The Role of Bacteria in Pink Stone Discoloration: Insights from Batalha Monastery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Process
2.2. Culture-Dependent Methods
2.3. Culture-Independent Methods
2.4. Bacterial Biofilm Formation Capacity Assay
2.5. In Situ Biocolonization Tests
2.5.1. Inoculation
2.5.2. Colorimetry Approach
2.5.3. Raman Spectroscopy
2.6. In Situ Pigment Cleaning Tests
3. Results and Discussion
3.1. Characterization of Microbiota Through Culture-Dependent Methods
3.2. Characterization of Microbiota Through Culture-Independent Methods
3.3. Determination of Bacterial Biofilm Formation Capacity
3.4. Assessment of Carotene Production in In-Situ Biocolonization Tests
3.4.1. Measurement of the Colorimetric Parameters
3.4.2. RAMAN Spectroscopy
3.5. Evaluation of Cleaning Solution Effectiveness in Pigment Removal
3.5.1. Stone Mockup Kept in the Dark
3.5.2. Stone Mockup Exposed to Sunlight
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.; Salvador, C.S.C.; Caldeira, A.T.; Angelini, E.; Schiavon, N. Biodegradation and Microbial Contamination of Limestone Surfaces: An Experimental Study from Batalha Monastery, Portugal. Corros. Mater. Degrad. 2021, 2, 31–45. [Google Scholar] [CrossRef]
- Moura Soares, C. The Archival Sources of the Batalha Monastery (Portugal): Unique Collections for the Study of the Monument’s Restoration Work in the 19th Century. An. Hist. Arte 2022, 32, 255–288. [Google Scholar] [CrossRef]
- Valadas, S.; Candeias, A.; Dias, C.; Schiavon, N.; Cotovio, M.; Pestana, J.; Gil, M.; Mirão, J. A Multi-Analytical Study of the Fifteenth Century Mural Paintings of the Batalha Monastery (Portugal) in View of Their Conservation. Appl. Phys. A Mater. Sci. Process. 2013, 113, 989–998. [Google Scholar] [CrossRef]
- Ding, Y.; Redol, P.; Angelini, E.; Mirão, J.; Schiavon, N. Surface Orange Patinas on the Limestone of the Batalha Monastery (Portugal): Characterization and Decay Patterns. Environ. Sci. Pollut. Res. 2022, 29, 29467–29477. [Google Scholar] [CrossRef]
- Pyzik, A.; Ciuchcinski, K.; Dziurzynski, M.; Dziewit, L. The Bad and the Good-Microorganisms in Cultural Heritage Environments—An Update on Biodeterioration and Biotreatment Approaches. Materials 2021, 14, 177. [Google Scholar] [CrossRef]
- Gaylarde, C.; Ribas Silva, M.; Warscheid, T. Microbial Impact on Building Materials: An Overview. Mater. Struct. 2003, 36, 342–352. [Google Scholar] [CrossRef]
- Schröder, V.; Carutiu, D.; Honcea, A.; Ion, R.-M. Microscopical Methods for the In Situ Investigation of Biodegradation on Cultural Heritage; IntechOpen: London, UK, 2019; pp. 1–18. [Google Scholar]
- Sterflinger, K.; Piñar, G. Microbial Deterioration of Cultural Heritage and Works of Art—Tilting at Windmills? Appl. Microbiol. Biotechnol. 2013, 97, 9637–9646. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Lan, W.; Gu, J.D. A Review on Sampling Techniques and Analytical Methods for Microbiota of Cultural Properties and Historical Architecture. Appl. Sci. 2020, 10, 8099. [Google Scholar] [CrossRef]
- Cardoni, M.; Caracciolo, A.; Grenni, P. Fluorescence in Situ Hybridization Technique: A Tool Useful for Detecting Cultural Heritage Biodeteriogens. In Sciences and Technologies Applied to Cultural Heritage; Baldi, M., Vittozzi, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 34–44. [Google Scholar]
- Sandmann, G. Carotenoids and Their Biosynthesis in Fungi. Molecules 2022, 27, 1431. [Google Scholar] [CrossRef]
- Paul, D.; Kumari, P.K.; Siddiqui, N. Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. Fermentation 2023, 9, 147. [Google Scholar] [CrossRef]
- Ljaljević Grbić, M.; Dimkić, I.; Janakiev, T.; Kosel, J.; Tavzes, Č.; Popović, S.; Knežević, A.; Legan, L.; Retko, K.; Ropret, P.; et al. Uncovering the Role of Autochthonous Deteriogenic Biofilm Community: Rožanec Mithraeum Monument (Slovenia). Microb. Ecol. 2024, 87, 87. [Google Scholar] [CrossRef] [PubMed]
- Goga, M.; Elečko, J.; Marcinčinová, M.; Ručová, D.; Bačkorová, M.; Bačkor, M. Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. In Co-Evolution of Secondary Metabolites; Merillon, J.-M., Ramawat, K.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 175–209. ISBN 9783319963976. [Google Scholar]
- Sajjad, W.; Din, G.; Rafiq, M.; Iqbal, A.; Khan, S.; Zada, S.; Ali, B.; Kang, S. Pigment Production by Cold-Adapted Bacteria and Fungi: Colorful Tale of Cryosphere with Wide Range Applications. Extremophiles 2020, 24, 447–473. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.P.; Paixão, S.M.; Alves, L. Ability of Gordonia Alkanivorans Strain 1B for High Added Value Carotenoids Production. RSC Adv. 2016, 6, 58055–58063. [Google Scholar] [CrossRef]
- Naz, T.; Ullah, S.; Nazir, Y.; Li, S.; Iqbal, B.; Liu, Q.; Mohamed, H.; Song, Y. Industrially Important Fungal Carotenoids: Advancements in Biotechnological Production and Extraction. J. Fungi 2023, 9, 578. [Google Scholar] [CrossRef] [PubMed]
- Cojoc, L.R.; Enache, M.I.; Neagu, S.E.; Lungulescu, M.; Setnescu, R.; Ruginescu, R.; Gomoiu, I. Carotenoids Produced by Halophilic Bacterial Strains on Mural Paintings and Laboratory Conditions. FEMS Microbiol. Lett. 2019, 366, fnz243. [Google Scholar] [CrossRef] [PubMed]
- Rinta-Kanto, J.M.; Ouellette, A.J.A.; Boyer, G.L.; Twiss, M.R.; Bridgeman, T.B.; Wilhelm, S.W. Quantification of Toxic Microcystis Spp. during the 2003 and 2004 Blooms in Western Lake Erie Using Quantitative Real-Time PCR. Environ. Sci. Technol. 2005, 39, 4198–4205. [Google Scholar] [CrossRef] [PubMed]
- Rosado, T.; Dias, L.; Lança, M.; Nogueira, C.; Santos, R.; Martins, M.R.; Candeias, A.; Mirão, J.; Caldeira, A.T. Assessment of Microbiota Present on a Portuguese Historical Stone Convent Using High-Throughput Sequencing Approaches. Microbiologyopen 2020, 9, 1067–1084. [Google Scholar] [CrossRef]
- Salvador, C.; Silva, M.; Rosado, T.; Freire, R.V.; Bordalo, R.; Candeias, A.; Caldeira, A.T. Biodeterioração de Pinturas de Cavalete: Desenvolvimento de Novas Estratégias de Mitigação. Conserv. Património 2016, 23, 119–124. [Google Scholar] [CrossRef]
- Silva, I.; Dias, L.; Salvador, C.; Miller, A.Z.; Candeias, A.; Teresa Caldeira, A. Microbial Induced Stone Discoloration in Alcobaça Monastery: A Comprehensive Study. J. Cult. Herit. 2024, 67, 248–257. [Google Scholar] [CrossRef]
- Rosado, T.; Falé, A.; Gil, M.; Mirão, J.; Candeias, A.; Caldeira, A.T. Understanding the Influence of Microbial Contamination on Colour Alteration of Pigments Used in Wall Paintings—The Case of Red and Yellow Ochres and Ultramarine Blue. Color Res. Appl. 2019, 44, 783–789. [Google Scholar] [CrossRef]
- Goswami, G.; Panda, D.; Samanta, R.; Boro, R.C.; Modi, M.K.; Bujarbaruah, K.M.; Barooah, M. Bacillus Megaterium Adapts to Acid Stress Condition through a Network of Genes: Insight from a Genome-Wide Transcriptome Analysis. Sci. Rep. 2018, 8, 16105. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.; Iyer, S.; Skomurski, J.F.; Vary, J.C. Red Pigment in Bacillus Megaterium Spores. Appl. Environ. Microbiol. 1986, 52, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Khaneja, R.; Perez-Fons, L.; Fakhry, S.; Baccigalupi, L.; Steiger, S.; To, E.; Sandmann, G.; Dong, T.C.; Ricca, E.; Fraser, P.D.; et al. Carotenoids Found in Bacillus. J. Appl. Microbiol. 2010, 108, 1889–1902. [Google Scholar] [CrossRef] [PubMed]
- Moeller, R.; Horneck, G.; Facius, R.; Stackebrandt, E. Role of Pigmentation in Protecting Bacillus Sp. Endospores against Environmental UV Radiation. FEMS Microbiol. Ecol. 2005, 51, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Kummer, C.; Schumann, P.; Stackebrandt, E. Gordonia alkanivorans Sp. Nov., Isolated from Tar-Contaminated Soil. Int. J. Syst. Bacteriol. 1999, 49, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, M. Production of Gordonia alkanivorans Strain 1B Biomass in Bioreactor and Further Application Towards Fossil Fuels Desulfurization. Ph.D. Thesis, Faculdade de Ciências, Universidade De Lisboa, Lisboa, Portugal, 2015. [Google Scholar]
- Arenskötter, M.; Bröker, D.; Steinbüchel, A. Biology of the Metabolically Diverse Genus Gordonia. Appl. Environ. Microbiol. 2004, 70, 3195–3204. [Google Scholar] [CrossRef]
- Zhang, C.-X.; Yang, S.-Y.; Xu, M.-X.; Sun, J.; Liu, H.; Liu, J.-R.; Kan, F.; Lai, R.; Zhang, K.-Y. Serratia nematodiphila Sp. Nov., Associated Symbiotically with the Entomopathogenic Nematode Heterorhabditidoides Chongmingensis (Rhabditida: Rhabditidae). Int. J. Syst. Evol. Microbiol. 2009, 59, 1603–1608. [Google Scholar] [CrossRef]
- Gondil, V.S.; Asif, M.; Bhalla, T.C. Optimization of Physicochemical Parameters Influencing the Production of Prodigiosin from Serratia Nematodiphila RL2 and Exploring Its Antibacterial Activity. 3 Biotech 2017, 7, 388. [Google Scholar] [CrossRef] [PubMed]
- Boers, S.A.; Jansen, R.; Hays, J.P. Understanding and Overcoming the Pitfalls and Biases of Next-Generation Sequencing (NGS) Methods for Use in the Routine Clinical Microbiological Diagnostic Laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1059–1070. [Google Scholar] [CrossRef]
- Turnbull, P.C.B. Bacillus. In Medical Microbiology; Baron, S., Turnbull, P.C.B., Eds.; University of Texas Medical Branch: Galveston, TX, USA, 1996. [Google Scholar]
- Caldeira, T. Green Mitigation Strategy for Cultural Heritage Using Bacterial Biocides. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Joseph, E., Ed.; Springer: Cham, Switzerland, 2021; pp. 137–148. ISBN 978-3-030-69410-4. [Google Scholar]
- Capodicasa, S.; Fedi, S.; Porcelli, A.M.; Zannoni, D. The Microbial Community Dwelling on a Biodeteriorated 16th Century Painting. Int. Biodeterior. Biodegrad. 2010, 64, 727–733. [Google Scholar] [CrossRef]
- Kiel, G.; Gaylarde, C.C. Bacterial Diversity in Biofilms on External Surfaces of Historic Buildings in Porto Alegre. World J. Microbiol. Biotechnol. 2006, 22, 293–297. [Google Scholar] [CrossRef]
- Ettenauer, J.D.; Jurado, V.; Piñar, G.; Miller, A.Z.; Santner, M.; Saiz-Jimenez, C.; Sterflinger, K. Halophilic Microorganisms Are Responsible for the Rosy Discolouration of Saline Environments in Three Historical Buildings with Mural Paintings. PLoS ONE 2014, 9, e103844. [Google Scholar] [CrossRef] [PubMed]
- Piñar, G.; Ettenauer, J.; Sterflinger, K. “La Vie En Rose”: A Review of the Rosy Discoloration of Subsurface Monuments. In The Conservation of Subterranean Cultural Heritage; Saiz-Jimenez, C., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 113–124. ISBN 9781315739977. [Google Scholar]
- Tichy, J.; Waldherr, M.; Ortbauer, M.; Graf, A.; Sipek, B.; Jembrih-Simbuerger, D.; Sterflinger, K.; Piñar, G. Pretty in Pink? Complementary Strategies for Analysing Pink Biofilms on Historical Buildings. Sci. Total Environ. 2023, 904, 166737. [Google Scholar] [CrossRef] [PubMed]
- Adamiak, J.; Otlewska, A.; Gutarowska, B. Halophilic Microbial Communities in Deteriorated Buildings. World J. Microbiol. Biotechnol. 2015, 31, 1489–1499. [Google Scholar] [CrossRef]
- Coelho, C.; Mesquita, N.; Costa, I.; Soares, F.; Trovão, J.; Freitas, H.; Portugal, A.; Tiago, I. Bacterial and Archaeal Structural Diversity in Several Biodeterioration Patterns on the Limestone Walls of the Old Cathedral of Coimbra. Microorganisms 2021, 9, 709. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, Y.; He, D.; Gu, J.D.; Guo, Q.; Liu, X.; Duan, Y.; Zhao, J.; Wang, W.; Feng, H. Community Structures of Bacteria and Archaea Associated with the Biodeterioration of Sandstone Sculptures at the Beishiku Temple. Int. Biodeterior. Biodegrad. 2021, 164, 105290. [Google Scholar] [CrossRef]
- Ventosa, A.; Sánchez-Porro, C. Bergey’s Manual of Systematics of Archaea and Bacteria, 1st ed.; Whitman, W.B., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; ISBN 9781118960608. [Google Scholar]
- Pane, L.; Radin, L.; Franconi, G.; Carli, A. The Carotenoid Pigments of a Marine Bacillus Firmus Strain. Boll. Soc. Ital. Biol. Sper. 1996, 72, 303–308. [Google Scholar] [PubMed]
- Steiger, S.; Perez-Fons, L.; Fraser, P.D.; Sandmann, G. Biosynthesis of a Novel C 30 Carotenoid in Bacillus Firmus Isolates. J. Appl. Microbiol. 2012, 113, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.T.; Nguyen, T.T.N.; Nguyen, Q.M.; Tran, A.V.; Do, H.T.V.; Nguyen, A.H.; Phan, T.N.; Nguyen, A.T.V. Screening of Pigmented Bacillus Aquimaris SH6 from the Intestinal Tracts of Shrimp to Develop a Novel Feed Supplement for Shrimp. J. Appl. Microbiol. 2016, 121, 1357–1372. [Google Scholar] [CrossRef] [PubMed]
- Shivaji, S.; Chaturvedi, P.; Begum, Z.; Pindi, P.K.; Manorama, R.; Padmanaban, D.A.; Shouche, Y.S.; Pawar, S.; Vaishampayan, P.; Dutt, C.B.S.; et al. Janibacter Hoylei Sp. Nov., Bacillus Isronensis Sp. Nov. and Bacillus Aryabhattai Sp. Nov., Isolated from Cryotubes Used for Collecting Air from the Upper Atmosphere. Int. J. Syst. Evol. Microbiol. 2009, 59, 2977–2986. [Google Scholar] [CrossRef]
- Hong, B.H.; Joe, M.M.; Selvakumar, G.; Kim, K.Y.; Choi, J.H.; Sa, T.M. Influence of Salinity Variations on Exocellular Polysaccharide Production, Biofilm Formation and Flocculation in Halotolerant Bacteria. J. Environ. Biol. 2017, 38, 657–664. [Google Scholar] [CrossRef]
- Pepe, O.; Sannino, L.; Palomba, S.; Anastasio, M.; Blaiotta, G.; Villani, F.; Moschetti, G. Heterotrophic Microorganisms in Deteriorated Medieval Wall Paintings in Southern Italian Churches. Microbiol. Res. 2010, 165, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Jurado, V.; Gonzalez-Pimentel, J.L.; Hermosin, B.; Saiz-Jimenez, C. Biodeterioration of Salón de Reinos, Museo Nacional Del Prado, Madrid, Spain. Appl. Sci. 2021, 11, 8858. [Google Scholar] [CrossRef]
- Skipper, P.J.A.; Skipper, L.K.; Dixon, R.A. A Metagenomic Analysis of the Bacterial Microbiome of Limestone, and the Role of Associated Biofilms in the Biodeterioration of Heritage Stone Surfaces. Sci. Rep. 2022, 12, 4877. [Google Scholar] [CrossRef] [PubMed]
- Ljaljevic-Grbic, M.; Stupar, M.; Savkovic, Z.; Knezevic, A.; Dimkic, I.; Kosel, J.; Tavzes, C.; Unkovic, N. From On-Site to in-Lab: Microscopic Observation of Fungal Proliferation on 17th Century Mural Paintings. Zb. Matice Srp. Za Prir. Nauk. 2022, 143, 7–14. [Google Scholar] [CrossRef]
- Rivera, L.E.C.; Ramos, A.P.; Sánchez, J.I.C.; Drago, M.E. Origin and Control Strategies of Biofilms in the Cultural Heritage. In Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods; Kırmusaoğlu, S., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-78985-790-0. [Google Scholar]
- Ahmed, E.A.-E.; Mohamed, R.M. Bacterial Deterioration in the Limestone Minaret of Prince Muhammad and Suggested Treatment Methods, Akhmim, Egypt. Geomaterials 2022, 12, 37–58. [Google Scholar] [CrossRef]
- Xue, Y.; Fan, H.; Ventosa, A.; Grant, W.D.; Jones, B.E.; Cowan, D.A.; Ma, Y. Halalkalicoccus tibetensis Gen. Nov., Sp. Nov., Representing a Novel Genus of Haloalkaliphilic Archaea. Int. J. Syst. Evol. Microbiol. 2005, 55, 2501–2505. [Google Scholar] [CrossRef]
- Amador, C.I.; Stannius, R.O.; Røder, H.L.; Burmølle, M. High-Throughput Screening Alternative to Crystal Violet Biofilm Assay Combining Fluorescence Quantification and Imaging. J. Microbiol. Methods 2021, 190, 106343. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Durham Brooks, T.; Wilson, E.; et al. Quantitative and Qualitative Assessment Methods for Biofilm Growth: A Mini-Review. Res. Rev. J. Eng. Technol. 2017, 6. [Google Scholar]
- Borowicz, M.; Krzyżanowska, D.M.; Jafra, S. Crystal Violet-Based Assay for the Assessment of Bacterial Biofilm Formation in Medical Tubing. J. Microbiol. Methods 2023, 204, 106656. [Google Scholar] [CrossRef]
- Sanmartín, P.; Silva, B.; Prieto, B. Effect of Surface Finish on Roughness, Color, and Gloss of Ornamental Granites. J. Mater. Civ. Eng. 2011, 23, 1239–1248. [Google Scholar] [CrossRef]
- Jeon, B.Y.; Kim, B.Y.; Jung, I.L.; Park, D.H. Metabolic Roles of Carotenoid Produced by Non-Photosynthetic Bacterium Gordonia Alkanivorans SKF120101. J. Microbiol. Biotechnol. 2012, 22, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.S.; Paixão, S.M.; Silva, T.P.; Roseiro, J.C.; Alves, L. Influence of Culture Conditions towards Optimal Carotenoid Production by Gordonia Alkanivorans Strain 1B. Bioprocess Biosyst. Eng. 2018, 41, 143–155. [Google Scholar] [CrossRef]
- Udensi, J.; Loughman, J.; Loskutova, E.; Byrne, H.J. Raman Spectroscopy of Carotenoid Compounds for Clinical Applications—A Review. Molecules 2022, 27, 9017. [Google Scholar] [CrossRef] [PubMed]
- Zha, W.L.; Cheng, Y.; Yu, W.; Zhang, X.B.; Shen, A.G.; Hu, J.M. HPLC Assisted Raman Spectroscopic Studies on Bladder Cancer. Laser Phys. Lett. 2015, 12, 045701. [Google Scholar] [CrossRef]
- Horiue, H.; Sasaki, M.; Yoshikawa, Y.; Toyofuku, M.; Shigeto, S. Raman Spectroscopic Signatures of Carotenoids and Polyenes Enable Label-Free Visualization of Microbial Distributions within Pink Biofilms. Sci. Rep. 2020, 10, 7704. [Google Scholar] [CrossRef]
- Shao, Y.; Gu, W.; Jiang, L.; Zhu, Y. Study on the Visualization of Pigment in Haematococcus Pluvialis by Raman Spectroscopy Technique. Sci. Rep. 2019, 9, 12097. [Google Scholar] [CrossRef]
- Gellermann, W.; Ermakov, I.V.; Ermakova, M.R.; McClane, R.W.; Zhao, D.-Y.; Bernstein, P.S. In Vivo Resonant Raman Measurement of Macular Carotenoid Pigments in the Young and the Aging Human Retina. J. Opt. Soc. Am. A 2002, 19, 1172. [Google Scholar] [CrossRef]
- Arteni, A.A.; Fradot, M.; Galzerano, D.; Mendes-Pinto, M.M.; Sahel, J.A.; Picaud, S.; Robert, B.; Pascal, A.A. Structure and Conformation of the Carotenoids in Human Retinal Macular Pigment. PLoS ONE 2015, 10, e0135779. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Huang, W.; Gao, Q.; Fan, L.; Shen Andy, H. Assignments on Raman Peaks of Red Coral Based on Experimental Raman Spectroscopy and Density Functional Theory Calculation. Spectrosc. Spectr. Anal. 2021, 41, 127. [Google Scholar] [CrossRef]
- Ormsby, B.; Bartoletti, A.; van den Berg, K.J.; Stavroudis, C. Cleaning and Conservation: Recent Successes and Challenges. Herit. Sci. 2024, 12, 10. [Google Scholar] [CrossRef]
- Sarti, B.; Villa, F.; Cappitelli, F.; Rizzi, A. Chromatic Bio-Indicators of Biofilm Community Structure on Stone Heritage. In Proceedings of the 15th Congress of the International Colour Association, Chiang Rai, Thailand, 28 November–2 December 2023; pp. 412–418. [Google Scholar]
- Wang, Y.; Zhang, H.; Liu, X.; Liu, X.; Song, W. Fungal Communities in the Biofilms Colonizing the Basalt Sculptures of the Leizhou Stone Dogs and Assessment of a Conservation Measure. Herit. Sci. 2021, 9, 36. [Google Scholar] [CrossRef]
- Morgado, D.; Fanesi, A.; Martin, T.; Tebbani, S.; Bernard, O.; Lopes, F. Non-Destructive Monitoring of Microalgae Biofilms. Bioresour. Technol. 2024, 398, 130520. [Google Scholar] [CrossRef]
Sample | Macroscopic Characteristics | Bacterial Strain | Most Probable Identification | GenBank Accession Number | |
---|---|---|---|---|---|
Front | Back | ||||
B1 | CCLBMBat1 | Pseudomonas sp. | PQ095922 | ||
CCLBMBatB1-2 | Kocuria sp. | PQ144780 | |||
B2 | CCLBMBatB2 | Bacillus sp. | PQ144790 | ||
CCLBMBatB2-2 | Citricoccus sp. | PQ144849 | |||
B3 | CCLBMBatB3 | Gordonia sp. | PQ144851 | ||
B4 | CCLBMBatB4-1_2 | Micrococcus sp. | PQ144861 | ||
- | Serratia sp. | SAMN42837401 |
Stone Sample | L* | a* | b* | ΔE 1 |
---|---|---|---|---|
Control | 82.48 ± 0.68 | 2.19 ± 0.06 | 10.24 ± 0.13 | - |
Stone (dark conditions) | 67.39 ± 0.25 | 14.46 ± 0.76 | 24.21 ± 0.66 | 23.95 ± 0.85 |
Stone (bright conditions) | 70.33 ± 2.40 | 20.68 ± 4.38 | 28.57 ± 4.64 | 28.74 ± 6.61 |
Sample | L* | a* | b* | ΔE 1 |
---|---|---|---|---|
Stone (dark) | 67.39 ± 0.25 | 14.46 ± 0.76 | 24.21 ± 0.66 | - |
Sol. 50% | 77.82 ± 0.50 | 5.33 ± 0.18 | 15.51 ± 0.24 | 16.37 ± 0.44 |
Sol. 25% | 74.73 ± 0.86 | 5.49 ± 0.24 | 16.40 ± 0.27 | 13.99 ± 0.68 |
Sol. 10% | 71.95 ± 3.90 | 4.76 ± 0.45 | 15.40 ± 1.12 | 14.40 ± 0.74 |
Sol. 5% | 74.32 ± 0.16 | 4.71 ± 0.07 | 15.83 ± 0.30 | 14.60 ± 0.26 |
Sample | L* | a* | b* | ΔE 1 |
---|---|---|---|---|
Stone (bright) | 70.33 ± 2.40 | 20.68 ± 4.38 | 28.57 ± 4.64 | - |
Sol. 50% | 76.51 ± 1.01 | 5.33 ± 0.38 | 16.65 ± 0.82 | 20.42 ± 0.93 |
Sol. 25% | 75.47 ± 0.71 | 5.02 ± 0.15 | 17.05 ± 0.47 | 20.12 ± 0.47 |
Sol. 10% | 75.32 ± 0.44 | 5.35 ± 0.23 | 16.84 ± 0.23 | 19.24 ± 0.28 |
Sol. 5% | 75.22 ± 0.85 | 4.68 ± 0.32 | 16.55 ± 0.82 | 20.61 ± 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, I.; Salvador, C.; Miller, A.Z.; Candeias, A.; Caldeira, A.T. The Role of Bacteria in Pink Stone Discoloration: Insights from Batalha Monastery. Micro 2024, 4, 778-797. https://doi.org/10.3390/micro4040048
Silva I, Salvador C, Miller AZ, Candeias A, Caldeira AT. The Role of Bacteria in Pink Stone Discoloration: Insights from Batalha Monastery. Micro. 2024; 4(4):778-797. https://doi.org/10.3390/micro4040048
Chicago/Turabian StyleSilva, Inês, Cátia Salvador, Ana Z. Miller, António Candeias, and Ana Teresa Caldeira. 2024. "The Role of Bacteria in Pink Stone Discoloration: Insights from Batalha Monastery" Micro 4, no. 4: 778-797. https://doi.org/10.3390/micro4040048
APA StyleSilva, I., Salvador, C., Miller, A. Z., Candeias, A., & Caldeira, A. T. (2024). The Role of Bacteria in Pink Stone Discoloration: Insights from Batalha Monastery. Micro, 4(4), 778-797. https://doi.org/10.3390/micro4040048