Effect of Indoor Bioaerosols (Fungal) Exposure on the Health of Post-COVID-19 Patients and Possible Mitigation Strategies
Abstract
:1. Introduction
2. Datasets and Findings
2.1. Immunosuppression and Coinfection in COVID-19 Patients
2.2. Fungal Coinfected COVID-19 Patients
2.2.1. Mucormycosis
2.2.2. Candidiasis
2.2.3. Aspergillus fumigatus
2.2.4. Pneumocystis Pneumonia
2.2.5. Cryptococcal Disease (C. neoformans)
2.2.6. Coccidioidomycosis
2.3. Control Mechanism for Fungal Spores
2.3.1. Non-Thermal Inactivation of Fungal Spores
2.3.2. Ozone Treatment
2.3.3. Non-Thermal Plasma (NTP)
2.3.4. HEPA Vacuuming
2.3.5. UV Radiation
2.3.6. Treatment with Fungicides
2.4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Rao, N.P.; Patnaik, U.; Malik, V.; Tevatia, M.S.; Thakur, S.; Jaydevan, J.; Saxena, P. Management outcomes of mucormycosis in COVID-19 patients: A preliminary report from a tertiary care hospital. Med. J. Armed Forces India 2021, 77, S289–S295. [Google Scholar] [CrossRef] [PubMed]
- Mandal, J.; Brandl, H. Bioaerosols in indoor environment—A review with special reference to residential and occupational locations. Open Environ. Biol. Monit. J. 2011, 4, 83–96. [Google Scholar]
- Heaney, A.; Head, J.; Broen, K.; Click, K.; Taylor, J.; Balmes, J.; Zelner, J.; Remais, J. Coccidioidomycosis and COVID-19 Co-Infection, United States, 2020. Emerg. Infect. Dis. J. 2021, 27, 1266. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.; Joshi, S.R.; Misra, A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102146. [Google Scholar] [CrossRef]
- Jayaweera, M.; Perera, H.; Gunawardana, B.; Manatunge, J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 2020, 188, 109819. [Google Scholar] [CrossRef]
- Tabatabaeizadeh, S.-A. Airborne transmission of COVID-19 and the role of face mask to prevent it: A systematic review and meta-analysis. Eur. J. Med. Res. 2021, 26, 1. [Google Scholar] [CrossRef]
- Fung, F.; Hughson, W.G. Health Effects of Indoor Fungal Bioaerosol Exposure. Appl. Occup. Environ. Hyg. 2003, 18, 535–544. [Google Scholar] [CrossRef]
- Simpson, P.L.; Simpson, M.; Adily, A.; Grant, L.; Butler, T. Prison cell spatial density and infectious and communicable diseases: A systematic review. BMJ Open 2019, 9, e026806. [Google Scholar] [CrossRef] [Green Version]
- Arastehfar, A.; Carvalho, A.; van de Veerdonk, F.L.; Jenks, J.D.; Koehler, P.; Krause, R.; Cornely, O.A.; Perlin, D.S.; Lass-Flörl, C.; Hoenigl, M. COVID-19 Associated Pulmonary Aspergillosis (CAPA)—From Immunology to Treatment. J. Fungi 2020, 6, 91. [Google Scholar] [CrossRef]
- Werthman-Ehrenreich, A. Mucormycosis with orbital compartment syndrome in a patient with COVID-19. Am. J. Emerg. Med. 2021, 42, e5–e264. [Google Scholar] [CrossRef] [PubMed]
- Helleberg, M.; Steensen, M.; Arendrup, M.C. Invasive aspergillosis in patients with severe COVID-19 pneumonia. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2021, 27, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Roushdy, T.; Hamid, E. A case series of post COVID-19 mucormycosis—a neurological prospective. Egypt. J. Neurol. Psychiatry Neurosurg. 2021, 57, 100. [Google Scholar] [CrossRef]
- Intra, J.; Sarto, C.; Beck, E.; Tiberti, N.; Leoni, V.; Brambilla, P. Bacterial and fungal colonization of the respiratory tract in COVID-19 patients should not be neglected. Am. J. Infect. Control. 2020, 48, 1130–1131. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, S.K.; Kumar, V.B.; Gupta, M.; Sharma, Y. Covid Assossiated Invasive Fungal Sinusitis. Indian J. Otolaryngol. Head Neck Surg. 2021, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Koehler, P.; Cornely, O.A.; Böttiger, B.W.; Dusse, F.; Eichenauer, D.A.; Fuchs, F.; Hallek, M.; Jung, N.; Klein, F.; Persigehl, T. COVID-19 associated pulmonary aspergillosis. Mycoses 2020, 63, 528–534. [Google Scholar] [CrossRef]
- Alanio, A.; Dellière, S.; Fodil, S.; Bretagne, S.; Mégarbane, B. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet. Respir. Med. 2020, 8, e48–e49. [Google Scholar] [CrossRef]
- Rutsaert, L.; Steinfort, N.; Van Hunsel, T.; Bomans, P.; Naesens, R.; Mertes, H.; Dits, H.; Van Regenmortel, N. COVID-19-associated invasive pulmonary aspergillosis. Ann. Intensive Care 2020, 10, 71. [Google Scholar] [CrossRef]
- van Arkel, A.L.; Rijpstra, T.A.; Belderbos, H.N.; Van Wijngaarden, P.; Verweij, P.E.; Bentvelsen, R.G. COVID-19–associated pulmonary aspergillosis. Am. J. Respir. Crit. Care Med. 2020, 202, 132–135. [Google Scholar] [CrossRef]
- Antinori, S.; Rech, R.; Galimberti, L.; Castelli, A.; Angeli, E.; Fossali, T.; Bernasconi, D.; Covizzi, A.; Bonazzetti, C.; Torre, A. Invasive pulmonary aspergillosis complicating SARS-CoV-2 pneumonia: A diagnostic challenge. Travel Med. Infect. Dis. 2020, 38, 101752. [Google Scholar] [CrossRef]
- Thng, Z.X.; De Smet, M.D.; Lee, C.S.; Gupta, V.; Smith, J.R.; McCluskey, P.J.; Thorne, J.E.; Kempen, J.H.; Zierhut, M.; Nguyen, Q.D.; et al. COVID-19 and immunosuppression: A review of current clinical experiences and implications for ophthalmology patients taking immunosuppressive drugs. Br. J. Ophthalmol. 2021, 105, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Monte Junior, E.S.d.; Santos, M.E.L.d.; Ribeiro, I.B.; Luz, G.d.O.; Baba, E.R.; Hirsch, B.S.; Funari, M.P.; de Moura, E.G.H. Rare and Fatal Gastrointestinal Mucormycosis (Zygomycosis) in a COVID-19 Patient: A Case Report. Clin. Endosc 2020, 53, 746–749. [Google Scholar] [CrossRef]
- Pasero, D.; Sanna, S.; Liperi, C.; Piredda, D.; Branca, G.P.; Casadio, L.; Simeo, R.; Buselli, A.; Rizzo, D.; Bussu, F.; et al. A challenging complication following SARS-CoV-2 infection: A case of pulmonary mucormycosis. Infection 2020, 49, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.a.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Salehi, M.; Ahmadikia, K.; Badali, H.; Khodavaisy, S. Opportunistic Fungal Infections in the Epidemic Area of COVID-19: A Clinical and Diagnostic Perspective from Iran. Mycopathologia 2020, 185, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Gandra, S.; Ram, S.; Levitz, S.M. The “Black Fungus” in India: The emerging syndemic of COVID-19-associated mucormycosis. Ann. Intern. Med. 2021, 174, 1301–1302. [Google Scholar] [CrossRef] [PubMed]
- Pushparaj, K.; Bhotla, H.K.; Arumugam, V.A.; Pappusamy, M.; Easwaran, M.; Liu, W.C.; Balasubramanian, B. Mucormycosis (black fungus) ensuing COVID-19 and comorbidity meets-Magnifying global pandemic grieve and catastrophe begins. Sci. Total Environ. 2022, 805, 150355. [Google Scholar] [CrossRef]
- Vitale, R.G.; Afeltra, J.; Seyedmousavi, S.; Giudicessi, S.L.; Romero, S.M. An overview of COVID-19 related to fungal infections: What do we know after the first year of pandemic? Braz. J. Microbiol. 2022, 53, 759–775. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Qu, Y.; Chen, Y.; Xiong, J.; Feng, Y.; Men, D.; Huang, Q.; Liu, Y.; Yang, B. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin. Infect. Dis. 2020, 71, 1937–1942. [Google Scholar] [CrossRef]
- Du, Y.; Tu, L.; Zhu, P.; Mu, M.; Wang, R.; Yang, P.; Wang, X.; Hu, C.; Ping, R.; Hu, P. Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study. Am. J. Respir. Crit. Care Med. 2020, 201, 1372–1379. [Google Scholar] [CrossRef] [Green Version]
- West, B.C.; Oberle, A.D.; Kwon-Chung, K.J. Mucormycosis caused by Rhizopus microsporus var. microsporus: Cellulitis in the leg of a diabetic patient cured by amputation. J. Clin. Microbiol. 1995, 33, 3341–3344. [Google Scholar] [PubMed]
- Duffy, J.; Harris, J.; Gade, L.; Sehulster, L.; Newhouse, E.; O’Connell, H.; Noble-Wang, J.; Rao, C.; Balajee, S.A.; Chiller, T. Mucormycosis outbreak associated with hospital linens. Pediatr. Infect. Dis. J. 2014, 33, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Sai Krishna, D.; Raj, H.; Kurup, P.; Juneja, M. Maxillofacial Infections in COVID-19 Era-Actuality or the Unforeseen: 2 Case Reports. Indian J. Otolaryngol. Head Neck Surg. 2021, 1–4. [Google Scholar] [CrossRef]
- Ghosh, D.; Dey, S.; Chakraborty, H.; Mukherjee, S.; Halder, A.; Sarkar, A.; Chakraborty, P.; Ghosh, R.; Sarkar, J. Mucormycosis: A new threat to Coronavirus disease 2019 with special emphasis on India. Clin. Epidemiol. Glob. Health 2022, 15, 101013. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Kumar, S.; Shastri, S.; Sudershan, A.; Mansotra, V. Black fungus immunosuppressive epidemic with Covid-19 associated mucormycosis (zygomycosis): A clinical and diagnostic perspective from India. Immunogenetics 2022, 74, 197–206. [Google Scholar] [CrossRef]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef]
- Nori, P.; Cowman, K.; Chen, V.; Bartash, R.; Szymczak, W.; Madaline, T.; Katiyar, C.P.; Jain, R.; Aldrich, M.; Weston, G. Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect. Control Hosp. Epidemiol. 2021, 42, 84–88. [Google Scholar] [CrossRef]
- Salehi, M.; Ahmadikia, K.; Mahmoudi, S.; Kalantari, S.; Jamalimoghadamsiahkali, S.; Izadi, A.; Kord, M.; Dehghan Manshadi, S.A.; Seifi, A.; Ghiasvand, F. Oropharyngeal candidiasis in hospitalised COVID-19 patients from Iran: Species identification and antifungal susceptibility pattern. Mycoses 2020, 63, 771–778. [Google Scholar] [CrossRef]
- Al-Hatmi, A.M.; Mohsin, J.; Al-Huraizi, A.; Khamis, F. COVID-19 associated invasive candidiasis. J. Infect. 2021, 82, e45–e46. [Google Scholar] [CrossRef]
- Thoma, R.; Seneghini, M.; Seiffert, S.N.; Vuichard Gysin, D.; Scanferla, G.; Haller, S.; Flury, D.; Boggian, K.; Kleger, G.-R.; Filipovic, M.; et al. The challenge of preventing and containing outbreaks of multidrug-resistant organisms and Candida auris during the coronavirus disease 2019 pandemic: Report of a carbapenem-resistant Acinetobacter baumannii outbreak and a systematic review of the literature. Antimicrob. Resist. Infect. Control 2022, 11, 12. [Google Scholar]
- Escandón, P.; Cáceres, D.H.; Lizarazo, D.; Lockhart, S.R.; Lyman, M.; Duarte, C. Laboratory-based surveillance of Candida auris in Colombia, 2016–2020. Mycoses 2022, 65, 222–225. [Google Scholar] [CrossRef]
- Rajni, E.; Singh, A.; Tarai, B.; Jain, K.; Shankar, R.; Pawar, K.; Mamoria, V.; Chowdhary, A. A High Frequency of Candida auris Blood Stream Infections in Coronavirus Disease 2019 Patients Admitted to Intensive Care Units, Northwestern India: A Case Control Study. In Open Forum Infectious Diseases; Oxford University Press: New York, NY, USA, 2021; p. ofab452. [Google Scholar]
- Mirhendi, H.; Charsizadeh, A.; Aboutalebian, S.; Mohammadpour, M.; Nikmanesh, B.; de Groot, T.; Meis, J.F.; Badali, H. South Asian (Clade I) Candida auris meningitis in a paediatric patient in Iran with a review of the literature. Mycoses 2022, 65, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Mahmood, M.S.; Ullah, M.A.; Araf, Y.; Rahaman, T.I.; Moin, A.T.; Hosen, M.J. COVID-19-Associated Candidiasis: Possible Patho-Mechanism, Predisposing Factors, and Prevention Strategies. Curr. Microbiol. 2022, 79, 127. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Valerio, M.; Álvarez-Uría, A.; Olmedo, M.; Veintimilla, C.; Padilla, B.; De la Villa, S.; Guinea, J.; Escribano, P.; Ruiz-Serrano, M.J.; et al. Invasive pulmonary aspergillosis in the COVID-19 era: An expected new entity. Mycoses 2021, 64, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Baddley, J.W. Clinical risk factors for invasive aspergillosis. Med. Mycol. 2011, 49 (Suppl. S1), S7–S12. [Google Scholar] [CrossRef]
- Peláez-García de la Rasilla, T.; González-Jiménez, I.; Fernández-Arroyo, A.; Roldán, A.; Carretero-Ares, J.L.; García-Clemente, M.; Telenti-Asensio, M.; García-Prieto, E.; Martínez-Suarez, M.; Vázquez-Valdés, F.; et al. COVID-19 Associated Pulmonary Aspergillosis (CAPA): Hospital or Home Environment as a Source of Life-Threatening Aspergillus fumigatus Infection? J. Fungi 2022, 8, 316. [Google Scholar] [CrossRef]
- Lai, C.-C.; Yu, W.-L. COVID-19 associated with pulmonary aspergillosis: A literature review. J. Microbiol. Immunol. Infect. 2021, 54, 46–53. [Google Scholar] [CrossRef]
- Bellanger, A.P.; Navellou, J.C.; Lepiller, Q.; Brion, A.; Brunel, A.S.; Millon, L.; Berceanu, A. Mixed mold infection with Aspergillus fumigatus and Rhizopus microsporus in a severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) patient. Infect. Dis. Now 2021, 51, 633–635. [Google Scholar] [CrossRef]
- Menon, A.A.; Berg, D.D.; Brea, E.J.; Deutsch, A.J.; Kidia, K.K.; Thurber, E.G.; Polsky, S.B.; Yeh, T.; Duskin, J.A.; Holliday, A.M. A case of COVID-19 and Pneumocystis jirovecii coinfection. Am. J. Respir. Crit. Care Med. 2020, 202, 136–138. [Google Scholar] [CrossRef]
- White, P.L.; Price, J.S.; Backx, M. Therapy and management of Pneumocystis jirovecii infection. J. Fungi 2018, 4, 127. [Google Scholar] [CrossRef] [Green Version]
- Mouren, D.; Goyard, C.; Catherinot, E.; Givel, C.; Chabrol, A.; Tcherakian, C.; Longchampt, E.; Vargaftig, J.; Farfour, E.; Legal, A. COVID-19 and Pneumocystis jirovecii pneumonia: Back to the basics. Respir. Med. Res. 2021, 79, 100814. [Google Scholar] [CrossRef] [PubMed]
- Khatib, M.Y.; Ahmed, A.A.; Shaat, S.B.; Mohamed, A.S.; Nashwan, A.J. Cryptococcemia in a patient with COVID-19: A case report. Clin. Case Rep. 2021, 9, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Topley, W.; Wilson, G. Microbiology and Microbial Infections; Hodder Education Publishers: London, UK, 1998. [Google Scholar]
- Lee, S.C.; Dickson, D.W.; Casadevall, A. Pathology of cryptococcal meningoencephalitis: Analysis of 27 patients with pathogenetic implications. Hum. Pathol. 1996, 27, 839–847. [Google Scholar] [CrossRef]
- Baker, R.D. The primary pulmonary lymph node complex of cryptococcosis. Am. J. Clin. Pathol. 1976, 65, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; Heidari, A.; Civelli, V.F.; Sharma, R.; Clark, C.S.; Munoz, A.D.; Ragland, A.S.; Johnson, R.H. The Coincidence of 2 Epidemics, Coccidioidomycosis and SARS-CoV-2: A Case Report. J. Investig. Med. High Impact Case Rep. 2020, 8, 2324709620930540. [Google Scholar] [CrossRef]
- Hojnik, N.a.; Modic, M.; Ni, Y.; Filipič, G.; Cvelbar, U.; Walsh, J.L. Effective fungal spore inactivation with an environmentally friendly approach based on atmospheric pressure air plasma. Environ. Sci. Technol. 2019, 53, 1893–1904. [Google Scholar] [CrossRef]
- Puligundla, P.; Mok, C. Inactivation of spores by nonthermal plasmas. World J. Microbiol. Biotechnol. 2018, 34, 143. [Google Scholar] [CrossRef]
- Calado, T.; Venâncio, A.; Abrunhosa, L. Irradiation for mold and mycotoxin control: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1049–1061. [Google Scholar] [CrossRef] [Green Version]
- Jeong, R.-D.; Shin, E.-J.; Chu, E.-H.; Park, H.-J. Effects of ionizing radiation on postharvest fungal pathogens. Plant Pathol. J. 2015, 31, 176. [Google Scholar] [CrossRef] [Green Version]
- Morrison, C.; Atkinson, A.; Zamyadi, A.; Kibuye, F.; McKie, M.; Hogard, S.; Mollica, P.; Jasim, S.; Wert, E.C. Critical review and research needs of ozone applications related to virus inactivation: Potential implications for SARS-CoV-2. Ozone Sci. Eng. 2021, 43, 2–20. [Google Scholar] [CrossRef]
- Ouf, S.A.; Moussa, T.A.; Abd-Elmegeed, A.M.; Eltahlawy, S.R. Anti-fungal potential of ozone against some dermatophytes. Braz. J. Microbiol. 2016, 47, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J.B.; Sharma, M. The practical application of ozone gas as an anti-fungal (anti-mold) agent. Ozone Sci. Eng. 2009, 31, 326–332. [Google Scholar] [CrossRef]
- Pagès, M.; Kleiber, D.; Violleau, F. Ozonation of three different fungal conidia associated with apple disease: Importance of spore surface and membrane phospholipid oxidation. Food Sci. Nutr. 2020, 8, 5292–5297. [Google Scholar] [CrossRef] [PubMed]
- Zotti, M.; Porro, R.; Vizzini, A.; Mariotti, M. Inactivation of Aspergillus spp. by ozone treatment. Ozone: Sci. Eng. 2008, 30, 423–430. [Google Scholar] [CrossRef]
- Huang, Y. Non-Thermal Plasma Inactivation of Bacillus amyloliquefaciens Spores. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2011. [Google Scholar]
- Rathore, V.; Patel, D.; Butani, S.; Nema, S.K. Investigation of physicochemical properties of plasma activated water and its bactericidal efficacy. Plasma Chem. Plasma Processing 2021, 41, 871–902. [Google Scholar] [CrossRef]
- Sakudo, A.; Yagyu, Y.; Onodera, T. Disinfection and sterilization using plasma technology: Fundamentals and future perspectives for biological applications. Int. J. Mol. Sci. 2019, 20, 5216. [Google Scholar] [CrossRef] [Green Version]
- Veerana, M.; Yu, N.-N.; Ketya, W.; Park, G. Application of Non-Thermal Plasma to Fungal Resources. J. Fungi 2022, 8, 102. [Google Scholar] [CrossRef]
- Domonkos, M.; Tichá, P.; Trejbal, J.; Demo, P. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Appl. Sci. 2021, 11, 4809. [Google Scholar] [CrossRef]
- Julák, J.; Soušková, H.; Scholtz, V.; Kvasničková, E.; Savická, D.; Kříha, V. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiol. 2018, 63, 63–68. [Google Scholar] [CrossRef]
- Cheong, C. Alterations in indoor fungal levels following intensive high efficient HEPA vacuum cleaning intervention. In Proceedings of the 17th International Clean Air & Environment Conference, Hobart, Australia, 3–6 May 2005. [Google Scholar]
- Cheong, C.D.; Neumeister-Kemp, H.G. Reducing airborne indoor fungi and fine particulates in carpeted Australian homes using intensive, high efficiency HEPA vacuuming. J. Environ. Health Res. 2005, 4, 3–16. [Google Scholar]
- Khan, A.H.; Karuppayil, S.M. Fungal pollution of indoor environments and its management. Saudi J. Biol. Sci. 2012, 19, 405–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dose, U. Ultraviolet air and surface treatment. In Proc. ASHRAE Handbook-HVAC Appl.; Tullie Circle: Atlanta, GA, USA, 2019; pp. 1–18. [Google Scholar]
- Levetin, E.; Shaughnessy, R.; Rogers, C.A.; Scheir, R. Effectiveness of germicidal UV radiation for reducing fungal contamination within air-handling units. Appl. Environ. Microbiol. 2001, 67, 3712–3715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardell, E.A. Air Disinfection for Airborne Infection Control with a Focus on COVID-19: Why Germicidal UV is Essential. Photochem. Photobiol. 2021, 97, 493–497. [Google Scholar] [CrossRef]
- Rogawansamy, S.; Gaskin, S.; Taylor, M.; Pisaniello, D. An evaluation of antifungal agents for the treatment of fungal contamination in indoor air environments. Int. J. Environ. Res. Public Health 2015, 12, 6319–6332. [Google Scholar] [CrossRef] [Green Version]
- Washington, W.S.; Engleitner, S.; Boontjes, G.; Shanmuganathan, N. Effect of fungicides, seaweed extracts, tea tree oil, and fungal agents on fruit rot and yield in strawberry. Aust. J. Exp. Agric. 1999, 39, 487–494. [Google Scholar] [CrossRef]
- Shao, X.; Cheng, S.; Wang, H.; Yu, D.; Mungai, C. The possible mechanism of antifungal action of tea tree oil on B otrytis cinerea. J. Appl. Microbiol. 2013, 114, 1642–1649. [Google Scholar] [CrossRef] [PubMed]
Study Location | Type of Fungus | Initial Common Symptom | Disease History | Status of Patients | Final Remark | References | |
---|---|---|---|---|---|---|---|
1 | U.S. | Candida auris | Respiratory problems | Resistant to amphotericin b | 83.3% mortality | Resistant to amphotericin b | [10] |
2 | India | Mucormycetes | Vomiting, coughing, and breathlessness | History of hypertension and asthma | Expired on day 26 | Mucous membranes became dry and the palate turned to brown, dry-like secretions | [11] |
3 | France | A. fumigatus | Invasive pulmonary aspergillosis (IPA), chronic pulmonary aspergillosis (CAPA), allergic bronchopulmonary aspergillosis (ABPA), chronic rhinosinusitis, fungal asthma, and aspergillus bronchitis | Immunosuppression, hematopoietic transplantation, and structural lung damage were observed in those who receive systemic corticosteroids. Chronic obstructive pulmonary diseases (COPD) | Putative invasive pulmonary aspergillosis was very high (30%) | [10] | |
4 | Denmark | A. fumigatus | Hypertension and asthma | Multiorgan failure results in death 41 days post hospitalization | Died with multiorgan failure | [12] | |
5 | A. fumigatus | Prior smoker prior non-regular smoker | Large intracranial hemorrhage while on ECMO, 34 days post hospitalization | Death occurred as a result of a large intracranial hemorrhage | [12] | ||
6 | Egypt | Mucormycetes | * Uncontrolled diabetes melli, # diabetic, and hypertensive, along with a previous history of operated colon cancer and chronic kidney impairment | * Death reached 25%, and the case reported deaths were of the cutaneous and rhino-cerebral types | * Patient died, # patient was discharged by their own choice against the hospital’s will | [13] | |
7 | Italy | Candida albicans | Acute hypoxemic respiratory failure | Besides respiratory symptoms, thrombosis and pulmonary embolism | Fungal and Pseudomona. aeruginosa colonization were observed in severe COVID-19 patients | [14] | |
8 | India | Mucormycetes | Nasal blockage, facial and periorbital swelling, and blackening of middle turbinate with thick dirty nasal discharge | A post coronary artery bypass grafting patient with well-controlled diabetes mellitus | The patient developed myocarditis with cardiac arrhythmia and died | After microbiological confirmation of caifs, liposomal amphotericin b was given (total dose of 3050 mg) | [15] |
9 | Mucormycetes | COVID-pneumonia, uncontrolled diabetes mellitus, and deranged kidney functions | Diabetes mellitus and deranged kidney functions | Died | Liposomal Amphotericin B | [15] | |
10 | Mucormycetes | COVID-pneumonia, septicemia, shock, renal failure, and altered sensorium | Diabetes mellitus, renal failure, and peptic ulcer | Died | Antifungal agents not given | [15] | |
11 | Germany | A. fumigatus | Foru died expired, one alive | 2 patients received voriconazole, 1 patient used isavuconazole and 2 patients were given caspofungin followed by voriconazole | [16] | ||
12 | France | A. fumigatus | Two died | One patient was given voriconazole and to the other one caspofungin | [17] | ||
13 | Belgium | A. fumigatus | Three died, three alive | Four patients were given voriconazole and two others had voriconazole plus isavuconazole | [18] | ||
14 | Netherlands | A. fumigatus | Four died, two alive | Five patients were given voriconazole plus anidulafungin and one patient’s treatment was done with liposomal amphotericin B | [19] | ||
15 | Italy | A. fumigatus | Pneumonia related with a confirmed diagnosis of SARS-CoV-2 infection | History of diabetes, hypertension, hyperthyroidism, atrial fibrillation, and obesity | Died | Liposomal amphotericin B | [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vishwakarma, Y.K.; Shahi, A.; Singh, R.S. Effect of Indoor Bioaerosols (Fungal) Exposure on the Health of Post-COVID-19 Patients and Possible Mitigation Strategies. COVID 2022, 2, 940-951. https://doi.org/10.3390/covid2070068
Vishwakarma YK, Shahi A, Singh RS. Effect of Indoor Bioaerosols (Fungal) Exposure on the Health of Post-COVID-19 Patients and Possible Mitigation Strategies. COVID. 2022; 2(7):940-951. https://doi.org/10.3390/covid2070068
Chicago/Turabian StyleVishwakarma, Yogesh Kumar, Amrita Shahi, and Ram Sharan Singh. 2022. "Effect of Indoor Bioaerosols (Fungal) Exposure on the Health of Post-COVID-19 Patients and Possible Mitigation Strategies" COVID 2, no. 7: 940-951. https://doi.org/10.3390/covid2070068
APA StyleVishwakarma, Y. K., Shahi, A., & Singh, R. S. (2022). Effect of Indoor Bioaerosols (Fungal) Exposure on the Health of Post-COVID-19 Patients and Possible Mitigation Strategies. COVID, 2(7), 940-951. https://doi.org/10.3390/covid2070068