Pressure-Driven Sample Flow through an Electrospun Membrane Increases the Analyte Adsorption
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Membranes
2.2. Characterization of the Membranes
2.3. Design of the Custom Flow-through Device
2.4. Measurements of the BSA Adsorption
2.5. Measurements of IL1b Binding
3. Results and Discussion
3.1. Concept of the Experiment
3.2. Membrane Characterization
3.3. Measurements of Non-Specific Adsorption
3.4. Measurements of Specific Binding
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, W.S.; Asmatulu, R.; Ceylan, M.; Jabbarnia, A. Recent progress on conventional and non-conventional electrospinning processes. Fibers Polym. 2013, 14, 1235–1247. [Google Scholar] [CrossRef]
- Singha, K.; Maity, S.; Singha, M.; Paul, P.; Gon, D.P. Effects of Fiber Diameter Distribution of Nonwoven Fabrics on its Properties. Int. J. Text. Sci. 2012, 1, 7–14. [Google Scholar]
- Luo, C.J.; Stoyanov, S.D.; Stride, E.; Pelan, E.; Edirisinghe, M. Electrospinning versus fibre production methods: From specifics to technological convergence. Chem. Soc. Rev. 2012, 41, 4708–4735. [Google Scholar] [CrossRef]
- Širc, J.; Hobzova, R.; Kostina, N.; Munzarová, M.; Juklíčková, M.; Lhotka, M.; Kubinová, Š.; Zajícová, A.; Michálek, J. Morphological characterization of nanofibers: Methods and application in practice. J. Nanomater. 2012, 2012, 1–14. [Google Scholar] [CrossRef][Green Version]
- Omollo, E.; Zhang, C.; Mwasiagi, J.I.; Ncube, S. Electrospinning cellulose acetate nanofibers and a study of their possible use in high-efficiency filtration. J. Ind. Text. 2016, 45, 716–729. [Google Scholar] [CrossRef]
- Pavlova, E.; Maslakova, A.; Prusakov, K.; Bagrov, D. Optical sensors based on electrospun membranes—Principles, applications, and prospects for chemistry and biology. New J. Chem. 2022, 46, 8356–8380. [Google Scholar] [CrossRef]
- Asmatulu, R.; Veisi, Z.; Uddin, M.N.; Mahapatro, A. Highly Sensitive and Reliable Electrospun Polyaniline Nanofiber Based Biosensor as a Robust Platform for COX-2 Enzyme Detections. Fibers Polym. 2019, 20, 966–974. [Google Scholar] [CrossRef]
- Mikheev, A.Y.; Kanev, I.L.; Morozova, T.Y.; Morozov, V.N. Water-soluble filters from ultra-thin polyvinylpirrolidone nanofibers. J. Memb. Sci. 2013, 448, 151–159. [Google Scholar] [CrossRef]
- Vladimirsky, M.A.; Shipina, L.K.; Makeeva, E.S.; Alyapkina, Y.S.; Mikheev, A.Y.; Morozov, V.N. Application of water-soluble nanofilters for collection of airborne Mycobacterium tuberculosis DNA in hospital wards. J. Hosp. Infect. 2016, 93, 100–104. [Google Scholar] [CrossRef]
- Hoy, C.F.O.; Kushiro, K.; Yamaoka, Y.; Ryo, A.; Takai, M. Rapid multiplex microfiber-based immunoassay for anti-MERS-CoV antibody detection. Sens. Bio-Sens. Res. 2019, 26, 100304. [Google Scholar] [CrossRef]
- Hoy, C.F.O.; Kushiro, K.; Takai, M. Fabrication and assessment of an electrospun polymeric microfiber-based platform under bulk flow conditions with rapid and efficient antigen capture. Analyst 2018, 143, 865–873. [Google Scholar] [CrossRef]
- Hersey, J.S.; Meller, A.; Grinstaff, M.W. Functionalized Nanofiber Meshes Enhance Immunosorbent Assays. Anal. Chem. 2015, 87, 11863–11870. [Google Scholar] [CrossRef][Green Version]
- Squires, T.M.; Messinger, R.J.; Manalis, S.R. Making it stick: Convection, reaction and diffusion in surface-based biosensors. Nat. Biotechnol. 2008, 26, 417–426. [Google Scholar] [CrossRef]
- Frutiger, A.; Tanno, A.; Hwu, S.; Tiefenauer, R.F.; Vörös, J.; Nakatsuka, N. Nonspecific Binding—Fundamental Concepts and Consequences for Biosensing Applications. Chem. Rev. 2021, 121, 8095–8160. [Google Scholar] [CrossRef]
- Ke, W.; Li, X.; Miao, M.; Liu, B.; Zhang, X.; Liu, T. Fabrication and Properties of Electrospun and Electrosprayed Polyethylene Glycol/Polylactic Acid (PEG/PLA) Films. Coatings 2021, 11, 790. [Google Scholar] [CrossRef]
- Yew, C.; Azari, P.; Choi, J.; Muhamad, F.; Pingguan-Murphy, B. Electrospun Polycaprolactone Nanofibers as a Reaction Membrane for Lateral Flow Assay. Polymers 2018, 10, 1387. [Google Scholar] [CrossRef][Green Version]
- Fetz, A.E.; Fantaziu, C.A.; Smith, R.A.; Radic, M.Z.; Bowlin, G.L. Surface Area to Volume Ratio of Electrospun Polydioxanone Templates Regulates the Adsorption of Soluble Proteins from Human Serum. Bioengineering 2019, 6, 78. [Google Scholar] [CrossRef][Green Version]
- Mikhutkin, A.A.; Kamyshinsky, R.A.; Tenchurin, T.K.; Shepelev, D.; Orekhov, A.S.; Grigoriev, T.E.; Mamaguashvili, V.G.; Chvalun, S.N.; Vasiliev, A.L. Towards Tissue Engineering: 3D Study of Polyamide-6 Scaffolds. Bionanoscience 2018, 8, 511–521. [Google Scholar] [CrossRef]
- Loskot, J.; Jezbera, D.; Bezrouk, A.; Doležal, R.; Andrýs, R.; Francová, V.; Miškář, D.; Fučíková, A.M. Raman spectroscopy as a novel method for the characterization of polydioxanone medical stents biodegradation. Materials 2021, 14, 5462. [Google Scholar] [CrossRef]
- Jin, C.; Liang, B.; Li, J.; Li, F. Biodegradation Behaviors of Poly(p-dioxanone) in Different Environment Media. J. Polym. Environ. 2013, 21, 1088–1099. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, J.; Du, F.; Bao, Y.; Shan, G.; Zhang, L.; Dong, H.; Pan, P. Formation of Mesomorphic Polymorph, Thermal-Induced Phase Transition, and Crystalline Structure-Dependent Degradable and Mechanical Properties of Poly(p-dioxanone). Cryst. Growth Des. 2019, 19, 166–176. [Google Scholar] [CrossRef]
- Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Unraveling the mysteries of serum albumin—More than just a serum protein. Front. Physiol. 2014, 5, 299. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, J.; Kang, Q.S.; Lv, X.G.; Song, J.; Zhan, N.; Dong, W.G.; Huang, W.H. Simple patterned nanofiber scaffolds and its enhanced performance in immunoassay. PLoS ONE 2013, 8, e82888. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudifard, M.; Vossoughi, M.; Soleimani, M. Different types of electrospun nanofibers and their effect on microfluidic-based immunoassay. Polym. Adv. Technol. 2019, 30, 973–982. [Google Scholar] [CrossRef]
- Lee, S.J.; Tatavarty, R.; Gu, M.B. Electrospun polystyrene-poly(styrene-co-maleic anhydride) nanofiber as a new aptasensor platform. Biosens. Bioelectron. 2012, 38, 302–307. [Google Scholar] [CrossRef]
- Yun, B.J.; Kwon, J.E.; Lee, K.; Koh, W.G. Highly sensitive metal-enhanced fluorescence biosensor prepared on electrospun fibers decorated with silica-coated silver nanoparticles. Sens. Actuators B Chem. 2019, 284, 140–147. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, H.J.; Son, K.J.; Koh, W.-G. Fabrication of hydrogel-micropatterned nanofibers for highly sensitive microarray-based immunosensors having additional enzyme-based sensing capability. J. Mater. Chem. 2011, 21, 4476. [Google Scholar] [CrossRef]
- Wu, D.; Han, D.; Steckl, A.J. Immunoassay on Free-Standing Electrospun Membranes. ACS Appl. Mater. Interfaces 2010, 2, 252–258. [Google Scholar] [CrossRef]
- Gopal, R.; Kaur, S.; Ma, Z.; Chan, C.; Ramakrishna, S.; Matsuura, T. Electrospun nanofibrous filtration membrane. J. Memb. Sci. 2006, 281, 581–586. [Google Scholar] [CrossRef]
- Aussawasathien, D.; Teerawattananon, C.; Vongachariya, A. Separation of micron to sub-micron particles from water: Electrospun nylon-6 nanofibrous membranes as pre-filters. J. Memb. Sci. 2008, 315, 11–19. [Google Scholar] [CrossRef]
- Suaste-Gómez, E.; Rodríguez-Roldán, G.; Pérez-Solis, I.; Torres-Huerta, A.; Cruz-Cruz, C.; Tapia-Ramírez, J. Electrospinning Polylactic Acid Polymer Membranes as Biological Sieve for Yeast and Bacteria. Mater. Sci. Appl. 2022, 13, 389–400. [Google Scholar]
- Isık, T.; Demir, M.M. Medical Waste Treatment via Waste Electrospinning of PS. Fibers Polym. 2018, 19, 767–774. [Google Scholar] [CrossRef]
- Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen. 2019, 39, 1–16. [Google Scholar] [CrossRef][Green Version]
- Eaton, S.L.; Hurtado, M.L.; Oldknow, K.J.; Graham, L.C.; Marchant, T.W.; Gillingwater, T.H.; Farquharson, C.; Wishart, T.M. A Guide to Modern Quantitative Fluorescent Western Blotting with Troubleshooting Strategies. J. Vis. Exp. 2014, 93, e52099. [Google Scholar] [CrossRef][Green Version]
- Reddig, A.; Roggenbuck, D.; Reinhold, D. Comparison of different immunoassays for γH2AX quantification. J. Lab. Precis. Med. 2018, 3, 80. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Bahrani, S.; Mousavi, S.M.; Omidifar, N.; Behbahan, N.G.G.; Arjmand, M.; Lankarani, K.B.; Moghadami, M.; Firoozsani, M. Antibody mounting capability of 1D/2D carbonaceous nanomaterials toward rapid-specific detection of SARS-CoV-2. Talanta 2022, 239, 123113. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Bahrani, S.; Mousavi, S.M.; Omidifar, N.; Behbahan, N.G.G.; Arjmand, M.; Ramakrishna, S.; Lankarani, K.B.; Moghadami, M.; Shokripour, M.; et al. Ultra-precise label-free nanosensor based on integrated graphene with Au nanostars toward direct detection of IgG antibodies of SARS-CoV-2 in blood. J. Electroanal. Chem. 2021, 894, 115341. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslakova, A.; Prusakov, K.; Sidorova, A.; Pavlova, E.; Ramonova, A.; Bagrov, D. Pressure-Driven Sample Flow through an Electrospun Membrane Increases the Analyte Adsorption. Micro 2023, 3, 566-577. https://doi.org/10.3390/micro3020038
Maslakova A, Prusakov K, Sidorova A, Pavlova E, Ramonova A, Bagrov D. Pressure-Driven Sample Flow through an Electrospun Membrane Increases the Analyte Adsorption. Micro. 2023; 3(2):566-577. https://doi.org/10.3390/micro3020038
Chicago/Turabian StyleMaslakova, Aitsana, Kirill Prusakov, Anastasia Sidorova, Elizaveta Pavlova, Alla Ramonova, and Dmitry Bagrov. 2023. "Pressure-Driven Sample Flow through an Electrospun Membrane Increases the Analyte Adsorption" Micro 3, no. 2: 566-577. https://doi.org/10.3390/micro3020038
APA StyleMaslakova, A., Prusakov, K., Sidorova, A., Pavlova, E., Ramonova, A., & Bagrov, D. (2023). Pressure-Driven Sample Flow through an Electrospun Membrane Increases the Analyte Adsorption. Micro, 3(2), 566-577. https://doi.org/10.3390/micro3020038