Dispersion, Polar, and Hydrogen-Bonding Contributions to Solvation Free Energies
Abstract
1. Introduction
2. The Model
2.1. The Rationale of the Model, the New Molecular Descriptors, and the Key Equations
2.2. Determination of the New Molecular Descriptors and the Solvent-Specific Parameters
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McQuarrie, D.; Simon, J.D. Molecular Thermodynamics; University Science Books: Herndon VA, USA, 1999. [Google Scholar]
- Prausnitz, J.M.; Lichtenthaler, R.N.; Gomes de Azevedo, E. Molecular Thermodynamics of Fluid Phase Equilibria, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Kontogeorgis, G.M.; Folas, G.K. Thermodynamic Models for Industrial Applications. From Classical and Advanced Mixing Rules to Association Theories; John Wiley and Sons, Ltd.: Chichester, UK, 2010. [Google Scholar]
- Tillotson, M.J.; Diamantonis, N.I.; Buda, C.; Bolton, L.W.; Müller, E.A. Molecular modelling of the thermophysical properties of fluids: Expectations, limitations, gaps and opportunities. Phys. Chem. Chem. Phys. 2023, 25, 12607. [Google Scholar] [CrossRef] [PubMed]
- Vera, J.H.; Wiltzek-Vera, G.; Oliveira Fuentes, C.; Panayiotou, C. Classical and Molecular Thermodynamics of Fluid Systems; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Ben-Naim, A. Solvation Thermodynamics, 1st ed.; Plenum Press: New York, NY, USA, 1987. [Google Scholar]
- van Gunsteren, W.F.; Luque, F.J.; Timms, D.; Torda, A.E. Molecular mechanics in biology: From structure to function, taking account of solvation. Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 847–863. [Google Scholar] [CrossRef] [PubMed]
- Timasheff, S.N. The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 67–97. [Google Scholar] [CrossRef]
- Makarov, V.; Pettitt, B.M.; Feig, M. Solvation and hydration of proteins and nucleic acids: A Theoretical View of Simulation and Experiment. Acc. Chem. Res. 2002, 35, 376–384. [Google Scholar] [CrossRef]
- Philp, D.; Stoddart, J.F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 1996, 35, 1154–1196. [Google Scholar] [CrossRef]
- Abraham, M.H.; Ibrahim, A.; Zissimos, A.M. The determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 2004, 1037, 29–47. [Google Scholar] [CrossRef]
- Abraham, M.H.; Smith, R.E.; Luchtefeld, R.; Boorem, A.J.; Luo, R.; Acree, W.E., Jr. Prediction of solubility of drugs and other compounds inorganic solvents. J. Pharm. Sci. 2010, 99, 1500–1515. [Google Scholar] [CrossRef] [PubMed]
- Goss, K.-U. Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER). Fluid Phase Equilibra 2005, 233, 19–22. [Google Scholar] [CrossRef]
- Stephanopoulos, G.; Aristidou, A.; Nielsen, J. Metabolic Engineering: Principles and Methodologies; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Panayiotou, C.; Mastrogeorgopoulos, S.; Ataman, M.; Hadadi, N.; Hatzimanikatis, V. Molecular thermodynamics of metabolism: Hydration quantities and the equation-of-state Approach. Phys. Chem. Chem. Phys. 2016, 18, 32570–32592. [Google Scholar] [CrossRef]
- Marcus, Y. The Properties of Solvents; Wiley: Chichester, UK, 1998. [Google Scholar]
- Moine, E.; Privat, R.; Sirjean, B.; Jaubert, J.N. Estimation of Solvation Quantities from Experimental Thermodynamic Data: Development of the Comprehensive CompSol Databank for Pure and Mixed Solutes. J. Phys. Chem. Ref. Data 2017, 46, 033102. [Google Scholar] [CrossRef]
- Panayiotou, C.; Voutsas, E.; Hatzimanikatis, V. Solvation Gibbs Energy: The Equation of State Approach. In Gibbs Energy and Helmholtz Energy: Liquids, Solutions and Vapors; Wilhelm, E., Letcher, T.M., Eds.; The Royal Society of Chemistry: London, UK, 2022. [Google Scholar]
- Mintz, C.; Ladlie, T.; Burton, K.; Clark, M.; Acree, W.E., Jr.; Abraham, M.H. Enthalpy of solvation correlations for gaseous solutes dissolved in alcohol solvents based on the Abraham model. QSAR Comb. Sci. 2008, 27, 627–635. [Google Scholar] [CrossRef]
- Hart, E.; Grover, D.; Zettl, H.; Koshevarova, V.; Acree, W.E., Jr.; Abraham, M.H. Development of Abraham model expressions for predicting the enthalpies of solvation of solutes dissolved in acetic acid. Phys. Chem. Liq. 2016, 54, 141–154. [Google Scholar] [CrossRef]
- Acree, W.E.; Panayiotou, C. On dispersion and polar interactions and solvation and cohesion energies. A first round. Fluid Phase Equilibria 2026, 600, 114573. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.M.; Taft, R.W. An Examination of Linear Solvation Energy Relationships. Proc. Phys. Org. Chem. 1981, 13, 485–630. [Google Scholar]
- Kamlet, M.J.; Doherty, R.M.; Abboud, J.-L.; Abraham, M.H.; Taft, R.W. Solubility: A new look. Chemtech 1986, 16, 566–576. [Google Scholar]
- Abraham, M.H.; Doherty, R.M.; Kamlet, M.J.; Taft, R.W. New look at acids and bases. Chem. Br. 1986, 22, 551–554. [Google Scholar]
- Abraham, M.H.; McGowan, J.C. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 1987, 23, 243–246. [Google Scholar] [CrossRef]
- Abraham, M.H. Scales of solute hydrogen-bonding: Their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 1993, 22, 73–83. [Google Scholar] [CrossRef]
- Sinha, S.; Yang, C.; Wu, E.; Acree, W.E. Abraham Solvation Parameter Model: Examination of Possible Intramolecular Hydrogen-Bonding using calculated solute descriptors. Liquids 2022, 2, 131–146. [Google Scholar] [CrossRef]
- Platts, J.A.; Abraham, M.H.; Butina, D.; Hersey, A. Estimation of molecular linear free energy relationship descriptors by a group contribution approach. 2. Prediction of partition coefficients. J. Chem. Inf. Comp. Sci. 2000, 40, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Zissimos, A.M.; Abraham, M.H.; Klamt, A.; Eckert, F.; Wood, J. A Comparison between the Two General Sets of Linear Free Energy Descriptors of Abraham and Klamt. J. Chem. Inf. Comput. Sci. 2002, 42, 1320–1331. [Google Scholar] [CrossRef]
- Chung, Y.; Vermeire, F.H.; Wu, H.; Walker, P.J.; Abraham, M.H.; Green, W.H. Group contribution and machine learning approaches to predict Abraham solute parameters, solvation free energy, and solvation enthalpy. J. Chem. Inf. Model. 2022, 62, 433–446. [Google Scholar] [CrossRef]
- Ulrich, N.; Ebert, A. Can deep learning algorithms enhance the prediction of solute descriptors for linear solvation energy relationship approaches? Fluid Phase Equiliba 2022, 555, 113349. [Google Scholar] [CrossRef]
- Conn, J.G.M.; Ahmad, A.; Palmer, D.S. A Machine Learning Free Energy Functional for the 1D Reference Interaction Site Model: Towards Prediction of Solvation Free Energy for All Solvent Systems. Liquids 2024, 4, 710–731. [Google Scholar] [CrossRef]
- Panayiotou, C.; Zuburtikudis, I.; Abu Khalifeh, H. Linear Free-Energy Relationships (LFER) and Solvation Thermodynamics: The Thermodynamic Basis of LFER Linearity. Ind. Eng. Chem. Res. 2023, 62, 2989–3000. [Google Scholar] [CrossRef]
- Panayiotou, C.; Zuburtikudis, I.; Abu Khalifeh, H. Linear Solvation Energy Relationships (LSER) and Equation-of-State Thermodynamics: On the Extraction of Thermodynamic Information from LSER Database. Liquids 2023, 3, 66–89. [Google Scholar] [CrossRef]
- Panayiotou, C.; Acree, W.E.; Zuburtikudis, I. COSMO-RS and LSER models of solution thermodynamics: Towards a COSMO-LSER equation of state model of fluids. J. Mol. Liq. 2023, 390, 122992. [Google Scholar] [CrossRef]
- Panayiotou, C. Quantum Chemical (QC) Calculations and Linear Solvation Energy Relationships (LSER): Hydrogen-Bonding Calculations with New QC-LSER Molecular Descriptors. Liquids 2024, 4, 663–688. [Google Scholar] [CrossRef]
- Zuburtikudis, I.; Acree, W.E.; Panayiotou, C. Prediction of hydrogen-bonding interaction energies with new COSMO-based molecular descriptors. J. Mol. Liq. 2025, 422, 126907. [Google Scholar] [CrossRef]
- Acree, W.E.; Panayiotou, C. Prediction of hydrogen-bonding interaction free-energies with two new molecular descriptors. Liquids 2025, 5, 12. [Google Scholar] [CrossRef]
- Klamt, A.; Schüürmann, J. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc. Perkin Trans. 1993, 2, 799–805. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Klamt, A. COSMO-RS from Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Lin, S.T.; Sandler, S.I. A priori phase equilibrium prediction from a segment contribution solvation model. Ind. Eng. Chem. Res. 2002, 41, 899–913. [Google Scholar] [CrossRef]
- Grensemann, H.; Gmehling, J. Performance of a conductor-like screening model for real solvents model in comparison to classical group contribution methods. Ind. Eng. Chem. Res. 2005, 44, 1610–1624. [Google Scholar] [CrossRef]
- Pye, C.C.; Ziegler, T.; van Lenthe, E.; Louwen, J.N. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package, Part II. COSMO for real solvents. Can. J. Chem. 2009, 87, 790–797. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F.; Arlt, W. COSMO-RS: An alternative to simulation for calculating thermodynamic properties of liquid mixtures. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 101–122. [Google Scholar] [CrossRef]
- COSMObase, ver. 2019; COSMOlogic GmbH &Co. KG (now, BIOVIA Dassault Systemes): Leverkusen, Germany, 2019.
- Bell, I.A.; Mickoleit, E.; Hsieh, C.-M.; Lin, S.-T.; Vrabec, J.; Breitkopf, C.; Jager, A. A Benchmark Open-Source Implementation of COSMO-SAC. J. Chem. Theory Comput. 2020, 16, 2635–2646. [Google Scholar] [CrossRef] [PubMed]
- Katritzky, D.; Fara, E.; Yang, H.; Tamm, K.; Tamm, T.; Karelson, M. Quantitative Measures of Solvent Polarity. Chem. Rev. 2004, 104, 175–198. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Performance of SM6, SM8, and SMD on the SAMPL1 Test Set for the Prediction of Small-Molecule Solvation Free Energies. J. Phys. Chem. B 2009, 113, 4538–4543. [Google Scholar] [CrossRef] [PubMed]
- Laurence, C.; Gal, J.-F. Lewis Basicity and Affinity Scales: Data and Measurements; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Matos, G.D.R.; Kyu, D.Y.; Loeffler, H.H.; Chodera, J.D.; Shirts, M.R.; Mobley, D.L. Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database. J. Chem. Eng. Data 2017, 62, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Cramer, C.J.; Truhlar, D.G. A Universal Approach to Solvation Modeling. Acc. Chem. Res. 2008, 41, 760–768. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Briggs, J.M.; Contreras, M.L. Relative partition coefficients for organic solutes from fluid simulations. J. Phys. Chem. 1990, 94, 1683–1686. [Google Scholar] [CrossRef]
- Nicholls, A.; Mobley, D.L.; Guthrie, J.P.; Chodera, J.D.; Bayly, C.I.; Cooper, M.D.; Pande, V.S. Predicting small-molecule solvation free energies: An informal blind test for computational chemistry. J. Med. Chem. 2008, 51, 769–779. [Google Scholar] [CrossRef]
- Ulrich, N.; Endo, S.; Brown, T.N.; Watanabe, N.; Bronner, G.; Abraham, M.H.; Goss, K.-U. UFZ-LSER Database V 2.1; Helmholtz Centre for Environmental Research-UFZ: Leipzig, Germany, 2015; Available online: https://www.ufz.de/index.php?en=31698&contentonly=1&m=0&lserd_data[mvc]=Public/start (accessed on 4 July 2025).
- TURBOMOLE V7.5 2020, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, Since 2007. Available online: http://www.turbomole.com (accessed on 4 July 2025).
- Available online: https://www.3ds.com/products/biovia/materials-studio (accessed on 4 July 2025).
- Available online: https://www.scm.com/product/cosmo-rs/ (accessed on 4 July 2025).
- NIST Chemistry Webbook. Available online: https://webbook.nist.gov/cgi/cbook.cgi (accessed on 4 July 2025).
- Daubert, T.E.; Danner, R.P. Physical and Thermodynamic Properties of Pure Compounds: Data Compilation, Hemisphere, New York. 2001. Available online: https://www.aiche.org/dippr/events-products/801-database (accessed on 4 July 2025).
- Abbott, S.; Yamamoto, H.; Hansen, C.M. Hansen Solubility Parameters in Practice, Complete with Software, Data and Examples, 3rd ed.; Version 3.1.20; Hansen-Solubility.com: Hørsholm, Denmark, 2010. [Google Scholar]
- Varfolomeev, M.A.; Rakipov, I.T.; Khachatrian, A.A.; Acree, W.E., Jr.; Brumfield, M.; Abraham, M.H. Effect of halogen substitution on the enthalpies of solvation and hydrogen bonding of organic solutes in chlorobenzene and 1,2-dichlorobenzene derived using multi-parameter correlations. Thermochim. Acta 2015, 617, 8–20. [Google Scholar] [CrossRef]
- Schmidt, A.; Zad, M.; Acree, W.E., Jr.; Abraham, M.H. Development of Abraham model correlations for predicting enthalpies of solvation of nonionic solutes dissolved in formamide. Phys. Chem. Liq. 2015, 54, 313–324. [Google Scholar] [CrossRef]
- Stolov, M.A.; Zaitseva, K.V.; Varfolomeev, M.A.; Acree, W.E., Jr. Enthalpies of solution and enthalpies of solvation of organic solutes in ethylene glycol at 298.15 K: Prediction and analysis of intermolecular interaction contributions. Thermochim. Acta 2017, 648, 91–99. [Google Scholar] [CrossRef]
- Varfolomeev, M.A.; Stolov, M.A.; Nagrimanov, R.N.; Rakipov, I.T.; Acree, W.E., Jr.; Abraham, M.H. Analysis of solute-pyridine intermolecular interactions based on experimental enthalpies of solution and enthalpies of solvation of solutes dissolved in pyridine. Thermochim. Acta 2018, 660, 11–17. [Google Scholar] [CrossRef]
- Lu, J.Z.; Acree, W.E., Jr.; Abraham, M.H. Abraham model correlations for enthalpies of solvation of organic solutes dissolved in N,N-Dimethylacetamide, 2-butanone and tetrahydrofuran (UPDATED) at 298.15 K. Phys. Chem. Liq. 2020, 58, 675–692. [Google Scholar] [CrossRef]
- Magsumov, T.I.; Sedov, I.A.; Acree, W.E., Jr. Development of Abraham model correlations for enthalpies of solvation of solutes dissolved in N-methylformamide, 2-pyrrolidone and N-methylpyrrolidone. J. Mol. Liq. 2021, 323, 114609. [Google Scholar] [CrossRef]
- Huang, J.; Eddula, S.; Tirumala, P.; Casillas, T.; Acree, W.E., Jr.; Abraham, M.H. Updated Abraham model correlations to describe enthalpies of solvation of solutes dissolved in heptane, cyclohexane and N,N-dimethylformamide. Phys. Chem. Liq. 2021, 59, 442–453. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr. The transfer of neutral molecules, ions and ionic species from water to ethylene glycol and to propylene carbonate; descriptors for pyridinium cations. New J. Chem. 2010, 34, 2298–2305. [Google Scholar] [CrossRef]
- MAbraham, H.; Acree, W.E., Jr.; Cometto-Muniz, J.E. Partition of compounds from water and from air into amides. New J. Chem. 2009, 33, 2034–2043. [Google Scholar] [CrossRef]
- Stefanis, E.; Panayiotou, C. Prediction of Hansen solubility parameters with a New Group-Contribution Method. Int. J. Thermophys. 2008, 29, 568–585. [Google Scholar] [CrossRef]
- Panayiotou, C. Redefining solubility parameters: The partial solvation parameters. Phys. Chem. Chem. Phys. 2012, 14, 3882–3908. [Google Scholar] [CrossRef] [PubMed]
- Stefanis, E.; Panayiotou, C. A new expanded solubility parameter approach. Int. J. Pharm. 2012, 426, 29–43. [Google Scholar] [CrossRef]
- Panayiotou, C.; Hatzimanikatis, V. The solubility parameters of carbon dioxide and ionic liquids: Are they an enigma? Fluid Phase Equilibria 2021, 527, 112828. [Google Scholar] [CrossRef]
- Hansen, C. Hansen Solubility Parameters—A User’s Handbook, 2nd ed.; CRC Press, Inc.: Boca Raton, FL, USA, 2007. [Google Scholar]
- Thomas, E.R.; Eckert, C.A. Prediction of limiting activity coefficients by a modified separation of cohesive energy density model and UNIFAC. IEC Process Des. Dev. 1984, 23, 194–209. [Google Scholar] [CrossRef]
- Lazzaroni, M.J.; Bush, D.; Eckert, C.A.; Frank, T.C.; Gupta, S.; Olson, J.D. Revision of MOSCED Parameters and Extension to Solid Solubility Calculations. IEC Res. 2005, 44, 4075–4083. [Google Scholar] [CrossRef]
- Dhakal, P.; Paluch, A.S. Assessment and Revision of the MOSCED Parameters for Water: Application to Limiting Activity Coefficients and Binary Liquid-Liquid Equilibrium. IEC Res. 2018, 57, 1689–1695. [Google Scholar] [CrossRef]
SOLVENT | fl | 2RP | RH | AADdp | AADtot |
---|---|---|---|---|---|
n-HEXANE | 1.03 | 1.00 | 0.55 | 0.55 | |
n-HEPTANE | 1.03 | 1.00 | 0.48 | 0.48 | |
n-OCTANE | 1.02 | 1.00 | 0.46 | 0.46 | |
n-NONANE | 1.02 | 1.00 | 0.43 | 0.43 | |
n-DECANE | 1.01 | 1.00 | 0.34 | 0.34 | |
n-UNDECANE | 1.01 | 1.00 | 0.29 | 0.29 | |
n-DODECANE | 1.00 | 1.00 | 0.19 | 0.19 | |
n-HEXADECANE | 1.00 | 1.00 | 0.00 | 0.00 | |
CYCLOHEXANE | 1.03 | 1.00 | 0.37 | 0.37 | |
METHYLCYCLOHEXANE | 1.04 | 1.00 | 0.60 | 0.60 | |
BENZENE | 1.06 | 1.00 | 0.83 | 0.31 | 0.40 |
TOLUENE | 1.03 | 1.00 | 1.00 | 0.30 | 0.36 |
ETHYLBENZENE | 1.05 | 1.00 | 1.00 | 0.31 | 0.45 |
o-XYLENE | 1.05 | 1.00 | 1.00 | 0.29 | 0.44 |
m-XYLENE | 1.06 | 1.00 | 1.00 | 0.43 | 0.40 |
p-XYLENE | 1.03 | 1.00 | 1.00 | 0.33 | 0.44 |
CHLOROBENZENE | 1.02 | 1.00 | 1.00 | 0.35 | 0.40 |
1,4-DIOXANE | 0.90 | 1.00 | 1.00 | 0.38 | 0.61 |
TETRAHYDROFURAN | 1.04 | 1.00 | 1.00 | 0.49 | 0.87 |
DIETHYL ETHER | 0.97 | 1.00 | 2.12 | 0.20 | 0.54 |
DIISOPROPYL ETHER | 1.05 | 1.00 | 1.43 | 0.40 | 0.91 |
DI-n-BUTYL ETHER | 1.05 | 1.00 | 1.00 | 0.48 | 1.03 |
METHYL ACETATE | 0.92 | 1.00 | 1.00 | 0.48 | 0.71 |
ETHYL ACETATE | 0.95 | 1.00 | 1.00 | 0.46 | 0.70 |
n-PROPYL ACETATE | 0.94 | 1.00 | 1.00 | 0.64 | 0.80 |
ISOPROPYL ACETATE | 0.97 | 1.00 | 1.00 | 0.53 | 0.74 |
n-BUTYL ACETATE | 0.98 | 1.00 | 1.00 | 0.40 | 0.62 |
DIETHYL CARBONATE | 0.96 | 1.00 | 1.00 | 0.45 | 0.62 |
DIMETHYL CARBONATE | 0.89 | 1.17 | 1.00 | 0.39 | 0.56 |
TRIBUTYL PHOSPHATE | 0.89 | 0.70 | 0.91 | 0.29 | 0.63 |
ACETONE | 0.89 | 1.00 | 1.00 | 0.42 | 0.64 |
METHYL ETHYL KETONE | 0.94 | 1.00 | 1.08 | 0.42 | 0.66 |
CYCLOPENTANONE | 0.94 | 0.86 | 1.00 | 0.38 | 0.61 |
ACETOPHENONE | 0.85 | 1.00 | 1.00 | 0.50 | 0.54 |
N,N-DIMETHYLFORMAMIDE | 1.01 | 0.59 | 1.00 | 0.71 | 1.12 |
METHANOL | 0.80 | 1.00 | 1.00 | 0.44 | 0.61 |
ETHANOL | 0.85 | 1.00 | 1.00 | 0.19 | 0.45 |
1-PROPANOL | 0.84 | 1.00 | 0.97 | 0.33 | 0.56 |
1-BUTANOL | 0.87 | 1.00 | 0.88 | 0.28 | 0.63 |
1-PENTANOL | 0.90 | 0.73 | 0.89 | 0.23 | 0.57 |
1-HEXANOL | 0.89 | 0.76 | 0.87 | 0.29 | 0.57 |
1-HEPTANOL | 0.91 | 0.71 | 0.81 | 0.22 | 0.61 |
1-OCTANOL | 0.92 | 0.57 | 0.79 | 0.27 | 0.61 |
1-DECANOL | 0.92 | 0.58 | 0.78 | 0.39 | 0.82 |
2-METHYL-1-PROPANOL | 0.89 | 0.78 | 1.00 | 0.21 | 0.43 |
2-METHYL-1-BUTANOL | 0.89 | 0.75 | 0.93 | 0.24 | 0.60 |
3-METHYL-1-BUTANOL | 0.91 | 0.66 | 0.87 | 0.22 | 0.53 |
2-ETHYL-1-HEXANOL | 0.92 | 0.60 | 0.75 | 0.28 | 0.72 |
ISOPROPANOL | 0.86 | 1.00 | 1.00 | 0.21 | 0.51 |
2-METHYL-2-PROPANOL | 0.89 | 0.83 | 1.00 | 0.21 | 0.55 |
2-BUTANOL | 0.88 | 1.00 | 1.00 | 0.25 | 0.47 |
2-PENTANOL | 0.92 | 0.58 | 1.00 | 0.17 | 0.56 |
2-METHYL-2-BUTANOL | 0.92 | 0.83 | 1.00 | 0.24 | 0.61 |
4-METHYL-2-PENTANOL | 0.99 | 0.89 | 0.79 | 0.34 | 0.94 |
CYCLOPENTANOL | 0.92 | 0.52 | 0.88 | 0.28 | 0.57 |
BENZYL ALCOHOL | 0.82 | 0.71 | 0.75 | 0.51 | 0.62 |
2-METHOXYETHANOL c0 | 0.76 | 1.50 | 0.75 | 0.44 | 0.47 |
2-ETHOXYETHANOL c0 | 0.85 | 1.30 | 0.78 | 0.75 | 0.94 |
2-BUTOXYETHANOL | 0.89 | 0.92 | 0.72 | 0.27 | 0.41 |
ETHYLENE GLYCOL c0 | 0.58 | 1.00 | 0.81 | 0.78 | 1.08 |
1,2-PROPYLENE GLYCOL | 0.77 | 0.55 | 0.74 | 0.79 | 0.93 |
DIETHYLENE GLYCOL | 0.65 | 1.00 | 0.56 | 0.78 | 0.78 |
TRIETHYLENE GLYCOL | 0.68 | 0.67 | 0.46 | 0.93 | 0.81 |
ACETIC ACID | 0.79 | 0.88 | 0.71 | 0.32 | 0.88 |
ANILINE | 0.91 | 0.90 | 0.90 | 0.76 | 1.10 |
2-PYRROLIDONE | 0.80 | 0.69 | 1.00 | 0.71 | 1.28 |
NITROMETHANE | 0.80 | 1.32 | 1.65 | 1.34 | 1.81 |
NITROBENZENE | 0.96 | 0.70 | 2.38 | 0.82 | 0.66 |
ACETONITRILE | 0.74 | 1.08 | 1.63 | 0.45 | 0.56 |
PROPIONITRILE | 0.82 | 0.96 | 2.32 | 0.41 | 0.80 |
BUTYRONITRILE | 0.85 | 0.96 | 1.89 | 0.55 | 0.74 |
BENZONITRILE | 0.87 | 0.73 | 2.50 | 0.42 | 0.40 |
PYRIDINE | 0.96 | 1.00 | 1.94 | 0.45 | 0.90 |
DIMETHYL SULFOXIDE | 0.77 | 0.66 | 1.46 | 0.76 | 0.88 |
FORMAMIDE | 0.46 | 0.75 | 0.82 | 1.26 | 1.29 |
PROPYLENE CARBONATE | 0.72 | 0.88 | 1.00 | 0.58 | 0.76 |
WATER | −0.21 | 2.73 | 1.03 | 0.91 | 1.61 |
Overall average absolute deviation | 0.43 | 0.66 |
SOLVENT | ΔGS | ||
---|---|---|---|
Pred | LSER | Exper | |
n-HEXANE | 15.62 | 16.38 | 16.97 |
n-HEPTANE | 18.56 | 18.82 | 18.65 |
n-OCTANE | 21.44 | 21.43 | 23.34 |
n-NONANE | 24.40 | 24.17 | 25.03 |
n-DECANE | 26.23 | 26.93 | 27.85 |
n-UNDECANE | 29.65 | 29.43 | 30.51 |
n-DODECANE | 32.52 | 32.26 | 33.49 |
n-HEXADECANE | 43.20 | 43.20 | 44.55 |
CYCLOHEXANE | 17.20 | 17.86 | 18.54 |
METHYLCYCLOHEXANE | 19.68 | 20.72 | 19.96 |
BENZENE | 18.88 | 18.99 | 19.07 |
TOLUENE | 21.80 | 21.60 | 21.63 |
ETHYLBENZENE | 23.77 | 23.88 | 24.00 |
o-XYLENE | 24.66 | 24.93 | 24.92 |
m-XYLENE | 24.24 | 24.32 | 25.06 |
p-XYLENE | 24.09 | 24.21 | 24.17 |
CHLOROBENZENE | 23.45 | 24.17 | 23.88 |
1,4-DIOXANE | 21.16 | 21.30 | 21.54 |
TETRAHYDROFURAN | 18.16 | 18.82 | 17.70 |
DIETHYL ETHER | 14.10 | 13.90 | 14.41 |
DIISOPROPYL ETHER | 15.70 | 16.11 | 16.37 |
DI-n-BUTYL ETHER | 24.39 | 22.78 | 23.99 |
METHYL ACETATE | 16.17 | 16.36 | 17.31 |
ETHYL ACETATE | 17.71 | 17.63 | 18.81 |
n-PROPYL ACETATE | 20.74 | 20.17 | 21.06 |
ISOPROPYL ACETATE | 18.87 | 19.01 | 19.52 |
n-BUTYL ACETATE | 22.66 | 18.04 | 23.21 |
DIETHYL CARBONATE | 23.55 | 23.85 | 23.89 |
DIMETHYL CARBONATE | 17.78 | 17.33 | 24.59 |
TRIBUTYL PHOSPHATE | 44.70 | 44.27 | |
ACETONE | 16.02 | 16.40 | 17.33 |
METHYL ETHYL KETONE | 18.06 | 18.66 | 19.19 |
CYCLOPENTANONE | 23.87 | 24.30 | 24.59 |
ACETOPHENONE | 30.02 | 31.66 | 32.63 |
N,N-DIMETHYLFORMAMIDE | 29.17 | 29.83 | 27.48 |
METHANOL | 20.01 | 19.94 | 20.29 |
ETHANOL | 20.60 | 20.55 | 21.30 |
1-PROPANOL | 22.88 | 22.58 | 23.31 |
ISOPROPANOL | 20.58 | 20.23 | 21.39 |
1-BUTANOL | 24.94 | 24.88 | 25.64 |
2-BUTANOL | 22.78 | 23.43 | 23.17 |
1-PENTANOL | 27.54 | 27.63 | 27.20 |
2-PENTANOL | 26.42 | 25.96 | 25.35 |
1-HEXANOL | 29.98 | 30.01 | 29.94 |
1-HEPTANOL | 32.05 | 32.43 | 32.14 |
1-OCTANOL | 34.12 | 34.48 | 34.14 |
1-DECANOL | 39.59 | 40.10 | 38.30 |
2-METHYL-1-PROPANOL | 23.82 | 23.77 | 24.22 |
2-METHYL-1-BUTANOL | 26.34 | 26.71 | 26.74 |
3-METHYL-1-BUTANOL | 26.89 | 26.94 | 26.87 |
2-ETHYL-1-HEXANOL | 33.05 | 33.57 | 32.96 |
2-METHYL-2-PROPANOL | 20.80 | 20.88 | 20.92 |
2-METHYL-2-BUTANOL | 24.87 | 24.87 | 23.10 |
4-METHYL-2-PENTANOL | 27.26 | 27.39 | 25.51 |
CYCLOPENTANOL | 27.80 | 27.60 | 26.45 |
BENZYL ALCOHOL | 35.43 | 35.43 | 36.25 |
2-METHOXYETHANOL c0 | 23.31 | 24.36 | 24.77 |
2-ETHOXYETHANOL c0 | 27.63 | 27.18 | 26.21 |
2-BUTOXYETHANOL | 30.13 | 30.76 | 29.76 |
ETHYLENE GLYCOL c0 | 37.15 | 36.96 | 39.21 |
1,2-PROPYLENE GLYCOL | 35.21 | 35.36 | 37.07 |
DIETHYLENE GLYCOL | 38.98 | 38.30 | 45.60 |
TRIETHYLENE GLYCOL | 49.87 | 50.03 | |
ACETIC ACID | 28.26 | 27.72 | 24.73 |
ANILINE | 28.84 | 31.98 | 31.58 |
2-PYRROLIDONE | 42.70 | 41.64 | 42.70 |
NITROMETHANE | 21.16 | 22.73 | 22.88 |
NITROBENZENE | 32.53 | 33.96 | 33.65 |
ACETONITRILE | 20.29 | 20.36 | 20.60 |
PROPIONITRILE | 19.90 | 20.85 | 21.46 |
BUTYRONITRILE | 21.86 | 21.98 | 23.07 |
BENZONITRILE | 29.61 | 30.19 | 31.60 |
PYRIDINE | 23.35 | 22.90 | 23.07 |
DIMETHYL SULFOXIDE | 38.32 | 38.81 | 32.71 |
FORMAMIDE | 42.55 | 40.97 | |
PROPYLENE CARBONATE | 31.18 | 31.69 | 44.14 |
WATER | 27.97 | 27.29 | 26.68 |
Solvent | fv | RP | RH | ΔHvap Pred | ΔHvap LSER | ΔHvap,exp [60,61] | AADtot |
---|---|---|---|---|---|---|---|
n-HEXANE | 5.60 | 30.47 | 30.87 | 31.54 | 0.89 | ||
n-HEPTANE | 5.60 | 35.30 | 36.04 | 36.57 | 0.86 | ||
n-OCTANE | 5.60 | 40.18 | 40.74 | 41.51 | 0.88 | ||
n-HEXADECANE | 5.60 | 80.37 | 80.03 | 81.38 | 0.86 | ||
CYCLOHEXANE | 5.39 | 2.05 | 29.75 | 30.51 | 33.05 | 0.72 | |
BENZENE | 4.90 | 1.50 | 4.00 | 36.77 | 35.84 | 33.75 | 1.17 |
TOLUENE | 5.04 | 0.50 | 3.05 | 39.72 | 38.65 | 39.00 | 0.98 |
p-XYLENE | 5.43 | 1.52 | 3.30 | 44.67 | 43.26 | 42.40 | 1.24 |
DICHLOROMETHANE | 4.64 | 1.27 | 2.90 | 25.02 | 26.70 | 28.80 | 1.19 |
CHLOROFORM | 5.13 | 1.54 | 3.50 | 28.40 | 31.30 | 31.31 | 1.62 |
CARBON TETRACHLORIDE | 5.34 | 1.40 | 30.17 | 30.83 | 32.43 | 0.88 | |
1,4-DIOXANE | 4.50 | 1.18 | 1.95 | 36.70 | 38.12 | 38.60 | 2.21 |
TETRAHYDROFURAN | 5.11 | 1.55 | 2.20 | 30.13 | 32.52 | 32.00 | 1.98 |
DI-n-BUTYL ETHER | 5.52 | 1.90 | 4.41 | 44.95 | 45.06 | 45.00 | 1.67 |
METHYL ACETATE | 4.47 | 1.23 | 1.90 | 31.86 | 31.48 | 33.00 | 2.37 |
ETHYL ACETATE | 4.73 | 1.19 | 2.00 | 33.58 | 33.79 | 35.14 | 1.69 |
DIETHYL CARBONATE | 4.99 | 1.28 | 2.00 | 40.08 | 41.71 | 45.12 | 1.72 |
DIMETHYL CARBONATE | 4.90 | 1.16 | 2.50 | 39.29 | 40.70 | 37.70 | 2.10 |
ACETONE | 4.29 | 1.00 | 2.46 | 30.66 | 32.12 | 31.90 | 2.51 |
METHYLETHYLKETONE | 4.90 | 0.95 | 2.81 | 31.92 | 34.89 | 34.80 | 2.75 |
DIMETHYL SULFOXIDE | 3.59 | 0.50 | 2.79 | 59.79 | 61.98 | 52.90 | 2.33 |
N,N-DIMETHYLFORMAMIDE | 4.12 | 0.60 | 2.31 | 47.38 | 53.05 | 46.90 | 3.57 |
PYRIDINE | 4.41 | 0.88 | 3.80 | 43.17 | 42.44 | 40.20 | 2.08 |
N-METHYLFORMAMIDE | 4.55 | 0.49 | 1.33 | 58.64 | 57.18 | 54.40 | 1.20 |
FORMAMIDE | 4.34 | 0.29 | 1.27 | 63.19 | 60.84 | 60.20 | 2.37 |
METHANOL | 4.59 | 1.00 | 1.73 | 38.75 | 38.29 | 37.80 | 1.26 |
ETHANOL | 4.82 | 1.00 | 1.95 | 41.09 | 42.01 | 42.30 | 2.25 |
1-PROPANOL | 5.08 | 0.52 | 2.03 | 44.45 | 46.05 | 47.50 | 2.71 |
1-BUTANOL | 5.25 | 0.78 | 1.95 | 50.07 | 50.64 | 52.10 | 2.83 |
1-PENTANOL | 5.34 | 0.49 | 2.08 | 55.26 | 55.91 | 56.90 | 2.38 |
1-HEXANOL | 5.34 | 0.61 | 1.90 | 58.33 | 58.59 | 61.60 | 1.65 |
1-OCTANOL | 5.43 | 0.45 | 2.12 | 69.26 | 70.67 | 70.98 | 2.90 |
2-METHYL-1-PROPANOL | 5.25 | 0.71 | 1.95 | 46.78 | 46.93 | 51.00 | 3.59 |
ISOPROPANOL | 4.73 | 0.94 | 1.97 | 41.43 | 40.59 | 45.34 | 2.78 |
2-METHYL-2-PROPANOL | 4.90 | 0.15 | 2.57 | 48.13 | 46.29 | 46.80 | 1.79 |
2-BUTANOL | 5.08 | 0.17 | 2.25 | 48.13 | 46.29 | 49.70 | 1.87 |
ETHYLENE GLYCOL | 4.64 | 0.38 | 1.45 | 67.77 | 66.72 | 66.00 | 3.75 |
ACETIC ACID | 4.73 | 1.00 | 1.12 | 48.45 | 52.38 | 51.60 | 2.55 |
2-PYRROLIDONE | 4.26 | 0.40 | 1.91 | 63.20 | 64.52 | 69.10 | 1.35 |
PROPYLENE CARBONATE | 4.38 | 0.65 | 1.70 | 50.94 | 53.63 | 60.00 | 2.15 |
ACETONITRILE | 3.91 | 0.90 | 4.08 | 34.28 | 35.19 | 32.93 | 1.88 |
WATER | 3.92 | 0.22 | 1.48 | 57.01 | 54.02 | 44.00 | 3.02 |
Average | 1.97 |
Solvent | AAD Pred | AAD LSER | ΔHvap Pred | ΔHvapV LSER | ΔHvapL LSER | ΔHvap,exp [60,61] |
n-HEXANE | 0.89 | 1.70 | 30.47 | 30.21 | 31.54 | 31.54 |
n-HEPTANE | 0.86 | 1.66 | 35.30 | 35.62 | 36.22 | 36.57 |
n-OCTANE | 0.88 | 1.61 | 40.18 | 39.46 | 42.01 | 41.51 |
n-HEXADECANE | 0.86 | 1.55 | 80.37 | 81.89 | 78.17 | 81.38 |
CYCLOHEXANE | 0.72 | 2.17 | 29.75 | 28.68 | 32.33 | 33.05 |
BENZENE | 0.91 | 1.43 | 34.32 | 32.59 | 32.09 | 33.75 |
TOLUENE | 0.97 | 1.50 | 39.31 | 38.29 | 37.80 | 39.00 |
p-XYLENE | 1.01 | 1.56 | 40.38 | 43.30 | 43.22 | 42.40 |
DICHLOROMETHANE | 1.11 | 1.66 | 24.59 | 24.56 | 27.13 | 28.80 |
CHLOROFORM | 1.34 | 1.42 | 28.40 | 29.91 | 31.18 | 31.31 |
CARBON TETRACHLORIDE | 0.88 | 1.60 | 30.17 | 30.00 | 31.71 | 32.43 |
1,4-DIOXANE | 1.56 | 1.51 | 36.70 | 37.04 | 39.21 | 38.60 |
TETRAHYDROFURAN | 1.20 | 1.67 | 30.13 | 30.22 | 34.82 | 32.00 |
DI-n-BUTYL ETHER | 0.99 | 1.70 | 44.95 | 45.83 | 44.28 | 45.00 |
METHYL ACETATE | 1.83 | 3.15 | 31.86 | 30.19 | 32.76 | 33.00 |
ETHYL ACETATE | 1.19 | 1.84 | 33.58 | 33.78 | 33.80 | 35.14 |
PROPYLENE CARBONATE | 0.87 | 6.21 | 46.21 | 43.70 | 43.18 | 60.00 |
DIETHYL CARBONATE | 1.31 | 1.68 | 40.08 | 40.14 | 43.28 | 45.12 |
DIMETHYL CARBONATE | 1.67 | 1.59 | 39.29 | 31.40 | 31.89 | 37.70 |
ACETONE | 1.30 | 1.97 | 29.73 | 28.97 | 28.59 | 31.90 |
METHYLETHYLKETONE | 0.84 | 1.41 | 31.92 | 32.13 | 31.58 | 34.80 |
DIMETHYL SULFOXIDE | 0.95 | 1.04 | 56.86 | 56.99 | 56.32 | 52.90 |
N,N-DIMETHYLFORMAMIDE | 0.97 | 1.21 | 46.94 | 47.38 | 46.57 | 46.90 |
PYRIDINE | 1.31 | 1.12 | 36.33 | 37.12 | 36.93 | 40.20 |
Self-Associated Solvents | ||||||
AAD Pred | AAD LSER | (D + P) Pred | (D + P)V LSER | (D + P)L LSER | (D + P)δ [62] | |
N-METHYLFORMAMIDE | 0.94 | 1.43 | 38.76 | 38.57 | 37.68 | 38.70 |
FORMAMIDE | 0.90 | 1.15 | 27.85 | 27.46 | 29.18 | 40.24 |
METHANOL | 1.07 | 1.43 | 15.79 | 14.35 | 15.28 | 16.66 |
ETHANOL | 1.12 | 1.75 | 18.37 | 16.98 | 19.11 | 20.16 |
1-PROPANOL | 1.20 | 1.48 | 21.02 | 21.63 | 23.67 | 23.73 |
1-BUTANOL | 0.86 | 1.51 | 27.98 | 26.84 | 29.12 | 26.96 |
1-PENTANOL | 0.82 | 1.58 | 30.63 | 30.43 | 32.91 | 31.01 |
1-HEXANOL | 0.94 | 1.46 | 35.56 | 35.09 | 37.38 | 35.96 |
1-OCTANOL | 1.08 | 1.63 | 13.70 | 45.06 | 46.55 | 48.09 |
2-METHYL-1-PROPANOL | 1.03 | 1.95 | 25.62 | 25.09 | 26.51 | 24.94 |
ISOPROPANOL | 1.09 | 1.65 | 20.24 | 20.67 | 21.13 | 22.95 |
2-METHYL-2-PROPANOL | 1.05 | 1.94 | 22.54 | 21.31 | 19.10 | 20.99 |
2-BUTANOL | 0.89 | 1.80 | 22.54 | 22.60 | 23.74 | 26.99 |
ACETIC ACID | 1.03 | 1.99 | 23.54 | 21.43 | 25.44 | 21.62 |
ETHYLENE GLYCOL | 1.28 | 10.35 | 23.30 | 28.17 | 28.74 | 23.76 |
2-PYRROLIDONE | 0.95 | 5.97 | 45.29 | 48.93 | 47.89 | 38.99 |
PROPYLENE CARBONATE | 0.87 | 6.21 | 46.21 | 43.70 | 43.18 | 61.68 |
ACETONITRILE | 0.99 | 1.23 | 31.87 | 30.86 | 31.17 | 32.93 |
WATER | 0.94 | 1.21 | 4.30 | 3.79 | 1.62 | 9.50 |
Average | 1.06 | 2.09 |
Solvent | E-PSP/MPa0.5 | HSP/MPa0.5 | ||||
---|---|---|---|---|---|---|
εD | εP | εH | δD | δP | δH | |
n-HEXANE | 15.2 | 0.0 | 0.0 | 14.9 | 0.0 | 0.0 |
n-HEPTANE | 15.5 | 0.0 | 0.0 | 15.3 | 0.0 | 0.0 |
n-OCTANE | 15.7 | 0.0 | 0.0 | 15.5 | 0.0 | 0.0 |
n-HEXADECANE | 16.5 | 0.0 | 0.0 | 16.2 | 0.0 | 0.0 |
CYCLOHEXANE | 16.4 | 2.3 | 0.0 | 16.8 | 0.0 | 0.2 |
BENZENE | 17.2 | 9.5 | 2.5 | 18.4 | 0.0 | 2.0 |
TOLUENE | 17.1 | 5.1 | 2.0 | 18.0 | 1.4 | 2.0 |
p-XYLENE | 17.5 | 7.4 | 1.7 | 17.6 | 1.0 | 3.1 |
DICHLOROMETHANE | 16.2 | 10.8 | 2.4 | 18.2 | 6.3 | 6.1 |
CHLOROFORM | 16.6 | 8.7 | 0.0 | 17.8 | 3.1 | 5.7 |
CARBON TETRACHLORIDE | 16.7 | 5.6 | 0.0 | 17.8 | 0.0 | 0.6 |
1,4-DIOXANE | 15.5 | 13.7 | 0.0 | 19.0 | 1.8 | 7.4 |
TETRAHYDROFURAN | 15.9 | 10.7 | 0.0 | 16.8 | 5.7 | 8.0 |
DI-n-BUTYL ETHER | 15.6 | 4.5 | 0.0 | 15.3 | 3.4 | 3.3 |
METHYL ACETATE | 14.4 | 13.9 | 0.0 | 15.5 | 7.2 | 7.6 |
ETHYL ACETATE | 14.6 | 11.3 | 0.0 | 15.8 | 5.3 | 7.2 |
DIETHYL CARBONATE | 15.0 | 10.2 | 0.0 | 15.1 | 6.3 | 3.5 |
DIMETHYL CARBONATE | 15.2 | 12.4 | 0.0 | 15.5 | 8.6 | 9.7 |
ACETONE | 14.2 | 14.1 | 2.3 | 15.5 | 10.4 | 7.0 |
METHYLETHYLKETONE | 15.1 | 11.2 | 0.0 | 16.0 | 9.0 | 5.1 |
DIMETHYL SULFOXIDE | 15.8 | 23.4 | 6.5 | 18.4 | 16.4 | 10.2 |
N,N-DIMETHYLFORMAMIDE | 15.6 | 19.1 | 2.5 | 17.4 | 13.7 | 11.3 |
PYRIDINE | 17.0 | 12.6 | 9.3 | 19.0 | 8.8 | 5.9 |
N-METHYLFORMAMIDE | 17.0 | 19.2 | 18.4 | 17.4 | 18.8 | 15.9 |
FORMAMIDE | 18.5 | 18.9 | 29.8 | 17.2 | 26.2 | 19.0 |
METHANOL | 16.1 | 11.4 | 23.8 | 15.1 | 12.3 | 22.3 |
ETHANOL | 15.7 | 8.2 | 19.7 | 15.8 | 8.8 | 19.4 |
1-PROPANOL | 15.9 | 5.2 | 17.7 | 16.0 | 6.8 | 17.4 |
1-BUTANOL | 16.2 | 5.7 | 15.9 | 16.0 | 5.7 | 15.8 |
1-PENTANOL | 16.3 | 4.1 | 15.1 | 15.9 | 4.5 | 13.9 |
1-HEXANOL | 16.3 | 4.3 | 13.5 | 15.9 | 5.8 | 12.5 |
1-OCTANOL | 16.5 | 3.0 | 12.5 | 17.0 | 3.3 | 11.9 |
2-METHYL-1-PROPANOL | 16.0 | 4.4 | 15.1 | 15.1 | 5.7 | 15.9 |
ISOPROPANOL | 15.2 | 5.8 | 16.6 | 15.8 | 6.1 | 16.4 |
2-METHYL-2-PROPANOL | 17.1 | 2.2 | 18.4 | 15.2 | 5.1 | 14.7 |
2-BUTANOL | 15.9 | 2.3 | 15.6 | 15.8 | 5.7 | 14.5 |
ETHYLENE GLYCOL | 17.6 | 10.6 | 28.2 | 17.0 | 11.0 | 26.0 |
ACETIC ACID | 16.1 | 12.1 | 21.0 | 14.5 | 8.0 | 13.5 |
2-PYRROLIDONE | 16.9 | 17.4 | 15.3 | 18.2 | 12.0 | 9.0 |
PROPYLENE CARBONATE | 15.5 | 18.8 | 3.7 | 20.0 | 18.0 | 4.1 |
ACETONITRILE | 14.5 | 19.8 | 6.8 | 15.3 | 18.0 | 6.1 |
WATER | 13.5 | 7.4 | 47.6 | 15.5 | 16.0 | 42.3 |
SOLVENT | γd | γP | γH | γ |
---|---|---|---|---|
n-HEXANE | 10.9 | 0.0 | 0.0 | 10.9 |
n-HEPTANE | 11.2 | 0.0 | 0.0 | 11.2 |
n-OCTANE | 11.5 | 0.0 | 0.0 | 11.5 |
n-NONANE | 11.7 | 0.0 | 0.0 | 11.7 |
n-DECANE | 11.7 | 0.0 | 0.0 | 11.7 |
n-UNDECANE | 11.9 | 0.0 | 0.0 | 11.9 |
n-DODECANE | 11.9 | 0.0 | 0.0 | 11.9 |
n-HEXADECANE | 12.2 | 0.0 | 0.0 | 12.2 |
CYCLOHEXANE | 12.5 | 1.2 | 0.0 | 12.5 |
BENZENE | 13.3 | 5.5 | 1.2 | 14.5 |
TOLUENE | 13.3 | 5.1 | 1.2 | 14.3 |
ETHYLBENZENE | 13.3 | 3.6 | 1.3 | 13.9 |
o-XYLENE | 13.7 | 3.7 | 1.5 | 14.3 |
m-XYLENE | 13.6 | 3.6 | 1.5 | 14.1 |
p-XYLENE | 13.2 | 4.2 | 1.5 | 14.0 |
CHLOROBENZENE | 14.1 | 5.4 | 0.8 | 15.1 |
1,4-DIOXANE | 12.9 | 8.9 | 12.5 | 20.0 |
TETRAHYDROFURAN | 13.6 | 6.1 | 12.6 | 19.5 |
DIETHYL ETHER | 10.3 | 3.6 | 7.5 | 13.2 |
DIISOPROPYL ETHER | 10.3 | 2.1 | 5.3 | 11.8 |
DI-n-BUTYL ETHER | 11.7 | 2.3 | 4.0 | 12.6 |
METHYL ACETATE | 11.1 | 8.9 | 11.1 | 18.0 |
ETHYL ACETATE | 11.2 | 7.3 | 10.0 | 16.7 |
n-PROPYL ACETATE | 11.4 | 7.0 | 9.2 | 16.3 |
ISOPROPYL ACETATE | 10.9 | 6.4 | 8.8 | 15.4 |
n-BUTYL ACETATE | 11.8 | 5.5 | 8.2 | 15.4 |
DIETHYL CARBONATE | 12.4 | 6.4 | 7.1 | 15.6 |
DIMETHYL CARBONATE | 11.5 | 8.8 | 8.2 | 16.6 |
TRIBUTYL PHOSPHATE | 11.8 | 4.8 | 9.2 | 15.7 |
ACETONE | 10.7 | 10.0 | 12.8 | 19.4 |
METHYL ETHYL KETONE | 11.6 | 8.1 | 10.4 | 17.6 |
CYCLOPENTANONE | 13.7 | 9.0 | 10.2 | 19.3 |
ACETOPHENONE | 13.3 | 8.3 | 8.9 | 18.0 |
N,N-DIMETHYLFORMAMIDE | 15.1 | 13.4 | 15.1 | 25.2 |
METHANOL | 9.9 | 8.0 | 22.4 | 25.8 |
ETHANOL | 10.9 | 5.8 | 18.4 | 22.2 |
1-PROPANOL | 11.2 | 5.1 | 16.4 | 20.5 |
1-BUTANOL | 11.7 | 4.6 | 14.2 | 19.0 |
1-PENTANOL | 12.0 | 3.6 | 13.1 | 18.1 |
1-HEXANOL | 12.0 | 3.4 | 12.2 | 17.5 |
1-HEPTANOL | 12.2 | 2.9 | 11.1 | 16.7 |
1-OCTANOL | 12.3 | 2.4 | 10.4 | 16.3 |
1-DECANOL | 12.3 | 2.1 | 9.2 | 15.5 |
2-METHYL-1-PROPANOL | 11.3 | 3.2 | 13.6 | 18.0 |
2-METHYL-1-BUTANOL | 11.8 | 3.5 | 12.0 | 17.2 |
3-METHYL-1-BUTANOL | 11.8 | 3.5 | 12.5 | 17.6 |
2-ETHYL-1-HEXANOL | 12.1 | 2.8 | 9.7 | 15.8 |
ISOPROPANOL | 10.5 | 4.2 | 15.8 | 19.4 |
2-METHYL-2-PROPANOL | 11.4 | 3.6 | 15.6 | 19.6 |
2-BUTANOL | 11.1 | 3.9 | 13.8 | 18.1 |
2-PENTANOL | 11.5 | 2.9 | 13.2 | 17.7 |
2-METHYL-2-BUTANOL | 11.1 | 3.3 | 12.8 | 17.2 |
4-METHYL-2-PENTANOL | 11.9 | 3.2 | 10.7 | 16.3 |
CYCLOPENTANOL | 13.3 | 4.4 | 13.1 | 19.2 |
BENZYL ALCOHOL | 13.4 | 7.3 | 12.7 | 19.9 |
2-METHOXYETHANOL c0 | 11.5 | 8.0 | 17.5 | 22.4 |
2-ETHOXYETHANOL c0 | 11.6 | 6.7 | 14.5 | 19.7 |
2-BUTOXYETHANOL | 11.9 | 4.8 | 13.4 | 18.6 |
ETHYLENE GLYCOL c0 | 12.2 | 12.2 | 26.0 | 31.2 |
1,2-PROPYLENE GLYCOL | 12.9 | 7.4 | 22.4 | 26.9 |
DIETHYLENE GLYCOL | 11.5 | 10.4 | 19.8 | 25.2 |
TRIETHYLENE GLYCOL | 12.0 | 10.5 | 18.5 | 24.4 |
ACETIC ACID | 12.2 | 8.1 | 17.7 | 22.9 |
ANILINE | 14.4 | 7.8 | 8.2 | 18.4 |
2-PYRROLIDONE | 14.2 | 16.2 | 16.6 | 27.2 |
NITROMETHANE | 12.3 | 15.9 | 6.0 | 21.0 |
NITROBENZENE | 15.2 | 9.9 | 3.9 | 18.5 |
ACETONITRILE | 11.4 | 15.4 | 9.1 | 21.2 |
PROPIONITRILE | 11.5 | 11.8 | 9.1 | 18.8 |
BUTYRONITRILE | 11.7 | 10.3 | 7.2 | 17.2 |
BENZONITRILE | 13.5 | 9.8 | 6.4 | 17.9 |
PYRIDINE | 13.9 | 9.5 | 12.7 | 21.1 |
DIMETHYL SULFOXIDE | 14.1 | 19.0 | 18.4 | 29.9 |
FORMAMIDE | 12.0 | 21.5 | 29.2 | 38.2 |
PROPYLENE CARBONATE | 12.0 | 15.4 | 10.2 | 22.0 |
WATER | −4.1 | 18.5 | 33.2 | 38.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acree, W.E., Jr.; Panayiotou, C. Dispersion, Polar, and Hydrogen-Bonding Contributions to Solvation Free Energies. Liquids 2025, 5, 25. https://doi.org/10.3390/liquids5040025
Acree WE Jr., Panayiotou C. Dispersion, Polar, and Hydrogen-Bonding Contributions to Solvation Free Energies. Liquids. 2025; 5(4):25. https://doi.org/10.3390/liquids5040025
Chicago/Turabian StyleAcree, William E., Jr., and Costas Panayiotou. 2025. "Dispersion, Polar, and Hydrogen-Bonding Contributions to Solvation Free Energies" Liquids 5, no. 4: 25. https://doi.org/10.3390/liquids5040025
APA StyleAcree, W. E., Jr., & Panayiotou, C. (2025). Dispersion, Polar, and Hydrogen-Bonding Contributions to Solvation Free Energies. Liquids, 5(4), 25. https://doi.org/10.3390/liquids5040025