Bifunctional HLD–NAC for Clove Oil Microemulsions
Abstract
1. Introduction
2. Model Development
2.1. Algorithm
2.2. Inputs
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Salinity Scans to Assess Clove Oil’s Characteristic Curvature (Cc)
3.2.2. Hydrophilic Linker (HL, PG10C) Scans for Clove Oil Systems
3.2.3. High-Performance Liquid Chromatography (HPLC) Analysis
3.2.4. Interfacial Tension (IFT) Measurements
3.2.5. Estimation of Eugenol Content in Clove Oil
4. Results
4.1. Assessment of Eugenol Cc via the Surfactant-Only Simplifying Assumption
4.2. Prediction of Phase Behavior of Eugenol–Heptane μEs in LLMs (0.5% Lecithin)
4.3. Fitting the Phase Behavior of Eugenol–Heptane μEs
4.4. Prediction of Characteristic Length (ξ) in Polar Oil Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cc | Characteristic curvature |
Ci,po | Initial concentration of the polar oil in the oil phase |
Ce,po | Concentration, at equilibrium, of the polar oil in the oil phase after segregation |
Cs | Surfactant concentration (assumed to be the concentration in the oil phase as if all the surfactant was introduced through the oil phase) (in mol/L or M) |
EACN | Equivalent alkane carbon number of the oil |
Er | Interfacial rigidity (expressed as thermal energy, KBT) |
Ha | Average curvature |
Hn | Net curvature |
HLD | Hydrophilic–lipophilic difference |
IFT | Interfacial tension |
Km | Segregation (Partition) constant (in M−1) |
LLM | Lecithin-linker microemulsions |
L | Surfactant tail length parameter (1.4 times extended tail length) (in Å) |
NAC | Net-average curvature |
OFT | Overlap Factor Theory |
PG10C | Propylene glycol-10 caprylate |
q | Molar ratio of polar oil segregated/surfactant at the interface |
qmax | Maximum molar ratio of polar oil segregated/surfactant at the interface |
Vm | Molecular volume of the oil |
vs/as | Volume-to-neck area ratio for one surfactant molecule |
vt/as | Tail volume-to-neck area ratio for one surfactant molecule |
xi | Molar fraction of surfactant “i” in the surfactant mixture |
μE | Microemulsion |
ξ | Characteristic length (maximum μE size) |
ξH | μE size (=1/Ha) |
ρ | Density (in g/mL) |
References
- Kamatou, G.P.; Vermaak, I.; Viljoen, A.M. Eugenol—From the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule. Molecules 2012, 17, 6953–6981. [Google Scholar] [CrossRef]
- Li, Y.X.; Erhunmwunsee, F.; Liu, M.; Yang, K.; Zheng, W.; Tian, J. Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chem. 2022, 382, 132312. [Google Scholar] [CrossRef]
- Alma, M.H.; Ertaş, M.; Nitz, S.; Kollmannsberger, H. Chemical composition and content of essential oil from the bud of cultivated Turkish clove (Syzygium aromaticum L.). BioResources 2007, 2, 265–269. [Google Scholar] [CrossRef]
- Future Market Insights Inc. Cloves Market Analysis by Form, Application, Distribution Channel and End Use Through 2035. Reports. 2025. Available online: https://www.futuremarketinsights.com/reports/cloves-market (accessed on 23 May 2025).
- Gaysinsky, S.; Taylor, T.M.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Antimicrobial efficacy of eugenol microemulsions in milk against Listeria monocytogenes and Escherichia coli O157:H7. J. Food Prot. 2007, 70, 2631–2637. [Google Scholar] [CrossRef] [PubMed]
- Al-Okbi, S.Y.; Mohamed, D.A.; Hamed, T.E.; Edris, A.E. Protective effect of clove oil and eugenol microemulsions on fatty liver and dyslipidemia as components of metabolic syndrome. J. Med. Food 2014, 17, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Kheawfu, K.; Pikulkaew, S.; Rades, T.; Müllertz, A.; Okonogi, S. Development and characterization of clove oil nanoemulsions and self-microemulsifying drug delivery systems. J. Drug Deliv. Sci. Technol. 2018, 46, 330–338. [Google Scholar] [CrossRef]
- Gross, I.P.; Lima, A.L.; Sousa, E.C.; Souza, M.S.; Cunha-Filho, M.; da Silva, I.C.R.; Orsi, D.C.; Sá-Barreto, L.L. Antimicrobial and acaricide sanitizer tablets produced by wet granulation of spray-dried soap and clove oil-loaded microemulsion. PLoS ONE 2024, 19, e0313517. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, D.; Gao, P.; Ding, P.; Li, K. Synthesis of ibuprofen eugenol ester and its microemulsion formulation for parenteral delivery. Chem. Pharm. Bull. 2005, 53, 1246–1250. [Google Scholar] [CrossRef]
- Acosta, E.J.; Gangopadhyay, K.; Chan, J.; Sabatini, D.A. HLD-guided design of vegetable oil extraction technology. In Surfactant Formulation Engineering Using HLD and NAC, 1st ed.; Acosta, E.J., Harwell, J.H., Sabatini, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 151–166. [Google Scholar]
- Tan, J.X. Extraction of Clove Oil with Lecithin-Based Microemulsions Guided by the Hydrophilic-Lipophilic-Difference (HLD) and Net-Average-Curvature (NAC) Model. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2022. [Google Scholar]
- Tchakalova, V.; Testard, F.; Wong, K.; Parker, A.; Benczédi, D.; Zemb, T. Solubilization and interfacial curvature in microemulsions. I. Interfacial expansion and co-extraction of oil. Colloids Surf. A Physicochem. Eng. Asp. 2008, 331, 31–39. [Google Scholar] [CrossRef]
- Acosta, E.J.; Ghayour, A.; Boza-Troncoso, A.; Hill, R.; Harwell, J.H. Effect of oils and additives on the hydrophilic-lipophilic difference (HLD). In Surfactant Formulation Engineering Using HLD and NAC, 1st ed.; Acosta, E.J., Harwell, J.H., Sabatini, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 49–98. ISBN 9780128214824. [Google Scholar]
- Sellaturay, P.; Nasser, S.; Islam, S.; Gurugama, P.; Ewan, P.W. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. Clin. Exp. Allergy 2021, 51, 861–863. [Google Scholar] [CrossRef]
- Nouraei, M.; Acosta, E.J. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions. J. Colloid Interface Sci. 2017, 495, 178–190. [Google Scholar] [CrossRef]
- Nouraei, M.; Collymore, C.; Diosady, L.; Acosta, E. HLD-NAC design and evaluation of a fully dilutable lecithin-linker SMEDDS for ibuprofen. Int. J. Pharm. 2021, 610, 121237. [Google Scholar] [CrossRef]
- Doratt Mendoza, J.; Ding, J.; Acosta Alvarez, M.; Acosta, E. Yeast Viability in HLD–NAC-Designed Fully Dilutable Lecithin-Linker Microemulsions. Molecules 2025, 30, 921. [Google Scholar] [CrossRef]
- Salager, J.L. Physico-Chemical Properties of Surfactant-Water-Oil Mixtures: Phase Behavior, Microemulsion Formation and Interfacial Tension. Ph.D. Thesis, University of Texas, Austin, TX, USA, 1977. [Google Scholar]
- Salager, J.L.; Marquez, N.; Graciaa, A.; Lachaise, J. Partitioning of ethoxylated octylphenol surfactants in microemulsion-oil-water systems: Influence of temperature and relation between partitioning coefficient and physicochemical formulation. Langmuir 2000, 16, 5534–5539. [Google Scholar] [CrossRef]
- Acosta, E.; Perez-Franco, R.; Zhuotao, L.; Cordeiro, B.; Tan, J.X.; Boza-Troncoso, A.; Hammond, C.; Zarate-Muñoz, S.; Harwel, J. The hydrophobicity of surfactants and surfactant-oil-water (SOW) systems. In Surfactant Formulation Engineering Using HLD and NAC, 1st ed.; Acosta, E.J., Harwell, J.H., Sabatini, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 1–48. [Google Scholar]
- Acosta, E.J.; Szekeres, E.; Sabatini, D.A.; Harwell, J.H. Net-average curvature model for solubilization and supersolubilization in surfactant microemulsions. Langmuir 2003, 19, 186–195. [Google Scholar] [CrossRef]
- Acosta, E.J.; Harwell, J.H. Net-Average Curvature (NAC) fundamentals. In Surfactant Formulation Engineering Using HLD and NAC, 1st ed.; Acosta, E.J., Harwell, J.H., Sabatini, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 259–325. [Google Scholar]
- Ghayour, A.; Acosta, E. Characterizing the Oil-like and Surfactant-like Behavior of Polar Oils. Langmuir 2019, 35, 15038–15050. [Google Scholar] [CrossRef] [PubMed]
- Ghayour, A.; Perez, R.; Bhattacharya, S.; Acosta, E.J. Characterizing the Behavior of Bitumen-Water Systems with the Hydrophilic-Lipophilic Difference (HLD) framework. Energy Fuels 2022, 36, 14030–14041. [Google Scholar] [CrossRef]
- Perez-Franco, R.; Acosta, E. Zipper-Like Linker Self-Assembly to Obtain Low Interfacial Tensions with Partially Neutralized Naphthenic Acids. Energy Fuels 2024, 38, 1729–1743. [Google Scholar] [CrossRef]
- Acosta, E.J. Modeling and Formulation of Microemulsions: The Net-Average Curvature Model and the Combined Linker Effect. Ph.D. Thesis, University of Oklahoma, Norman, OK, USA, 2004. [Google Scholar]
- Acosta, E.J. Bifunctional HLD-NAC LLM Example. Available online: www.tinyurl.com/bifunctionalHLDNAC (accessed on 30 June 2025).
- Zarate-Muñoz, S.; Texeira De Vasconcelos, F.; Myint-Myat, K.; Minchom, J.; Acosta, E.J. A Simplified Methodology to Measure the Characteristic Curvature (Cc) of Alkyl Ethoxylate Nonionic Surfactants. J. Surfactants Deterg. 2016, 19, 249–263. [Google Scholar] [CrossRef]
- Princen, H.M.; Zia, I.Y.Z.; Mason, S.G. Measurement of interfacial tension from the shape of a rotating drop. J. Colloid Interface Sci. 1967, 23, 99–107. [Google Scholar] [CrossRef]
- Acosta, E.J.; Yuan, J.S.; Bhakta, A.S. The characteristic curvature of ionic surfactants. J. Surfactants Deterg. 2008, 11, 145–158. [Google Scholar] [CrossRef]
- Sabatini, D.A.; Acosta, E.; Harwell, J.H. Linker molecules in surfactant mixtures. Curr. Opin. Colloid Interface Sci. 2003, 8, 316–326. [Google Scholar] [CrossRef]
- Acosta, E.J.; Harwell, J.H.; Sabatini, D.A. Self-assembly in linker-modified microemulsions. J. Colloid Interface Sci. 2004, 274, 652–664. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | Notes |
---|---|---|
Cc1 (Lecithin) | +8.9 | Obtained using C9E5 as reference [17] |
Cc2 (PG10C) | −6.4 | Average of reported values [17,20] |
Ccpo (Eugenol) | +3.7 | From the shortcut method [13] |
EACNnp (n-heptane) | +7.0 | Number of carbons |
EACNpo (Eugenol) | −5.0 | From the shortcut method [13] |
(vs/as)1, Å | 14 | From the HLD-NAC database [20] |
(vs/as)2, Å | 15.5 | From the HLD-NAC database [20] |
(vt/as)1, Å | 10.4 | From the HLD-NAC database [20] |
(vt/as)2, Å | 2.5 | From the HLD-NAC database [20] |
Lt1, Lt2, Å | 22, 12 | From the HLD-NAC database [20] |
b (g NaCl/100 mL)−1 | 0.13 | From the HLD-NAC database [20] |
K | 0.16 | From the HLD-NAC database [20] |
Km (mol/L)−1 | 5 | From the shortcut method [13] |
qmax (mol polar oil/mol surf) | Ci,po/(Cs1 + Cs2) | Value can range from 0.6 to 10 [24,25] |
MW1, MW2, MW3 (g/mol) | 760, 885, 164 | From the HLD-NAC database [20] |
ρ1, ρ2, ρ3 (g/mL) | 1, 1, 1.06 | From the HLD-NAC database [20] |
Cs1 (lecithin, mmol/L) | 1.3, 2.6, 6.6 | 0.1, 0.2 and 0.5% w/v in aqueous phase |
Cs2 (pG10C, mmol/L) | 0 to 113 | Scan from 0 to 10% w/v in aqueous phase |
Ci,po (mmol/L) | 32.3 | 5% v/v in the oil phase (assumed Eugenol) |
S (g NaCl/100 mL) | 0.2 | Salt in the aqueous phase |
Material | Purity | Source | Notes |
---|---|---|---|
Octyl-decyl pentaethylene glycol, C9E5 (DEHYDOL OD5®) | 100% active | BASF, Wyandotte, MI, USA | Sample provided by the company |
Polyglyceryl-10 caprate/caprylate (PG10C, POLYALDO 10-1-CC) | 100% active | Lonza, Morristown, NJ, USA | Sample provided by the company |
Soybean lecithin | >99% | Fisher Scientific, Mississauga, ON, Canada | Purchased |
Clove oil (purity expressed as % eugenol) | 78 ± 4% | NOW essentials, Guelph, ON, Canada | Purchased. Purity via UV at 280 nm |
Sodium chloride | >99.0% | Sigma-Aldrich, Oakville, ON, Canada | Purchased |
Cyclohexane | >99.0% | Caledon laboratory chemicals, Georgetown, ON, Canada | Purchased |
Methanol, HPLC grade | >99.0% | Caledon laboratory chemicals, Georgetown, ON, Canada | Purchased |
Heptane, laboratory-grade | >98.5% | BioShop, Burlington, ON, Canada | Purchased |
Eugenol | 99.9% | Sigma-Aldrich, Oakville, ON, Canada | Purchased |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.-X.; Acosta, E. Bifunctional HLD–NAC for Clove Oil Microemulsions. Liquids 2025, 5, 23. https://doi.org/10.3390/liquids5030023
Tan J-X, Acosta E. Bifunctional HLD–NAC for Clove Oil Microemulsions. Liquids. 2025; 5(3):23. https://doi.org/10.3390/liquids5030023
Chicago/Turabian StyleTan, Jia-Xin, and Edgar Acosta. 2025. "Bifunctional HLD–NAC for Clove Oil Microemulsions" Liquids 5, no. 3: 23. https://doi.org/10.3390/liquids5030023
APA StyleTan, J.-X., & Acosta, E. (2025). Bifunctional HLD–NAC for Clove Oil Microemulsions. Liquids, 5(3), 23. https://doi.org/10.3390/liquids5030023