS-CoV-2 and the Potential Seasonality of COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 5634. [Google Scholar] [CrossRef] [PubMed]
- Cori, A.; Ferguson, N.M.; Fraser, C.; Cauchemez, S. A New Framework and Software to Estimate Time-Varying Reproduction Numbers during Epidemics. Am. J. Epidemiol. 2013, 178, 1505–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Team, W.E.R. Ebola Virus Disease in West Africa—the First 9 Months of the Epidemic and Forward Projections. N. Engl. J. Med. 2014, 371, 1481–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bivand, R.; Yu, D.; Nakaya, T.; Garcia-Lopez, M.-A.; Bivand, M.R. Package ‘Spgwr’. R Softw. Package 2020. Available online: https://CRAN. R-project. org/package= spgwr (accessed on 18 August 2022).
- Pebesma, E.; Bivand, R.; Rowlingson, B.; Gomez-Rubio, V.; Hijmans, R.; Sumner, M.; MacQueen, D.; Lemon, J.; Lindgren, F.; O’Brien, J.; et al. Gomez-Rubio Classes and Methods for Spatial Data [R Package Sp Version 1.4-5]. Available online: https://CRAN.R-project.org/package=sp (accessed on 8 June 2021).
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.-C. Dynamics of Land Surface Temperature in Response to Land-Use/Cover Change. Geogr. Res. 2011, 49, 23–36. [Google Scholar] [CrossRef]
- Wickham, H.; Chang, W.; Wickham, M.H. Package ‘Ggplot2’: Create Elegant Data Visualisations Using the Grammar of Graphics. R Softw. Package 2020, 2, 1–189. [Google Scholar]
Estimate | Std.Error | tvalue | Pr(>|t|) | |
---|---|---|---|---|
Intercept | −7.133151 | 3.209931 | −2.22 | 0.0263 * |
Wind Speed | −0.016102 | 0.009561 | −1.68 | 0.0922. |
Average Temperature | −0.002282 | 0.001980 | −1.15 | 0.2492 |
Precipitation | 0.008256 | 0.003130 | 2.64 | 0.0084 ** |
Rh | 0.001559 | 0.001504 | 1.04 | 0.3000 |
Air Pressure | 0.000101 | 0.000464 | 0.22 | 0.8276 |
After Removing Insignificant Variables | ||||
Intercept | −7.658160 | 3.023472 | −2.533 | 0.01133 * |
Wind Speed | −0.015446 | 0.009546 | −1.618 | 0.10567 |
Precipitation | 0.008842 | 0.002971 | 2.976 | 0.00293 ** |
Min. | Median | Max. | Global | Monte Carlo p-Value | |
---|---|---|---|---|---|
Intercept. | −62.7119 | −5.2736 | 2.2711 | −7.133 | 0.00 |
Wind Speed | −0.078 | −0.0026 | 0.006 | −0.016 | 0.33 |
Average Temperature | −0.016 | −0.0027 | 0.022 | −0.002 | 0.03 |
Rh | −0.0047 | 0.0065 | 0.0139 | 0.002 | 0.00 |
Precipitation | −0.00137 | 0.0058 | 0.0627 | 0.008 | 0.00 |
Air Pressure | −0.00053 | −0.0002 | 0.00137 | 0.0001 | 0.15 |
After Removing Insignificant Variables | |||||
Intercept. | −65.8430 | −5.4395 | 2.2491 | −8.2481 | 0.00 |
Average Temperature | −0.0140 | −0.0026 | 0.0182 | −0.0021 | 0.04 |
Rh | −0.0045 | 0.0063 | 0.0146 | 0.0016 | 0.00 |
Precipitation | −0.0007 | 0.0060 | 0.0655 | 0.0093 | 0.00 |
Area | Latitude | Longitude | X.Intercept. | Wind Speed | Average Air Temperature | Relative Humidity | Precipitation | Air Pressure |
---|---|---|---|---|---|---|---|---|
French Guiana | 64.1667 | –51.7500 | –4.1572 | –0.0034 | –0.0056 | 0.0088 | 0.0048 | –0.0004 |
Isle of Man | 54.0833 | –4.6239 | 1.6814 | 0.0062 | –0.0039 | –0.0047 | –0.0001 | 0.0003 |
Alberta | 53.5667 | –113.5167 | 2.2667 | –0.0224 | –0.0002 | 0.0065 | –0.0014 | –0.0004 |
Saskatchewan | 50.2000 | –104.7000 | 1.2325 | –0.0163 | –0.0008 | 0.0065 | –0.0004 | –0.0004 |
Manitoba | 49.8833 | –97.1333 | 0.3030 | –0.0120 | –0.0013 | 0.0066 | 0.0005 | –0.0004 |
Luxembourg | 49.6266 | 6.2115 | 1.6083 | 0.0059 | –0.0012 | –0.0044 | –0.0001 | –0.0001 |
Channel Islands | 49.4350 | –2.6020 | 1.7668 | 0.0051 | –0.0029 | –0.0045 | –0.0002 | 0.0004 |
Newfoundland and Labrador | 47.6186 | –52.7519 | –4.7149 | –0.0026 | –0.0046 | 0.0090 | 0.0053 | –0.0004 |
Liechtenstein | 47.1333 | 9.5167 | 1.5150 | 0.0053 | –0.0001 | –0.0040 | –0.0000 | –0.0002 |
Prince Edward Island | 46.2833 | –63.1333 | –4.2993 | –0.0022 | –0.0039 | 0.0089 | 0.0049 | –0.0005 |
New Brunswick | 45.9200 | –66.6000 | –3.9759 | –0.0023 | –0.0036 | 0.0087 | 0.0046 | –0.0005 |
Jilin | 43.9964 | 125.6808 | –62.7119 | –0.0785 | –0.0160 | 0.0124 | 0.0628 | 0.0002 |
Ontario | 43.6772 | –79.6306 | –2.4008 | –0.0039 | –0.0027 | 0.0076 | 0.0031 | –0.0005 |
Montenegro | 42.3667 | 19.2500 | 1.0683 | 0.0038 | 0.0030 | –0.0028 | 0.0003 | –0.0003 |
Xinjiang | 41.7333 | 85.8167 | –52.2264 | –0.0167 | –0.0037 | 0.0111 | 0.0522 | –0.0001 |
Liaoning | 40.6667 | 122.2000 | –62.2737 | –0.0679 | –0.0155 | 0.0128 | 0.0623 | 0.0002 |
Hebei | 40.0801 | 116.5846 | –61.7733 | –0.0566 | –0.0149 | 0.0133 | 0.0617 | 0.0002 |
Shanxi | 37.7469 | 112.6284 | –61.5048 | –0.0453 | –0.0139 | 0.0137 | 0.0614 | 0.0002 |
Ningxia | 37.4833 | 105.6833 | –60.8694 | –0.0317 | –0.0121 | 0.0140 | 0.0607 | 0.0001 |
Shandong | 36.1833 | 118.1500 | –61.7997 | –0.0536 | –0.0146 | 0.0132 | 0.0617 | 0.0002 |
Gibraltar | 36.1512 | –5.3497 | 2.0293 | –0.0002 | –0.0013 | –0.0035 | –0.0005 | 0.0010 |
Malta | 35.8575 | 14.4775 | 1.4610 | 0.0015 | 0.0031 | –0.0027 | –0.0001 | 0.0001 |
Cyprus | 35.1500 | 33.4000 | 0.2711 | –0.0004 | 0.0070 | –0.0006 | 0.0009 | –0.0002 |
Lebanon | 33.8209 | 35.4884 | 0.1218 | –0.0017 | 0.0074 | –0.0003 | 0.0010 | –0.0001 |
Jiangsu | 32.8500 | 120.2833 | –61.4212 | –0.0524 | –0.0146 | 0.0130 | 0.0614 | 0.0002 |
Bermuda | 32.3667 | –64.6833 | –4.6579 | –0.0013 | –0.0035 | 0.0089 | 0.0052 | –0.0005 |
Hubei | 31.1667 | 112.6333 | –61.2376 | –0.0355 | –0.0131 | 0.0136 | 0.0611 | 0.0002 |
Sichuan | 29.9833 | 103.0000 | –60.7495 | –0.0179 | –0.0101 | 0.0139 | 0.0605 | 0.0001 |
Kuwait | 29.3833 | 48.0000 | –2.5896 | –0.0099 | 0.0075 | 0.0009 | 0.0036 | –0.0000 |
Zhejiang | 28.4500 | 119.9167 | –60.3267 | –0.0450 | –0.0142 | 0.0127 | 0.0603 | 0.0002 |
Hunan | 27.1833 | 111.4500 | –60.6136 | –0.0277 | –0.0123 | 0.0135 | 0.0604 | 0.0001 |
Jiangxi | 27.1167 | 114.9667 | –60.3716 | –0.0339 | –0.0131 | 0.0131 | 0.0602 | 0.0002 |
Guizhou | 26.5385 | 106.8007 | –60.6065 | –0.0192 | –0.0109 | 0.0137 | 0.0604 | 0.0001 |
Bahrain | 26.2708 | 50.6336 | –4.1320 | –0.0138 | 0.0073 | 0.0013 | 0.0051 | 0.0000 |
Qatar | 25.2611 | 51.5651 | –4.8284 | –0.0151 | 0.0073 | 0.0014 | 0.0058 | 0.0000 |
Yunnan | 25.0167 | 101.5167 | –60.1998 | –0.0108 | –0.0088 | 0.0136 | 0.0599 | 0.0001 |
Guangxi | 24.3500 | 109.4000 | –60.0336 | –0.0205 | –0.0113 | 0.0133 | 0.0598 | 0.0001 |
Guangdong | 23.3924 | 113.2988 | –59.3091 | –0.0258 | –0.0123 | 0.0129 | 0.0592 | 0.0002 |
Hong Kong | 22.4000 | 114.2000 | –58.7490 | –0.0261 | –0.0123 | 0.0127 | 0.0586 | 0.0002 |
Cayman Islands | 19.6870 | –79.8828 | –3.5209 | –0.0014 | –0.0027 | 0.0075 | 0.0042 | –0.0005 |
Hainan | 19.5167 | 109.5833 | –58.1775 | –0.0152 | –0.0107 | 0.0127 | 0.0580 | 0.0001 |
Sint Maarten | 18.0458 | –63.1147 | –5.2734 | –0.0006 | –0.0032 | 0.0090 | 0.0058 | –0.0005 |
Jamaica | 17.9357 | –76.7875 | –3.9823 | –0.0010 | –0.0028 | 0.0078 | 0.0046 | –0.0005 |
Saint Lucia | 17.3112 | –62.7187 | –5.3245 | –0.0006 | –0.0032 | 0.0091 | 0.0059 | –0.0005 |
Dominica | 15.3330 | –61.3830 | –5.4704 | –0.0006 | –0.0032 | 0.0091 | 0.0060 | –0.0005 |
Cabo Verde | 14.9333 | –23.4833 | 0.3947 | –0.0098 | –0.0019 | 0.0019 | 0.0007 | 0.0008 |
Martinique | 14.6000 | –61.0000 | –5.5158 | –0.0006 | –0.0032 | 0.0092 | 0.0060 | –0.0005 |
Gambia | 13.3380 | –16.6522 | 1.8652 | –0.0113 | –0.0006 | –0.0001 | –0.0006 | 0.0014 |
Aruba | 12.5000 | –70.0170 | –4.9454 | –0.0004 | –0.0029 | 0.0085 | 0.0055 | –0.0005 |
Curacao | 12.2000 | –68.9670 | –5.0529 | –0.0004 | –0.0030 | 0.0086 | 0.0056 | –0.0005 |
Bonaire, Sint Eustatius and Saba | 12.1500 | –68.2830 | –5.1142 | –0.0004 | –0.0030 | 0.0087 | 0.0057 | –0.0005 |
Grenada | 12.0000 | –61.7830 | –5.5728 | –0.0004 | –0.0031 | 0.0092 | 0.0061 | –0.0005 |
Trinidad and Tobago | 10.5833 | –61.3500 | –5.6484 | –0.0004 | –0.0031 | 0.0092 | 0.0062 | –0.0004 |
Brunei | 4.9442 | 114.9284 | –42.5733 | –0.0138 | –0.0089 | 0.0071 | 0.0430 | 0.0002 |
Maldives | 4.1918 | 73.5291 | –38.9624 | –0.0246 | 0.0075 | 0.0045 | 0.0394 | 0.0001 |
Seychelles | –4.6743 | 55.5218 | –16.8494 | –0.0527 | 0.0169 | 0.0014 | 0.0176 | 0.0001 |
Comoros | –11.5337 | 43.2719 | –9.2050 | –0.0702 | 0.0213 | 0.0013 | 0.0101 | 0.0000 |
Mayotte | –12.8047 | 45.2811 | –11.1706 | –0.0720 | 0.0223 | 0.0009 | 0.0120 | 0.0001 |
Fiji | –18.0433 | 178.5592 | –11.8107 | –0.0227 | 0.0081 | –0.0037 | 0.0130 | 0.0007 |
New Caledonia | –22.0146 | 166.2130 | –11.7658 | –0.0220 | 0.0091 | –0.0033 | 0.0129 | 0.0009 |
Western Australia | –31.9403 | 115.9669 | –10.1166 | –0.0075 | 0.0074 | –0.0023 | 0.0112 | 0.0010 |
Australian Capital Territory | –35.3069 | 149.1950 | –11.4782 | –0.0185 | 0.0113 | –0.0027 | 0.0125 | 0.0013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasul, A.; Balzter, H. The Role of Climate in the Spread of COVID-19 in Different Latitudes across the World. COVID 2022, 2, 1183-1192. https://doi.org/10.3390/covid2090085
Rasul A, Balzter H. The Role of Climate in the Spread of COVID-19 in Different Latitudes across the World. COVID. 2022; 2(9):1183-1192. https://doi.org/10.3390/covid2090085
Chicago/Turabian StyleRasul, Azad, and Heiko Balzter. 2022. "The Role of Climate in the Spread of COVID-19 in Different Latitudes across the World" COVID 2, no. 9: 1183-1192. https://doi.org/10.3390/covid2090085
APA StyleRasul, A., & Balzter, H. (2022). The Role of Climate in the Spread of COVID-19 in Different Latitudes across the World. COVID, 2(9), 1183-1192. https://doi.org/10.3390/covid2090085