Gender and COVID-19 Vaccine Disparities in Cameroon
Abstract
:1. Introduction
2. Methodology
2.1. Study Design, Period, and Setting
2.2. Study Population
2.3. Data Collection Tools and Procedures
2.4. Measures
2.5. Data Processing and Analysis
Ethical Considerations
3. Results
3.1. National Epidemiological Results on COVID-19 Cases and Death
3.2. COVID-19 Cases and Comorbidities
3.3. Web survey Results on COVID-19 Disparities
Demographic Characteristics
3.4. Descriptive Epidemiology
3.5. Vaccination Status
3.6. Analytic Epidemiology
3.7. Female-Gender-Specific Associated Factors
3.8. Associated Factors of COVID-19 Acceptability
3.9. Qualitative Analysis Result
4. Discussion
4.1. Epidemiology of COVID-19
4.2. COVID-19 Vaccination Disparities
4.3. Psychological Barriers Mentioned in a Global and Non-Specific Way
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, B.-L.; Luo, W.; Li, H.-M.; Zhang, Q.-Q.; Liu, X.-G.; Li, W.-T.; Li, Y. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: A quick online cross-sectional survey. Int. J. Biol. Sci. 2020, 16, 1745–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.B.; Zhong, C.K.; Zhang, K.X.; Dong, C.; Peng, H.; Xu, T.; Wang, A.L.; Guo, Z.R.; Zhang, Y.H. Epidemic trend of COVID-19 in Chinese mainland. Zhonghua Yu Fang Yi Xue Za Zhi 2020, 54, 620–624. [Google Scholar] [CrossRef] [PubMed]
- COVID Live-Coronavirus Statistics—Worldometer. Available online: https://www.worldometers.info/coronavirus/ (accessed on 7 October 2021).
- Case Definitions for Infectious Conditions Under Public Health Surveillance. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/00047449.htm (accessed on 7 November 2022).
- Ngwewondo, A.; Nkengazong, L.; Ambe, L.A.; Ebogo, J.T.; Mba, F.M.; Goni, H.O.; Nyunaï, N.; Ngonde, M.C.; Oyono, J.-L.E. Knowledge, attitudes, practices of/towards COVID 19 preventive measures and symptoms: A cross-sectional study during the exponential rise of the outbreak in Cameroon. PLoS Negl. Trop. Dis. 2020, 14, e0008700. [Google Scholar] [CrossRef]
- Amani, A.; Dove, D.; Bita, A. The First 30 Days of COVID-19 Vaccination in Cameroon: Achievements, Challenges and Lessons Learned. Pan. Afr. Med. J. 2021, 41, 201. [Google Scholar] [CrossRef]
- Population, Total-Cameroon | Data. Available online: https://donnees.banquemondiale.org/indicateur/SP.POP.TOTL?end=2020&locations=CM&start=1960&view=chart (accessed on 20 October 2021).
- Cameroon Population—Worldometer. 2021. Available online: https://www.worldometers.info/world-population/cameroon-population/ (accessed on 20 October 2021).
- Population, Femmes—Cameroon | Data. Available online: https://donnees.banquemondiale.org/indicator/SP.POP.TOTL.FE.IN?end=2020&locations=CM&start=1960&view=chart (accessed on 20 October 2021).
- OMS | Cameroun. Available online: https://www.who.int/workforcealliance/countries/cmr/fr/ (accessed on 20 October 2021).
- Kanmounye, U.S.; Mbonda, A.N.; Djiofack, D.; Daya, L.; Pokam, O.F.; Ghomsi, N.C. Exploring the knowledge and attitudes of Cameroonian medical students towards global surgery: A web-based survey. PLoS ONE 2020, 15, e0232320. [Google Scholar] [CrossRef]
- Vasantha Raju, N.; Harinarayana, N.S.; ResearchGate. Online survey tools: A case study of Google Forms. In National Conference on “Scientific, Computational & Information Research Trends in Engineering; GSSS-IETW: Mysore, India, 2016; Available online: https://www.researchgate.net/publication/326831738_Online_survey_tools_A_case_study_of_Google_Forms (accessed on 20 October 2021).
- Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia | NEJM. Available online: https://www.nejm.org/doi/full/10.1056/NEJMOa2001316 (accessed on 9 January 2022).
- Rauf, A.; Abu-Izneid, T.; Olatunde, A.; Ahmed Khalil, A.; Alhumaydhi, F.A.; Tufail, T.; Shariati, M.A.; Rebezov, M.; Almarhoon, Z.M.; Mabkhot, Y.N.; et al. COVID-19 Pandemic: Epidemiology, Etiology, Conventional and Non-Conventional Therapies. Int. J. Environ. Res. Public. Health 2020, 17, 8155. [Google Scholar] [CrossRef]
- Lone, S.A.; Ahmad, A. COVID-19 pandemic—An African perspective. Emerg. Microbes Infect. 2020, 9, 1300–1308. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Sibuyi, N.R.S.; Adewale, O.B.; Bakare, O.O.; Akanbi, M.O.; Klein, A.; Madiehe, A.M.; Meyer, M. Understanding the epidemiology, pathophysiology, diagnosis and management of SARS-CoV-2. J. Int. Med. Res. 2020, 48, 0300060520949077. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ochoa, S.A.; Franco, O.H.; Rojas, L.Z.; Raguindin, P.F.; Roa-Díaz, Z.M.; Wyssmann, B.M.; Guevara, S.L.R.; Echeverría, L.E.; Glisic, M.; Muka, T. COVID-19 in Health-Care Workers: A Living Systematic Review and Meta-Analysis of Prevalence, Risk Factors, Clinical Characteristics, and Outcomes. Am. J. Epidemiol. 2021, 190, 161–175. [Google Scholar] [CrossRef]
- Phadke, V.K.; Bednarczyk, R.A.; Salmon, D.A.; Omer, S.B. Association Between Vaccine Refusal and Vaccine-Preventable Diseases in the United States: A Review of Measles and Pertussis. JAMA 2016, 315, 1149–1158. [Google Scholar] [CrossRef]
- Benecke, O.; DeYoung, S.E. Anti-Vaccine Decision-Making and Measles Resurgence in the United States. Glob. Pediatr. Health 2019, 6, 2333794X19862949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, B.S. Rapid COVID-19 vaccine development. Science 2020, 368, 945–946. [Google Scholar] [CrossRef] [PubMed]
- Sharma, O.; Sultan, A.A.; Ding, H.; Triggle, C.R. A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Front. Immunol. 2020, 11, 585354. [Google Scholar] [CrossRef]
- Harrison, E.A.; Wu, J.W. Vaccine confidence in the time of COVID-19. Eur. J. Epidemiol. 2020, 35, 325–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogue, K.; Jensen, J.L.; Stancil, C.K.; Ferguson, D.G.; Hughes, S.J.; Mello, E.J.; Burgess, R.; Berges, B.K.; Quaye, A.; Poole, B.D. Influences on Attitudes Regarding Potential COVID-19 Vaccination in the United States. Vaccines 2020, 8, E582. [Google Scholar] [CrossRef] [PubMed]
- Cameroon: WHO Coronavirus Disease (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int (accessed on 18 October 2021).
- Machida, M.; Nakamura, I.; Kojima, T.; Saito, R.; Nakaya, T.; Hanibuchi, T.; Takamiya, T.; Odagiri, Y.; Fukushima, N.; Kikuchi, H.; et al. Acceptance of a COVID-19 Vaccine in Japan during the COVID-19 Pandemic. Vaccines 2021, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.E.; Booy, R.; Bock, H.L.; Clemens, J.; Datta, S.K.; John, T.J.; Lee, B.W.; Lolekha, S.; Peltola, H.; Ruff, T.A.; et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ. 2008, 86, 140–146. [Google Scholar] [CrossRef]
- MacDonald, N.E. Vaccine hesitancy: Definition, scope and determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef]
- Reiter, P.L.; Pennell, M.L.; Katz, M.L. Acceptability of a COVID-19 vaccine among adults in the United States: How many people would get vaccinated? Vaccine 2020, 38, 6500–6507. [Google Scholar] [CrossRef]
- Wang, J.; Jing, R.; Lai, X.; Zhang, H.; Lyu, Y.; Knoll, M.D.; Fang, H. Acceptance of COVID-19 Vaccination during the COVID-19 Pandemic in China. Vaccines 2020, 8, E482. [Google Scholar] [CrossRef]
- Leng, A.; Maitland, E.; Wang, S.; Nicholas, S.; Liu, R.; Wang, J. Individual preferences for COVID-19 vaccination in China. Vaccine 2021, 39, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.; Vallières, F.; Bentall, R.P.; Shevlin, M.; McBride, O.; Hartman, T.K.; McKay, R.; Bennett, K.; Mason, L.; Gibson-Miller, J.; et al. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nat. Commun. 2021, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.H.; Srivastav, A.; Razzaghi, H.; Williams, W.; Lindley, M.C.; Jorgensen, C.; Abad, N.; Singleton, J.A. COVID-19 Vaccination Intent, Perceptions, and Reasons for Not Vaccinating Among Groups Prioritized for Early Vaccination—United States, September and December 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 217–222. [Google Scholar] [CrossRef]
- Global Social Media Statistics Research Summary. 2022. Available online: https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/ (accessed on 18 November 2021).
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2021, 27, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Kreps, S.; Prasad, S.; Brownstein, J.S.; Hswen, Y.; Garibaldi, B.T.; Zhang, B.; Kriner, D.L. Factors Associated with US Adults’ Likelihood of Accepting COVID-19 Vaccination. JAMA Netw. Open 2020, 3, e2025594. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, T.; Akorsikumah, E.A.; Osae-Kwapong, J.; Khalid, M.; Appiah, A.; Amuasi, J.H. Examining Vaccine Hesitancy in Sub-Saharan Africa: A Survey of the Knowledge and Attitudes among Adults to Receive COVID-19 Vaccines in Ghana. Vaccines 2021, 9, 814. [Google Scholar] [CrossRef] [PubMed]
- Szilagyi, P.G.; Thomas, K.; Shah, M.D.; Vizueta, N.; Cui, Y.; Vangala, S.; Kapteyn, A. National Trends in the US Public’s Likelihood of Getting a COVID-19 Vaccine—April 1 to December 8, 2020. JAMA 2020, 325, 396–398. [Google Scholar] [CrossRef]
Variable | Count (%) |
---|---|
Age | |
18–24 | 23 (9.2) |
25–34 | 133 (53.4) |
35–44 | 66 (26.5) |
45–49 | 1 (0.4) |
50+ | 18 (7.2) |
Gender | |
Female | 142 (57.0) |
Male | 105 (42.2) |
Prefer not to say | 2 (0.8) |
Education | |
Primary | 2 (0.8) |
Secondary | 23 (9.2) |
University | 224 (90.0) |
Employment status | |
Self-employed | 11 (4.4) |
Unemployed | 17 (6.8) |
Students | 37 (14.9) |
Employed | 183 (73.5) |
Retired | 1 (0.4) |
Marital status | |
Single | 112 (45.0) |
Cohabitating | 23 (9.2) |
Divorced | 3 (1.2) |
Married | 104 (41.8) |
Prefer not to say | 7 (2.8) |
Religion | |
Catholic | 115 (46.2) |
Muslim | 30 (12.0) |
Protestant | 78 (31.3) |
Other | 26 (10.4) |
Region of residence | |
Adamawa | 11 (4.4) |
Centre | 130 (52.2) |
East | 13 (5.2) |
Far-North | 8 (3.2) |
Littoral | 26 (10.4) |
North-West | 3 (1.2) |
North | 27 (108) |
West | 12 (4.8) |
South-West | 10 (4.0) |
South | 9 (36) |
Having children | |
No | 71 (28.5) |
Yes | 178 (71.5) |
Healthcare worker | |
No | 79 (31.7) |
Yes | 170 (68.3) |
No | 228 (91.6) |
Yes | 21 (8.4) |
Variables | Past History of Novel Coronavirus Sickness | ||||||
---|---|---|---|---|---|---|---|
Yes | Percentage | No | Percentage | I Don’t Know | Percentage | p-Value * | |
Age | 0.043 ** | ||||||
18–24 | 8 | 3.2 | 13 | 5.2 | 2 | 0.8 | |
25–34 | 38 | 15.3 | 81 | 32.5 | 14 | 5.6 | |
35–44 | 25 | 10.0 | 35 | 14.1 | 7 | 2.8 | |
45–49 | 0 | 0 | 17 | 6.8 | 1 | 0.4 | |
50+ | 1 | 0.4 | 7 | 2.8 | 0 | ||
Gender | 0.42 | ||||||
Female | 44 | 17.7 | 85 | 34.1 | 13 | 5.2 | |
Male | 28 | 11.2 | 67 | 26.9 | 10 | 4.1 | |
Prefer not to say | 0 | 1 | 0.4 | 1 | 0.4 | ||
Marital status | 0.87 | ||||||
Single | 33 | 13.3 | 65 | 26.1 | 14 | 5.6 | |
Cohabitating | 7 | 2.8 | 14 | 5.6 | 2 | 0.8 | |
Married | 31 | 12.4 | 66 | 26.5 | 7 | 2.8 | |
Divorced | 0 | 3 | 1.2 | 0 | |||
Prefer not to say | 1 | 0.4 | 5 | 2.0 | 1 | 0.4 | |
Underlying chronic disease | 0.36 | ||||||
No | 64 | 25.7 | 143 | 57.4 | 21 | 8.4 | |
Yes | 8 | 3.2 | 10 | 4.1 | 3 | 1.2 | |
Having children | 0.37 | ||||||
No | 20 | 8.1 | 44 | 17.6 | 7 | 2.8 | |
Yes | 52 | 20.9 | 109 | 43.8 | 17 | 6.8 |
Variables | COVID-19 Vaccination | ||||
---|---|---|---|---|---|
No | Percentage | Yes | Percentage | p-Value * | |
Age | 0.001 *** | ||||
18–24 | 20 | 8.0 | 3 | 1.2 | |
25–34 | 87 | 34.9 | 46 | 18.6 | |
35–44 | 31 | 12.4 | 36 | 14.5 | |
45–49 | 7 | 2.8 | 11 | 4.4 | |
50+ | 5 | 2.0 | 3 | 1.2 | |
Gender | <0.001 **** | ||||
Female | 102 | 41.0 | 40 | 16.1 | |
Male | 46 | 18.5 | 59 | 23.1 | |
Prefer not to say | 2 | 0.8 | 0 | 0 | |
HCW | <0.001 **** | ||||
No | 70 | 28.1 | 9 | 3.7 | |
Yes | 80 | 32.1 | 90 | 36.1 | |
Marital status | 0.22 | ||||
Single | 73 | 29.3 | 39 | 15.7 | |
Cohabitating | 16 | 6.4 | 7 | 2.8 | |
Married | 55 | 22.1 | 49 | 19.7 | |
Divorced | 1 | 0.4 | 2 | 0.8 | |
Prefer not to say | 5 | 2.0 | 2 | 0.8 | |
Underlying chronic disease | 0.64 | ||||
No | 136 | 54.7 | 92 | 36.9 | |
Yes | 14 | 5.6 | 7 | 2.8 | |
Having children | 0.004 *** | ||||
No | 53 | 21.3 | 18 | 7.2 | |
Yes | 97 | 39.0 | 81 | 32.5 | |
Past history of COVID-19 | 0.55 | ||||
No | 88 | 35.3 | 65 | 26.1 | |
Yes | 46 | 18.5 | 26 | 10.4 | |
Don’t know | 16 | 6.4 | 8 | 3.3 |
Variable | COR | p-Value | AOR | 95% CI | p-Value |
---|---|---|---|---|---|
Female gender | 3.10 | <0.001 *** | 2.45 | 1.18–5.09 | 0.016 * |
Age 25–34 years | 1.41 | 0.188 | |||
Age 35–44 years | 0.513 | 0.019 * | 1.64 | 0.45–5.33 | 0.485 |
Age under 35 years | 2.15 | 0.004 ** | 2.50 | 0.77–8.14 | 0.127 |
Single | 1.50 | 0.124 | |||
Having children | 2.64 | 0.002 ** | 1.60 | 0.71–3.2 | 0.260 |
Past history of COVID-19 | 1.28 | 0.368 | - | - | - |
COVID-19 cases in the immediate surroundings | 1.22 | 0.474 | - | - | - |
Knowledge on an existing treatment | 0.75 | 0.30 | - | - | - |
HCW | 0.53 | 0.022 * | 0.34 | 0.16–0.69 | 0.003 ** |
Fear of adverse event | 7.61 | <0.001 *** | 7.77 | 3.00–20.08 | <0.001 *** |
No belief in the vaccine | 17.041 | <0.001 *** | 13.32 | 3.56–76.43 | 0.001 ** |
Women with some doubts about vaccine content a | 8.44 | <0.001 *** | 1.87 | 0.73–4.76 | 0.19 |
Health personnel with doubt about vaccine content a | 9.40 | <0.001 *** | 3.97 | 1.29–12.25 | 0.016 * |
Variable | COR | p-Value | AOR | 95% CI | p-Value |
---|---|---|---|---|---|
Age 25–34 years | 0.80 | 0.559 | - | - | - |
Age 35–44 years | 0.70 | 0.424 | - | - | - |
Age under 35 years | 1.39 | 0.408 | - | - | - |
Single | 2.06 | 0.056 | - | - | - |
Having children | 3.70 | 0.007 ** | 2.13 | 0.71–6.45 | 0.18 |
Past history of COVID-19 | 1.03 | 0.931 | - | - | - |
COVID-19 cases in the immediate surroundings | 1,26 | 0.557 | - | - | - |
Knowledge on an existing treatment | 0.85 | 0.683 | - | - | - |
HCW | 0.098 | <0.001 *** | 0.15 | 0.04–0.56 | 0.005 ** |
Fear of adverse event | 5.41 | 0.003 ** | 2.88 | 0.82–10.17 | 0.100 |
Woman with some doubts about vaccine content | 14.61 | <0.001 *** | 5.44 | 1.42–20.86 | 0.014 * |
Variables | COR | p-Value | AOR | 95% CI | p-Value |
---|---|---|---|---|---|
Female gender | 0.65 | 0.317 | - | - | - |
Age 25–34 years | 0.89 | 0.774 | - | - | - |
Age 35–44 years | 1.48 | 0.410 | - | - | - |
Age under 35 years | 0.65 | 0.317 | - | - | - |
Single | 0.867 | 0.733 | - | - | - |
Having children | 0.84 | 0.696 | - | - | - |
Past history of COVID-19 | 1.16 | 0.732 | - | - | - |
COVID-19 cases in the immediate surroundings | 0.18 | 0.007 ** | 0.15 | 0.03–0.56 | 0.007 ** |
Knowledge on an existing treatment | 0.82 | 0.667 | - | - | - |
HCW | 3.20 | 0.014 * | 1.71 | 0.55–5.31 | 0.350 |
Fear of adverse event | 0.41 | 0.070 | - | - | - |
No belief in the vaccine | 0.082 | 0.016 * | 0.17 | 0.02–1.52 | 0.114 |
Janssen preference | 3.35 | 0.18 | 1.5 | 0.31–7.33 | 0.611 |
Sinopharm preference | 3.42 | 0.033 * | 3.58 | 0.61–21.12 | 0.160 |
No vaccine preference | 0.14 | <0.001 *** | 0.28 | 0.07–1.12 | 0.072 |
Woman with some doubts about vaccine content a | 0.13 | <0.001 *** | 0.11 | 0.03–0.411 | 0.001 ** |
Health personnel with doubt about vaccine content a | 0.37 | 0.061 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amani, A.; Mossus, T.; Lekeumo Cheuyem, F.Z.; Bilounga, C.; Mikamb, P.; Basseguin Atchou, J.; Minyem Ngombi, A.P.; Nangmo, A.; Kamga, Y.; Bediang, G.; et al. Gender and COVID-19 Vaccine Disparities in Cameroon. COVID 2022, 2, 1715-1730. https://doi.org/10.3390/covid2120123
Amani A, Mossus T, Lekeumo Cheuyem FZ, Bilounga C, Mikamb P, Basseguin Atchou J, Minyem Ngombi AP, Nangmo A, Kamga Y, Bediang G, et al. Gender and COVID-19 Vaccine Disparities in Cameroon. COVID. 2022; 2(12):1715-1730. https://doi.org/10.3390/covid2120123
Chicago/Turabian StyleAmani, Adidja, Tatiana Mossus, Fabrice Zobel Lekeumo Cheuyem, Chanceline Bilounga, Pamela Mikamb, Jonas Basseguin Atchou, Aude Perine Minyem Ngombi, Armanda Nangmo, Yannick Kamga, Georges Bediang, and et al. 2022. "Gender and COVID-19 Vaccine Disparities in Cameroon" COVID 2, no. 12: 1715-1730. https://doi.org/10.3390/covid2120123
APA StyleAmani, A., Mossus, T., Lekeumo Cheuyem, F. Z., Bilounga, C., Mikamb, P., Basseguin Atchou, J., Minyem Ngombi, A. P., Nangmo, A., Kamga, Y., Bediang, G., Kamgno, J., & Zoung-Kanyi Bissek, A. -C. (2022). Gender and COVID-19 Vaccine Disparities in Cameroon. COVID, 2(12), 1715-1730. https://doi.org/10.3390/covid2120123