Supramolecular Aggregation Processes on Carbon Surfaces Occurring in Bovine Serum Albumin Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Goldstein, J.; Newbury, D.; Joy, D.; Lyman, C.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. Scanning Electron Microscopy and X-ray Microanalysis; Springer: New York, NY, USA, 2003; pp. 591–619. [Google Scholar]
- Werny, M.J.; Müller, D.; Hendriksen, C.; Chan, R.; Friederichs, N.A.; Fella, C.; Meirer, F.; Weckhuysen, B.M. Elucidating the Sectioning Fragmentation Mechanism in Silica-Supported Olefin Polymerization Catalysts with Laboratory-Based X-ray and Electron Microscopy. ChemCatChem 2022, 14, e202200067. [Google Scholar] [CrossRef]
- Shams, A.; Mehdizadeh, M.; Teimoury, H.; Emami, M.; Mirmohammadi, S.A.; Sadjadi, S.; Bardají, E.; Poater, A. Effect of the pore architecture of Ziegler-Natta catalyst on its behavior in propylene/1-hexene copolymerization. J. Ind. Eng. Chem. 2022, 116, 359–370. [Google Scholar] [CrossRef]
- Hasanzadeh, R.; Najafi Moghadam, P.; Bahri-Laleh, N.; Sillanpää, M. Effective removal of toxic metal ions from aqueous solutions: 2-Bifunctional magnetic nanocomposite base on novel reactive PGMAMAncopolymer@Fe3O4 nanoparticles. J. Colloid Interface Sci. 2017, 490, 727–746. [Google Scholar] [CrossRef]
- Lv, A.; Chen, Q.; Zhao, C.; Li, S.; Sun, S.; Dong, J.; Li, Z.; Lin, H. Long-wavelength (red to near-infrared) emissive carbon dots: Key factors for synthesis, fluorescence mechanism, and applications in biosensing and cancer theranostics. Chin. Chem. Lett. 2021, 32, 3653–3664. [Google Scholar] [CrossRef]
- Kovalenko, G.A.; Kuznetsova, E.V.; Mogilnykh, Y.I.; Andreeva, I.S.; Kuvshinov, D.G.; Rudina, N.A. Catalytic filamenous carbon for immobilization of biologically active substances and non-growing bacterial cells. Carbon 2001, 39, 1033–1043. [Google Scholar] [CrossRef]
- Salanov, A.; Serkova, A.; Zhirnova, A.; Perminova, L.; Kovalenko, G. Supramolecular Aggregation of Nanoparticles on Aluminum and Gold Surfaces Occurring in Bovine Serum Albumin Solutions. Micro 2022, 2, 334–341. [Google Scholar] [CrossRef]
- Kibena, E.; Marandi, M.; Sammelselg, V.; Tammeveski, K.; Jensen, B.B.E.; Mortensen, A.B.; Lillethorup, M.; Kongsfelt, M.; Pedersen, S.U.; Daasbjerg, K. Electrochemical Behaviour of HOPG and CVD-Grown Graphene Electrodes Modified with Thick Anthraquinone Films by Diazonium Reduction. Electroanalysis 2014, 26, 2619–2630. [Google Scholar] [CrossRef]
- Hu, B.; Bharate, B.; Jimenez, J.D.; Lauterbach, J.; Todoroki, N.; Wadayama, T.; Higashi, K.; Takakusagi, S.; Asakura, K. Abnormal Metal Bond Distances in PtAu Alloy Nanoparticles: In Situ Back-Illumination XAFS Investigations of the Structure of PtAu Nanoparticles on a Flat HOPG Substrate Prepared by Arc Plasma Deposition. J. Phys. Chem. 2022, 126, 1006–1016. [Google Scholar] [CrossRef]
- Baxter, E.T.; Zhang, J.; Tan, S.; Nguyen, M.-T.; Zhang, D.; Yuan, Q.; Cao, W.; Glezakou, V.A.; Johnson, G.E. Functionalization of Electrodes with Tunable [EMIM]x[Cl]x+1-Ionic Liquid Clusters for Electrochemical Separations. Chem. Mater. 2022, 34, 2612–2623. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Xiao, P.; Wu, Y.; Liu, Y.; Jiang, Y.; Wang, X.; Han, J.; Xiao, W. Morphology-Controlled Electrocatalytic Performance of Two-Dimensional VSe2Nanoflakes for Hydrogen Evolution Reactions. ACS Appl. Nano Mater. 2022, 5, 2087–2093. [Google Scholar] [CrossRef]
- Mita, M.; Matsushima, H.; Ueda, M.; Ito, H. In-situ high-speed atomic force microscopy observation of dynamic nanobubbles during water electrolysis. J. Colloid Interface Sci. 2022, 614, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.T.; Mellado, J.M.R.; Medina, A. Rapid Electrochemical Determination of Antioxidant Capacity Using Glassy Carbon Electrodes Modified with Copper and Polyaniline. Application to Ascorbic and Gallic acids. Biointerface Res. Appl. Chem. 2022, 13, 23. [Google Scholar] [CrossRef]
- Adekunle, A.S.; Fakayode, O.J.; Mamba, B.B.; Nkambule, T.T.I. Determination of humic acid (HA) and sodium alginate in water using Fe2O3 and CuO nanoparticle-modified glassy carbon electrode. Int. J. Environ. Anal. Chem. 2022, 102, 736–756. [Google Scholar] [CrossRef]
- Lavanya, A.L.; Bala Kumari, K.G.; Gowri, K.P.; Brahman, P.K. Fabrication of electrochemical sensor based on electrochemically co-deposited Ru-Co bimetallic nanoparticles on glassy carbon electrode: An analytical measurement tool for monitoring of hydrazine in water samples. Int. J. Environ. Anal. Chem. 2022, 102, 720–735. [Google Scholar] [CrossRef]
- Besharati, M.; Tabrizi, M.A.; Molaabasi, F.; Saber, R.; Shamsipur, M.; Hamedi, J.; Hosseinkhani, S. Novel enzyme-based electrochemical and colorimetric biosensors for tetracycline monitoring in mil. Biotechnol. Appl. Biochem. 2022, 69, 41–50. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, H.; Wang, P.; Zhang, C.; Wu, M.; Yang, L. A stable biosensor for organophosphorus pesticide detection based on chitosan modified graphene. Biotechnol. Appl. Biochem. 2022, 69, 567–575. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, T.; Fu, D.; Liu, M.; Cheng, Z.; Hua, Y.; Liu, J. The construction of molecularly imprinted electrochemical biosensor for selective glucose sensing based on the synergistic enzyme-enzyme mimic catalytic system. Talanta 2022, 242, 123279. [Google Scholar] [CrossRef]
- Kalaw, J.M.; Kitagawa, M.; Shigemitsu, H.; Kida, T. Highly Regulated Supramolecular Assembly of 2-O-Methylated α-Cyclodextrin to Construct Vertically Oriented Microrods on Graphite. Langmuir 2022, 38, 5149–5155. [Google Scholar] [CrossRef]
- Kong, H.; Liu, B.; Yang, G.; Chen, Y.; Wei, G. Tailoring Peptide Self-Assembly and Formation of 2D Nanoribbons on Mica and HOPG Surface. Materials 2022, 15, 310. [Google Scholar] [CrossRef]
- Ukraintsev, E.; Houska, V.; Rezek, B. Small angle symmetry splitting of helicene-based molecular wires on pyrolytic graphite. Carbon 2022, 193, 171–181. [Google Scholar] [CrossRef]
- Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K. Crystal structure of human serum albumin at 2. 5 A resolution. Protein Eng. 1999, 12, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Jain, N.; Mukhopadhyay, S. Insights into the mechanism of aggregation and fibril formation from bovine serum albumin. J. Phys. Chem. B 2011, 115, 4195–4205. [Google Scholar] [CrossRef] [PubMed]
- Qingmin, Y.; Jing, C.; Facui, Y.; Yongchun, L.; Mengmeng, C.; Rongrong, Q.; Lixin, C.; Peng, Y. Amyloid-like aggregates of bovine serum albumin for extraction of gold from ores and electronic waste. Chem. Eng. J. 2021, 416, 129066. [Google Scholar]
- Nagy, D.; Toth, A.; Savina, I.; Mikhalovsky, S.; Mikhalovska, L.; Geissler, T.; Laszlo, K. Double probe approach to protein adsorption on porous carbon surfaces. Carbon 2017, 112, 103–110. [Google Scholar] [CrossRef]
- Duggal, R.; Hussain, F.; Pasquali, M. Self-Assembly of Single-Walled Carbon Nanotubes into a Sheet by Drop Drying. Adv. Mater. 2006, 18, 29–34. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salanov, A.; Serkova, A.; Zhirnova, A.; Perminova, L.; Kovalenko, G. Supramolecular Aggregation Processes on Carbon Surfaces Occurring in Bovine Serum Albumin Solutions. Micro 2022, 2, 670-678. https://doi.org/10.3390/micro2040045
Salanov A, Serkova A, Zhirnova A, Perminova L, Kovalenko G. Supramolecular Aggregation Processes on Carbon Surfaces Occurring in Bovine Serum Albumin Solutions. Micro. 2022; 2(4):670-678. https://doi.org/10.3390/micro2040045
Chicago/Turabian StyleSalanov, Aleksei, Alexandra Serkova, Anastasia Zhirnova, Larisa Perminova, and Galina Kovalenko. 2022. "Supramolecular Aggregation Processes on Carbon Surfaces Occurring in Bovine Serum Albumin Solutions" Micro 2, no. 4: 670-678. https://doi.org/10.3390/micro2040045
APA StyleSalanov, A., Serkova, A., Zhirnova, A., Perminova, L., & Kovalenko, G. (2022). Supramolecular Aggregation Processes on Carbon Surfaces Occurring in Bovine Serum Albumin Solutions. Micro, 2(4), 670-678. https://doi.org/10.3390/micro2040045