Sinapic Acid Release at the Cell Level by Incorporation into Nanoparticles: Experimental Evidence Using Biomembrane Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SLN and NLC preparation
2.3. Particle Size Determination
2.4. Stability Tests
2.5. Nanoparticle Freeze-Drying
2.6. Preparation of MLV
2.7. Preparation of MLV Containing SA
2.8. DSC Analysis
2.8.1. Nanoparticles and MLV Analysis
2.8.2. Analysis of the Interaction between SLN/NLC and MLV
3. Results and Discussion
3.1. Particle Size Determination and Stability Evaluation
3.2. DSC Analysis of Nanoparticles
3.3. Analysis of the Interaction of SLN and NLC with MLV
3.4. MLV/Sinapic Acid Interaction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acquaviva, R.; Sorrenti, V.; Santangelo, R.; Cardile, V.; Tomasello, B.; Malfa, G.; Vanella, L.; Amodeo, A.; Genovese, C.; Mastrojeni, S.; et al. Effects of an extract of Celtis aetnensis (Tornab.) Strobl twigs on human colon cancer cell cultures. Oncol. Rep. 2016, 36, 2298–2304. [Google Scholar] [CrossRef] [PubMed]
- Bonesi, M.; Loizzo, M.R.; Acquaviva, R.; Malfa, G.; Aiello, F.; Tundis, R. Anti-inflammatory and antioxidant agents from Salvia genus (Lamiaceae): An assessment of the current state of knowledge. Antiinflamm. Antiallergy Agents Med. Chem. 2017, 16, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Malfa, G.A.; Tomasello, B.; Acquaviva, R.; Genovese, C.; La Mantia, A.; Cammarata, F.P.; Ragusa, M.; Renis, M.; Di Giacomo, C. Betula etnensis Raf. (Betulaceae) extract induced HO-1 expression and ferroptosis cell death in human colon cancer cells. Int. J. Mol. Sci. 2019, 20, 2723. [Google Scholar] [CrossRef] [Green Version]
- Tomasello, B.; Malfa, G.A.; La Mantia, A.; Miceli, N.; Sferrazzo, G.; Taviano, M.F.; Di Giacomo, C.; Renis, M.; Acquaviva, R. Anti-adipogenic and anti-oxidant effects of a standardised extract of Moro blood oranges (Citrus sinensis (L.) Osbeck) during adipocyte differentiation of 3T3-L1 preadipocytes. Nat. Prod. Res. 2019, 9. [Google Scholar] [CrossRef]
- Naoi, M.; Inaba-Hasegawa, K.; Shamoto-Nagai, M.; Maruyama, W. Neurotrophic function of phytochemicals for neuroprotection in aging and neurodegenerative disorders: Modulation of intracellular signaling and gene expression. J. Neural Transm. 2017, 24, 1515–1527. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.U.; Wali, A.F.; Ahmad, A.; Shakeel, S.; Rasool, S.; Ali, R.; Rashid, S.M.; Madkhali, H.; Ganaie, M.A.; Khan, R. Neuroprotective Strategies for Neurological Disorders by Natural Products: An update. Curr. Neuropharmacol. 2019, 17, 247–267. [Google Scholar] [CrossRef]
- Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Volceanov, A.; Teleanu, D.M. Antioxidant therapies for neuroprotection—A review. J. Clin. Med. 2019, 8, 1659. [Google Scholar] [CrossRef] [Green Version]
- Su, P.; Shi, Y.; Wang, J.; Shen, X.; Zhang, J. Anticancer agents derived from naturalcinnamic acids. Anticancer Agents Med. Chem. 2015, 15, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxidative Med. Cell Longev. 2016, 3571614. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Hu, J.X.; Kui, X.; Liu, C.; Zhou, H.; Jiang, X.; Zeng, L. Sinapic Acid Derivatives as Potential Anti-Inflammatory Agents: Synthesis and Biological Evaluation. Iran. J. Pharm. Res. 2017, 16, 1405–1414. [Google Scholar]
- Kulkarni, M.G.; Rengasamy, K.R.R.; Pendota, S.C.; Gruz, J.; Plačková, L.; Novák, O.; Doležal, K.; Van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnol. 2019, 48, 83–89. [Google Scholar] [CrossRef]
- Milkowski, C.; Strack, D. Sinapate esters in brassicaceous plants: Biochemistry, molecular biology, evolution and metabolic engineering. Planta 2010, 232, 19–35. [Google Scholar] [CrossRef]
- Hameed, H.; Aydinj, S.; Basaran, N. Sinapic Acid: Is It Safe for Humans? Pharm. Sci. 2016, 41, 39–49. [Google Scholar]
- Bagli, E.; Goussia, A.; Moschos, M.M.; Agnantis, N.N.; Kitsos, G. Natural compounds and neuroprotection: Mechanisms of action and novel delivery systems. In Vivo 2016, 30, 535–547. [Google Scholar]
- Castelli, F.; Messina, C.; Sarpietro, M.G.; Pignatello, R.; Puglisi, G. Flurbiprofen release from Eudragit RS and RL aqueous nanosuspensions: A kinetic study by DSC and dialysis experiments. AAPS PharmSciTech 2002, 3, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Berrío Escobar, J.F.; Pastrana Restrepo, M.H.; Márquez Fernández, D.M.; Martínez Martínez, A.; Giordani, C.; Castelli, F.; Sarpietro, M.G. Synthesis and interaction of sterol-uridine conjugate with DMPC liposomes studied by differential scanning calorimetry. Colloids Surf. B Biointerfaces 2018, 166, 203–209. [Google Scholar] [CrossRef]
- Sarpietro, M.G.; Accolla, M.L.; Puglisi, G.; Castelli, F.; Montenegro, L. Idebenone loaded solid lipid nanoparticles: Calorimetric studies on surfactant and drug loading effects. Int. J. Pharm. 2014, 471, 69–74. [Google Scholar] [CrossRef]
- Montenegro, L.; Ottimo, S.; Puglisi, G.; Castelli, F.; Sarpietro, M.G. Idebenone loaded solid lipid nanoparticles interact with biomembrane models: Calorimetric evidence. Mol. Pharm. 2012, 9, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, L.; Castelli, F.; Sarpietro, M.G. Differential Scanning Calorimetry analyses of idebenone-loaded solid lipid nanoparticles interactions with a model of bio-membrane: A comparison with in vitro skin permeation data. Pharmaceuticals 2018, 11, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudhipala, N.; Veerabrahma, K. Improved anti-hyperlipidemic activity of Rosuvastatin Calcium via lipid nanoparticles: Pharmacokinetic and pharmacodynamic evaluation. Eur. J. Pharm. Biopharm. 2017, 110, 47–57. [Google Scholar] [CrossRef]
- Cevc, G. Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae. Biochim. Biophys. Acta 1991, 1062, 59–69. [Google Scholar] [CrossRef]
- Lewis, R.N.A.H.; McElhaney, R.N. The mesomorphic phase behavior of lipids bilayers. In The Structure of Biological Membranes; Yeagle, P.L., Ed.; CRC Press: Boca Raton, FL, USA, 1992; Chapter 2; pp. 73–155. [Google Scholar]
- Jørgensen, K.; Ipsen, J.H.; Mouritsen, O.G.; Bennett, D.; Zuckermann, M.J. A general model for the interaction of foreign molecules with lipid membranes: Drugs and anaesthetics. Biochim. Biophys. Acta 1991, 1062, 227–238. [Google Scholar] [CrossRef]
- Jørgensen, K.; Ipsen, J.H.; Mouritsen, O.G.; Bennett, D.; Zuckermann, M.J. The effects of density fluctuations on the partitioning of foreign molecules into lipid bilayers: Application to anaesthetics and insecticides. Biochim. Biophys. Acta 1991, 1067, 241–253. [Google Scholar] [CrossRef]
Sample | Cutina (g) | Tegin O (g) | Oleth-20 (g) | Isopropyl Myristate (g) | SA (g) | H2O (g) |
---|---|---|---|---|---|---|
SLN | 1.400 | 0.880 | 1.720 | - | - | qb 20 |
SLN SA 1% | 1.400 | 0.880 | 1.720 | - | 0.014 | qb 20 |
SLN SA 5% | 1.400 | 0.880 | 1.720 | - | 0.070 | qb 20 |
NLC | 1.220 | 0.772 | 1.520 | 0.500 | - | qb 20 |
NLC SA 1% | 1.220 | 0.772 | 1.520 | 0.500 | 0.012 | qb 20 |
NLC SA 5% | 1.220 | 0.772 | 1.520 | 0.500 | 0.061 | qb 20 |
Sample | Size ± S.D. (nm) | PdI ± S.D. |
---|---|---|
SLN | 29.6 ± 0.6 | 0.296 ± 0.06 |
SLN SA 1% | 36.3 ± 1.1 | 0.303 ± 0.062 |
SLN SA 5% | 35.6 ± 0.6 | 0.380 ± 0.046 |
NLC | 27.6 ± 8.0 | 0.352 ± 0.034 |
NLC SA 1% | 31.9 ± 7.8 | 0.398 ± 0.054 |
NLC SA 5% | 35.7 ± 2.2 | 0.272 ± 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrisi, C.; Morgante, A.; Malfa, G.; Acquaviva, R.; Castelli, F.; Pignatello, R.; Sarpietro, M.G. Sinapic Acid Release at the Cell Level by Incorporation into Nanoparticles: Experimental Evidence Using Biomembrane Models. Micro 2021, 1, 120-128. https://doi.org/10.3390/micro1010009
Torrisi C, Morgante A, Malfa G, Acquaviva R, Castelli F, Pignatello R, Sarpietro MG. Sinapic Acid Release at the Cell Level by Incorporation into Nanoparticles: Experimental Evidence Using Biomembrane Models. Micro. 2021; 1(1):120-128. https://doi.org/10.3390/micro1010009
Chicago/Turabian StyleTorrisi, Cristina, Arianna Morgante, Giuseppe Malfa, Rosaria Acquaviva, Francesco Castelli, Rosario Pignatello, and Maria Grazia Sarpietro. 2021. "Sinapic Acid Release at the Cell Level by Incorporation into Nanoparticles: Experimental Evidence Using Biomembrane Models" Micro 1, no. 1: 120-128. https://doi.org/10.3390/micro1010009
APA StyleTorrisi, C., Morgante, A., Malfa, G., Acquaviva, R., Castelli, F., Pignatello, R., & Sarpietro, M. G. (2021). Sinapic Acid Release at the Cell Level by Incorporation into Nanoparticles: Experimental Evidence Using Biomembrane Models. Micro, 1(1), 120-128. https://doi.org/10.3390/micro1010009