On the Solute-Induced Structure-Making/Breaking Phenomena: Myths, Verities, and Misuses in Solvation Thermodynamics
Abstract
:1. Introduction
2. Rigorous Definition of Solute-Induced Microstructural Perturbation of the Solvent Environment
2.1. Fundamental Split between Short- and Long-Range Contributions to the Solvation Behavior of Solutes
2.2. Definition and Attributes of the Fundamental Structure-Making/Breaking Functions
2.3. Link between , the Isochoric-Isothermal Pressure Perturbation upon Solvation and Krichevskii’s Parameter
2.4. Link between and the Second Osmotic Virial Coefficient of the Solute
2.5. Preferential Solvation Phenomenon as a Balance among Structure-Making/Breaking Effects
3. Microstructural Responses to Intermolecular Interaction Asymmetries, Environmental State Conditions, and Composition
3.1. Response to Solute–Solvent Molecular Asymmetry
3.2. Response to Changes in State Conditions
3.3. Response to Changes of State Conditions at Finite Composition
4. Pitfalls from Surrogate Experimental Techniques
4.1. Myths and Verities about the Use of Jones–Dole’s B- and -Coefficients as Structure Markers and Their Connection to the Fundamental Structure-Making/Breaking Function
4.2. Sources of Ambiguities Underlying the Use of Jones–Dole’s B- and -Coefficients as Structure Markers
4.3. Frequent Pitfalls in the Application of Feakins’ TST Approach to the Study of B-Coefficients for Electrolytes
4.4. Myths and Verities about Hepler’s Isobaric-Thermal Expansivity as Structure-Making/Breaking Marker
5. Concluding Remarks and Outlook
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Structure-Making/Breaking Function for a Non-Interacting Finite Composition Ideal Gas in a Real Solvent
References
- Chialvo, A.A. On the Elusive Links between Solution Microstructure, Dynamics, and Solvation Thermodynamics: Demystifying the Path through a Bridge over Troubled Conjectures and Misinterpretations. J. Phys. Chem. B 2023, 127, 10792–10813. [Google Scholar] [CrossRef] [PubMed]
- Abbott, M.M.; Nass, K.K. Equations of State and Classical Solution Thermodynamics—Survey of the Connections. ACS Symp. Ser. 1986, 300, 2–40. [Google Scholar]
- Chialvo, A.A. Accurate Calculation of Excess Thermal, Infinite Dilution, and Related Properties of Liquid Mixtures Via Molecular-Based Simulation. Fluid Phase Equilibria 1993, 83, 23–32. [Google Scholar] [CrossRef]
- Chialvo, A.A. On the Solute-Induced Structure-Making/Breaking Effect: Rigorous Links among Microscopic Behavior, Solvation Properties, and Solution Non-Ideality. J. Phys. Chem. B 2019, 123, 2930–2947. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Cummings, P.T. Solute-induced Effects on the Structure and the Thermodynamics of Infinitely Dilute Mixtures. Aiche J. 1994, 40, 1558–1573. [Google Scholar] [CrossRef]
- Levelt Sengers, J.M.H. Supercritical Fluids: Their Properties and Applications. In Supercritical Fluids: Fundamentals and Applications; Kiran, E., Debenedetti Pablo, G., Peters Cor, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 1–29. [Google Scholar]
- Debenedetti, P.G.; Mohamed, R.S. Attractive, Weakly Attractive and Repulsive Near-Critical Systems. J. Chem. Phys. 1989, 90, 4528–4536. [Google Scholar] [CrossRef]
- Petsche, I.B.; Debenedetti, P.G. Influence of Solute-Solvent Asymmetry upon the Behavior of Dilute Supercritical Mixtures. J. Phys. Chem. 1991, 95, 386–399. [Google Scholar] [CrossRef]
- O’Connell, J.P.; Liu, H.Q. Thermodynamic modelling of near-critical solutions. Fluid Phase Equilibria 1998, 144, 1–12. [Google Scholar] [CrossRef]
- Mazo, R.M. Salting out near the critical point. J. Phys. Chem. B 2007, 111, 7288–7290. [Google Scholar] [CrossRef] [PubMed]
- Gee, M.B.; Smith, P.E. Kirkwood-Buff theory of molecular and protein association, aggregation, and cellular crowding. J. Chem. Phys. 2009, 131, 165101. [Google Scholar] [CrossRef]
- Chialvo, A.A. Solvation Phenomena in Dilute Solutions: Formal, Experimental Evidence, and Modeling Implications. In Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering and Biophysics, 1st ed.; Matteoli, E., O’Connell, J.P., Smith, P.E., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 191–224. [Google Scholar]
- Pallewela, G.N.; Smith, P.E. Preferential Solvation in Binary and Ternary Mixtures. J. Phys. Chem. B 2015, 119, 15706–15717. [Google Scholar] [CrossRef] [PubMed]
- Chialvo, A.A. On the Solvation Thermodynamics Involving Species with Large Intermolecular Asymmetries: A Rigorous Molecular-Based Approach to Simple Systems with Unconventionally Complex Behaviors. J. Phys. Chem. B 2020, 124, 7879–7896. [Google Scholar] [CrossRef] [PubMed]
- Enderby, J.E. Neutron and X-ray Scattering from Aqueous Solutions. Proc. R. Soc. Lond. 1975, 345, 107–117. [Google Scholar]
- Nishikawa, K.; Iijima, T. Small-Angle X-rays Scattering Study of Fluctuations in Ethanol and Water Mixtures. J. Phys. Chem. 1993, 97, 10824–10828. [Google Scholar] [CrossRef]
- Yamanaka, K.; Yamagami, M.; Takamuku, T.; Yamaguchi, T.; Wakita, H. X-Ray-Diffraction Study on Aqueous Lithium-Chloride Solution in the Temperature-Range 138-373-K. J. Phys. Chem. 1993, 97, 10835–10839. [Google Scholar] [CrossRef]
- Fulton, J.L.; Heald, S.M.; Badyal, Y.S.; Simonson, J.M. Understanding the Effects of Concentration on the Solvation Structure of Ca+2 in Aqueous Solution. I. The Perspective on Local Structure from EXAFS and XANES. J. Phys. Chem. A 2003, 107, 4688–4696. [Google Scholar] [CrossRef]
- D’Angelo, P.; Roscioni, O.M.; Chillemi, G.; Della Longa, S.; Benfatto, M. Detection of second hydration shells in ionic solutions by XANES: Computed spectra for Ni2+ in water based on molecular dynamics. J. Am. Chem. Soc. 2006, 128, 1853–1858. [Google Scholar] [CrossRef]
- Ansell, S.; Barnes, A.C.; Mason, P.E.; Neilson, G.W.; Ramos, S. X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions. Biophys. Chem. 2006, 124, 171–179. [Google Scholar] [CrossRef]
- Antalek, M.; Pace, E.; Hedman, B.; Hodgson, K.O.; Chillemi, G.; Benfatto, M.; Sarangi, R.; Frank, P. Solvation structure of the halides from x-ray absorption spectroscopy. J. Chem. Phys. 2016, 145, 044318. [Google Scholar] [CrossRef]
- Zitolo, A.; Chillemi, G.; D’Angelo, P. X-ray Absorption Study of the Solvation Structure of Cu2+ in Methanol and Dimethyl Sulfoxide. Inorg. Chem. 2012, 51, 8827–8833. [Google Scholar] [CrossRef]
- Enderby, J.E. Ion Solvation via Neutron Scattering. Chem. Soc. Rev. 1995, 24, 159–168. [Google Scholar] [CrossRef]
- Badyal, Y.S.; Barnes, A.C.; Cuello, G.J.; Simonson, J.M. Understanding the effects of concentration on the solvation structure of Ca2+ in aqueous solutions. II: Insights into longer range order from neutron diffraction isotope substitution. J. Phys. Chem. A 2004, 108, 11819–11827. [Google Scholar] [CrossRef]
- Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M.A.; Soper, A.K. Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J. Phys. Chem. B 2007, 111, 13570–13577. [Google Scholar] [CrossRef]
- Bruni, F.; Imberti, S.; Mancinelli, R.; Ricci, M.A. Aqueous solutions of divalent chlorides: Ions hydration shell and water structure. J. Chem. Phys. 2012, 136, 064520. [Google Scholar] [CrossRef] [PubMed]
- Pusztai, L.; McGreevy, R.L. MCGR: An inverse method for deriving the pair correlation function from the structure factor. Physica 1997, 234, 357–358. [Google Scholar] [CrossRef]
- Pusztai, L. Partial pair correlation functions of liquid water. Phys. Rev. B 1999, 60, 11851–11854. [Google Scholar] [CrossRef]
- Soper, A.K. Tests of the empirical potential structure refinement method and a new method of application to neutron diffraction data on water. Mol. Phys. 2001, 99, 1503–1516. [Google Scholar] [CrossRef]
- Soper, A.K. Joint structure refinement of x-ray and neutron diffraction data on disordered materials: Application to liquid water. J. Phys. Condens. Matter 2007, 19, 335206. [Google Scholar] [CrossRef]
- Harsanyi, I.; Pusztai, L. Hydration structure in concentrated aqueous lithium chloride solutions: A reverse Monte Carlo based combination of molecular dynamics simulations and diffraction data. J. Chem. Phys. 2012, 137, 204503–204509. [Google Scholar] [CrossRef]
- Mile, V.; Gereben, O.; Kohara, S.; Pusztai, L. On the Structure of Aqueous Cesium Fluoride and Cesium Iodide Solutions: Diffraction Experiments, Molecular Dynamics Simulations, and Reverse Monte Carlo Modeling. J. Phys. Chem. B 2012, 116, 9758–9767. [Google Scholar] [CrossRef]
- Pethes, I.; Pusztai, L. Reverse Monte Carlo modeling of liquid water with the explicit use of the SPC/E interatomic potential. J. Chem. Phys. 2017, 146, 064506. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Simonson, J.M. The Structure of Concentrated NiCl2 Aqueous Solutions. What is Molecular Simulation Revealing about the Neutron Scattering Methodologies? Mol. Phys. 2002, 100, 2307–2315. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Simonson, J.M. The Structure of CaCl2 Aqueous Solutions over a Wide Range of Concentrations. Interpretation of Difraction Experiments Via Molecular Simulation. J. Chem. Phys. 2003, 119, 8052–8061. [Google Scholar] [CrossRef]
- Mason, P.E.; Neilson, G.W.; Dempsey, C.E.; Brady, J.W. Neutron diffraction and simulation studies of CsNO3 and Cs2CO3 solutions. J. Am. Chem. Soc. 2006, 128, 15136–15144. [Google Scholar] [CrossRef] [PubMed]
- Pluharova, E.; Fischer, H.E.; Mason, P.E.; Jungwirth, P. Hydration of the chloride ion in concentrated aqueous solutions using neutron scattering and molecular dynamics. Mol. Phys. 2014, 112, 1230–1240. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Vlcek, L. NO3– Coordination in Aqueous Solutions by 15N/14N and 18O/natO Isotopic Substitution: What Can We Learn from Molecular Simulation? J. Phys. Chem. B 2015, 119, 519–531. [Google Scholar] [CrossRef]
- Kohagen, M.; Pluhařová, E.; Mason, P.E.; Jungwirth, P. Exploring Ion–Ion Interactions in Aqueous Solutions by a Combination of Molecular Dynamics and Neutron Scattering. J. Phys. Chem. Lett. 2015, 6, 1563–1567. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Vlcek, L. “Thought experiments” as dry-runs for “tough experiments”: Novel approaches to the hydration behavior of oxyanions. Pure Appl. Chem. 2016, 88, 163–176. [Google Scholar] [CrossRef]
- Max, J.J.; Chapados, C. Infrared spectroscopy of aqueous ionic salt mixtures at low concentrations: Ion pairing in water. J. Chem. Phys. 2007, 127, 114509. [Google Scholar] [CrossRef]
- Nickolov, Z.S.; Miller, J.D. Water structure in aqueous solutions of alkali halide salts: FTIR spectroscopy of the OD stretching band. J. Colloid Interface Sci. 2005, 287, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.R.; Dougherty, R.C. Raman studies of the solution structure of univalent electrolytes in water. J. Phys. Chem. A 2002, 106, 7647–7650. [Google Scholar] [CrossRef]
- Smith, J.D.; Saykally, R.J.; Geissler, P.L. The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 2007, 129, 13847–13856. [Google Scholar] [CrossRef]
- Rinne, K.F.; Gekle, S.; Netz, R.R. Ion-Specific Solvation Water Dynamics: Single Water versus Collective Water Effects. J. Phys. Chem. A 2014, 118, 11667–11677. [Google Scholar] [CrossRef] [PubMed]
- Shalit, A.; Ahmed, S.; Savolainen, J.; Hamm, P. Terahertz echoes reveal the inhomogeneity of aqueous salt solutions. Nat. Chem. 2017, 9, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Balos, V.; Imoto, S.; Netz, R.R.; Bonn, M.; Bonthuis, D.J.; Nagata, Y.; Hunger, J. Macroscopic conductivity of aqueous electrolyte solutions scales with ultrafast microscopic ion motions. Nat. Commun. 2020, 11, 1611. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Wu, Z.; Morrow, A.R.; Yethiraj, A.; Yethiraj, A. Self-Diffusion and Viscosity in Electrolyte Solutions. J. Phys. Chem. B 2012, 116, 12007–12013. [Google Scholar] [CrossRef]
- Ma, K.; Zhao, L. The Opposite Effect of Metal Ions on Short-/Long-Range Water Structure: A Multiple Characterization Study. Int. J. Mol. Sci. 2016, 17, 602. [Google Scholar] [CrossRef]
- Tielrooij, K.J.; Garcia-Araez, N.; Bonn, M.; Bakker, H.J. Cooperativity in Ion Hydration. Science 2010, 328, 1006–1009. [Google Scholar] [CrossRef]
- Choi, J.H.; Cho, M. Ion aggregation in high salt solutions. VI. Spectral graph analysis of chaotropic ion aggregates. J. Chem. Phys. 2016, 145, 174501. [Google Scholar] [CrossRef]
- Bernal, J.D.; Fowler, R.H. A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions. J. Chem. Phys. 1933, 1, 515–548. [Google Scholar] [CrossRef]
- Frank, H.S.; Evans, M.W. Free Volume and Entropy in Condensed Systems.3. Entropy in Binary Liquid Mixtures—Partial Molal Entropy in Dilute Solutions—Structure and Thermodynamics in Aqueous Electrolytes. J. Chem. Phys. 1945, 13, 507–532. [Google Scholar] [CrossRef]
- Ben-Naim, A. Structure-Breaking and Structure-Promoting Processes in Aqueous-Solutions. J. Phys. Chem. 1975, 79, 1268–1274. [Google Scholar] [CrossRef]
- Collins, K.D. Sticky Ions in Biological-Systems. Proc. Natl. Acad. Sci. USA 1995, 92, 5553–5557. [Google Scholar] [CrossRef]
- Waluyo, I.; Nordlund, D.; Bergmann, U.; Schlesinger, D.; Pettersson, L.G.M.; Nilsson, A. A different view of structure-making and structure-breaking in alkali halide aqueous solutions through X-ray absorption spectroscopy. J. Chem. Phys. 2014, 140, 244506. [Google Scholar] [CrossRef]
- Marcus, Y. Effect of Ions on the Structure of Water: Structure Making and Breaking. Chem. Rev. 2009, 109, 1346–1370. [Google Scholar] [CrossRef] [PubMed]
- Russo, D. The impact of kosmotropes and chaotropes on bulk and hydration shell water dynamics in a model peptide solution. Chem. Phys. 2008, 345, 200–211. [Google Scholar] [CrossRef]
- Vranes, M.; Tot, A.; Papovic, S.; Panic, J.; Gadzuric, S. Is choline kosmotrope or chaotrope? J. Chem. Thermodyn. 2018, 124, 65–73. [Google Scholar] [CrossRef]
- Ben Ishai, P.; Mamontov, E.; Nickels, J.D.; Sokolov, A.P. Influence of Ions on Water Diffusion—A Neutron Scattering Study. J. Phys. Chem. B 2013, 117, 7724–7728. [Google Scholar] [CrossRef]
- Bonetti, M.; Nakamae, S.; Roger, M.; Guenoun, P. Huge Seebeck coefficients in nonaqueous electrolytes. J. Chem. Phys. 2011, 134, 114513. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Vlcek, L. Toward the understanding of hydration phenomena in aqueous electrolytes from the interplay of theory, molecular simulation, and experiment. Fluid Phase Equilibria 2016, 407, 84–104. [Google Scholar] [CrossRef]
- Ben-Naim, A. Solubility, Hydrophobic Interactions and Structural Changes in the Solvent. In Chemistry and Physics of Aqueous Gas Solutions; Adams, W.A., Ed.; Electrochemical Society: Princeton, NJ, USA, 1975; pp. 8–18. [Google Scholar]
- Ball, P.; Hallsworth, J.E. Water structure and chaotropicity: Their uses, abuses and biological implications. Phys. Chem. Chem. Phys. 2015, 17, 8297–8305. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.E. The theory of equilibrium critical phenomena. Rep. Prog. Phys. 1967, 30, 615–730. [Google Scholar] [CrossRef]
- Debenedetti, P.G.; Chialvo, A.A. Solute-Solute Correlations in Infinitely Dilute Supercritical Mixtures. J. Chem. Phys. 1992, 97, 504–507. [Google Scholar] [CrossRef]
- Gray, C.G.; Gubbins, K.E. Theory of Molecular Fluids; Oxford University Press: Oxford, UK, 1985; Volume 1. [Google Scholar]
- Chialvo, A.A.; Cummings, P.T.; Simonson, J.M.; Mesmer, R.E. Solvation in High-Temperature Electrolyte Solutions. II. Some Formal Results. J. Chem. Phys. 1999, 110, 1075–1086. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Kusalik, P.G.; Cummings, P.T.; Simonson, J.M.; Mesmer, R.E. Molecular approach to high-temperature solvation. Formal, integral equation and experimental results. J. Phys. Condens. Matter 2000, 12, 3585–3593. [Google Scholar] [CrossRef]
- Kirkwood, J.G.; Buff, F.P. The Statistical Mechanical Theory of Solution. I. J. Chem. Phys. 1951, 19, 774–777. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Crisalle, O.D. Osmolyte-induced Effects on the Hydration Behavior and the Osmotic Second Virial Coefficients of Alkyl-Substituted Urea Derivatives. Critical assessment of their structure-making/breaking behavior. J. Phys. Chem. B 2021, 125, 6231–6243. [Google Scholar] [CrossRef]
- Mazo, R.M. Statistical Mechanical Theory of Solutions. J. Chem. Phys. 1958, 29, 1122–1128. [Google Scholar] [CrossRef]
- Ben-Naim, A. Molecular Theory of Solutions; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- O’Connell, J.P.; Haile, J.M. Thermodynamics: Fundamentals for Applications; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Chialvo, A.A.; Crisalle, O.D. On the behavior of the osmotic second virial coefficients of gases in aqueous solutions: Rigorous results, accurate approximations, and experimental evidence. J. Chem. Phys. 2019, 150, 124503. [Google Scholar] [CrossRef]
- Chialvo, A.A. Determination of Excess Gibbs Free Energy from Computer Simulation Via the Single Charging-integral Approach. I. Theory. J. Chem. Phys. 1990, 92, 673–679. [Google Scholar] [CrossRef]
- Levelt Sengers, J.M.H. Solubility Near the Solvent’s Critical Point. J. Supercrit. Fluids 1991, 4, 215–222. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Crisalle, O.D. Solute-Induced Perturbation of the Solvent Microstructure in Aqueous Electrolyte Solutions: Some Uses and Misuses of Structure Making/Breaking Criteria. Liquids 2022, 2, 106–130. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Crisalle, O.D. On the Molecular-Based Thermodynamics of Dilute Solutions Along Orthobaric Conditions Concise review of the fundamental microscopic constraints, rigorous formal results, and macroscopic modeling implications. J. Mol. Liq. 2023, 390, 122901. [Google Scholar] [CrossRef]
- Chialvo, A.A. Alternative Approach to Modeling Excess Gibbs Free Energy in Terms of Kirkwood-Buff Integrals. In Advances in Thermodynamics; Matteoli, E., Mansoori, G.A., Eds.; Taylor & Francis: New York, NY, USA, 1990; Volume 2, pp. 131–173. [Google Scholar]
- Koga, K.; Holten, V.; Widom, B. Deriving Second Osmotic Virial Coefficients from Equations of State and from Experiment. J. Phys. Chem. B 2015, 119, 13391–13397. [Google Scholar] [CrossRef] [PubMed]
- Chialvo, A.A.; Crisalle, O.D. Gas Solubility and Preferential Solvation Phenomena in Mixed-Solvents; Rigorous relations between microscopic behavior, solvation properties, and solution non-ideality. Fluid Phase Equilibria 2024, 581, 114081. [Google Scholar] [CrossRef]
- Chialvo, A.A. Molecular-Based Description of the Osmotic Second Virial Coefficients of Electrolytes: Rigorous Formal Links to Solute−Solvent Interaction Asymmetry, Virial Expansion Paths, and Experimental Evidence. J. Phys. Chem. B 2022, 126, 4339–4353. [Google Scholar] [CrossRef]
- Schmitt, W.J.; Reid, R.C. The Use of Entrainers in Modifying the Solubility of Phenanthrene and Benzoic Acid in Supercritical Carbon Dioxide and Ethane. Fluid Phase Equilibria 1986, 32, 77–99. [Google Scholar] [CrossRef]
- Chialvo, A.A. Solute-Solute and Solute-Solvent Correlations in Dilute Near-Critical Ternary Mixtures: Mixed Solute and Entrainer Effects. J. Phys. Chem. 1993, 97, 2740–2744. [Google Scholar] [CrossRef]
- Gutkowski, K.I.; Fernandez-Prini, R.; Japas, M.L. Solubility of solids in near-critical conditions: Effect of a third component. J. Phys. Chem. B 2008, 112, 5671–5679. [Google Scholar] [CrossRef]
- Shimizu, S.; Abbott, S. How Entrainers Enhance Solubility in Supercritical Carbon Dioxide. J. Phys. Chem. B 2016, 120, 3713–3723. [Google Scholar] [CrossRef]
- Lei, Z.G.; Wang, H.Y.; Zhou, R.Q.; Duan, Z.T. Influence of salt added to solvent on extractive distillation. Chem. Eng. J. 2002, 87, 149–156. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, C.C.; Li, C.X.; Meng, H.; Wang, Z.H. Isobaric vapor-liquid equilibria for ethanol-water system containing different ionic liquids at atmospheric pressure. Fluid Phase Equilibria 2006, 242, 147–153. [Google Scholar] [CrossRef]
- Smith, P.E. Equilibrium dialysis data and the relationships between preferential interaction parameters for biological systems in terms of Kirkwood-Buff integrals. J. Phys. Chem. B 2006, 110, 2862–2868. [Google Scholar] [CrossRef]
- Chialvo, A.A. Preferential Solvation Phenomena as Solute-induced Structure-Making/Breaking Processes: Linking thermodynamic preferential interaction parameters to fundamental structure making/breaking functions. J. Phys. Chem. B 2024, 128, 5228–5245. [Google Scholar] [CrossRef]
- Ben-Naim, A. Theory of Preferential Solvation of Non-Electrolytes. Cell Biophys. 1988, 12, 255–269. [Google Scholar] [CrossRef]
- Shimizu, S.; Matubayasi, N. Preferential hydration of proteins: A Kirkwood-Buff approach. Chem. Phys. Lett. 2006, 420, 518–522. [Google Scholar] [CrossRef]
- Smiatek, J. Aqueous ionic liquids and their effects on protein structures: An overview on recent theoretical and experimental results. J. Phys. Condens. Matter 2017, 29, 233001. [Google Scholar] [CrossRef]
- Hepler, L.G. Thermal Expansion and Structure in Water and Aqueous Solutions. Can. J. Chem. 1969, 47, 4613–4617. [Google Scholar] [CrossRef]
- Chialvo, A.A. Gas Solubility in Dilute Solutions: A Novel Molecular Thermodynamic Perspective. J. Chem. Phys. 2018, 148, 174502. [Google Scholar] [CrossRef]
- Jani, A.; Malfait, B.; Morineau, D. On the coupling between ionic conduction and dipolar relaxation in deep eutectic solvents: Influence of hydration and glassy dynamics. J. Chem. Phys. 2021, 154, 164508. [Google Scholar] [CrossRef]
- Balos, V.; Kaliannan, N.K.; Elgabarty, H.; Wolf, M.; Kuhne, T.D.; Sajadi, M. Time-resolved terahertz-Raman spectroscopy reveals that cations and anions distinctly modify intermolecular interactions of water. Nat. Chem. 2022, 14, 1031–1104. [Google Scholar] [CrossRef]
- Jones, G.; Dole, M. The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 1929, 51, 2950–2964. [Google Scholar] [CrossRef]
- Gurney, R.W. Ionic Processes in Solution; McGraw Hill: New York, NY, USA, 1953. [Google Scholar]
- Kaminsky, M. Ion-Solvent Interaction and the Viscosity of Strong Electrolyte Solutions. Discuss. Faraday Soc. 1957, 24, 171–179. [Google Scholar] [CrossRef]
- Nightingale, E.R. Phenomenological Theory of Ion Solvation: Effective Radii of Hydrated Ions. J. Phys. Chem. 1959, 63, 1381–1387. [Google Scholar] [CrossRef]
- Tsangaris, J.M.; Martin, R.B. Viscosities of Aqueous Solutions of Dipolar Ions. Arch. Biochem. Biophys. 1965, 112, 267–272. [Google Scholar] [CrossRef]
- Out, D.J.P.; Los, J.M. Viscosity of aqueous solutions of univalent electrolytes from 5 to 95 °C. J. Solut. Chem. 1980, 9, 19–35. [Google Scholar] [CrossRef]
- Hertz, H.G.; Maurer, R.; Killie, S. An NMR-Study of Dynamics in Aqueous Strong Acid Solutions. 1. The B’ Coefficients. Z. Phys. Chem. Int. J. Res. Phys. Chem. Chem. Phys. 1991, 172, 157–183. [Google Scholar]
- Jenkins, H.D.B.; Marcus, Y. Viscosity B-coefficients of ions in solution. Chem. Rev. 1995, 95, 2695–2724. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Ren, X.F.; Ma, Y.G. Densities and Viscosities of Amino Acid plus Xylitol plus Water Solutions at 293.15 <= T/K <= 323.15. J. Chem. Eng. Data 2017, 62, 477–490. [Google Scholar]
- Gupta, J.; Nain, A.K. Physicochemical study of solute-solute and solute-solvent interactions of homologous series of alpha-amino acids in aqueous-isoniazid solutions at temperatures from 293.15 to 318.15 K. J. Mol. Liq. 2019, 278, 262–278. [Google Scholar] [CrossRef]
- Rani, R.; Kumar, A.; Sharma, T.; Sharma, T.; Bamezai, R.K. Volumetric, acoustic and transport properties of ternary solutions of L-serine and L-arginine in aqueous solutions of thiamine hydrochloride at different temperatures. J. Chem. Thermodyn. 2019, 135, 260–277. [Google Scholar] [CrossRef]
- Sawhney, N.; Kumar, M.; Sandarve; Sharma, P.; Sharma, A.K.; Sharma, M. Structure-making behaviour of L-arginine in aqueous solution of drug ketorolac tromethamine: Volumetric, compressibility and viscometric studies. Phys. Chem. Liq. 2019, 57, 184–203. [Google Scholar] [CrossRef]
- Stokes, R.H.; Mills, R. Viscosity of Electrolytes and Related Properties; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- Dhondge, S.S.; Zodape, S.P.; Parwate, D.V. Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. J. Chem. Thermodyn. 2012, 48, 207–212. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Crisalle, O.D. Can Jones-Dole’s B-coefficient Be a Consistent Structure Making/Breaking Marker? Rigorous molecular-based analysis and critical assessment of its marker uniqueness. J. Phys. Chem. B 2021, 125, 12028–12041. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Crisalle, O.D. On the Transition-State theory approach to the Jones-Dole’s viscosity B-coefficient: A novel molecular-based interpretation, assessment of its implications, and experimental evidence. J. Mol. Liq. 2023, 379, 121548. [Google Scholar] [CrossRef]
- Abdulagatov, I.M.; Zeinalova, A.B.; Azizov, N.D. Viscosity of aqueous Ni(NO3)2 solutions at temperatures from (297 to 475) K and at pressures up to 30 MPa and concentration between (0.050 and 2.246) mol·kg−1. J. Chem. Thermodyn. 2006, 38, 179–189. [Google Scholar] [CrossRef]
- Abdulagatov, I.; Azizov, N. Experimental Study of the Effect of Temperature, Pressure, and Concentration on the Viscosity of Aqueous KBr Solutions. J. Solut. Chem. 2008, 37, 3–26. [Google Scholar] [CrossRef]
- Liu, Q.; Dai, H.; Chi, H.; Shi, K.; Zheng, Q.; Qi, Y. The density and dynamic viscosity for dilute solutions of [Emim][NTf2] [Bmim][NTf2], and [Bmmim][NTf2] in ethylene glycol. J. Mol. Liq. 2023, 371, 121080. [Google Scholar] [CrossRef]
- Feakins, D.; Freemantle, D.J.; Lawrence, K.G. Transition-State Treatment of Relative Viscosity of Electrolyte Solutions: Applications to Aqueous, Non-Aqueous and Metanol+Water Systems. J. Chem. Soc. Faraday Trans. I 1974, 70, 795–806. [Google Scholar] [CrossRef]
- Feakins, D.; Waghorne, W.E.; Lawrence, K.G. The Viscosity and Structure of Solutions. 1. A New Theory of the Jones-Dole B-coefficient and the Related Activation Parameters—Applications to Aqueous Solutions. J. Chem. Soc. Faraday Trans. I 1986, 82, 563–568. [Google Scholar] [CrossRef]
- Glasstone, S.; Laidler, K.J.; Eyring, H. The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena; McGraw-Hill Book Company, Inc.: Chicago, IL, USA, 1941. [Google Scholar]
- Robinson, R.A.; Stokes, R.H. Electrolyte Solutions, 2nd (revised) ed.; Butterworths: London, UK, 1970. [Google Scholar]
- Conway, B.E. Ionic Hydration in Chemistry and Biophysics; Elsevier: Amsterdam, The Netherlands, 1981; Volume 12. [Google Scholar]
- Franks, F. Water: A Matrix of Life; Royal Society of Chemistry: London, UK, 2000. [Google Scholar]
- Waghorne, W.E. Viscosities of electrolyte solutions. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 2001, 359, 1529–1543. [Google Scholar] [CrossRef]
- Hammadi, A. Electrical Conductance, Density, and Viscosity in Mixtures of Alkali-Metal Halides and Glycerol. Int. J. Thermophys. 2004, 25, 89–111. [Google Scholar] [CrossRef]
- Jindal, R.; Singla, M.; Kumar, H. Transport behavior of aliphatic amino acids glycine/L-alanine/L-valine and hydroxyl amino acids L-serine/L-threonine in aqueous trilithium citrate solutions at different temperatures. J. Mol. Liq. 2015, 206, 343–349. [Google Scholar] [CrossRef]
- Gadzuric, S.; Tot, A.; Armakovic, S.; Armakovic, S.; Panic, J.; Jovic, B.; Vranes, M. Uncommon structure making/breaking behaviour of cholinium taurate in water. J. Chem. Thermodyn. 2017, 107, 58–64. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Shekaari, H.; Mostafavi, H.; Jafari, P. Thermodynamic and transport properties of aqueous solutions containing cholinium L-alaninate and polyethylene glycol dimethyl ether 250: Evaluation of solute-solvent interactions and phase separation. J. Chem. Thermodyn. 2019, 132, 9–22. [Google Scholar] [CrossRef]
- Marcus, Y. Ions in Solution and Their Solvation; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Batchelor, J.D.; Olteanu, A.; Tripathy, A.; Pielak, G.J. Impact of protein denaturants and stabilizers on water structure. J. Am. Chem. Soc. 2004, 126, 1958–1961. [Google Scholar] [CrossRef]
- Hood, G.R. The viscosity of urea in aqueous solution. Phys. A J. Gen. Appl. Phys. 1933, 4, 211–214. [Google Scholar] [CrossRef]
- Herskovits, T.T.; Kelly, T.M. Viscosity Studies of Aqueous Solutions of Alcohols, ureas, and Amides. J. Phys. Chem. 1973, 77, 381–388. [Google Scholar] [CrossRef]
- Egorov, G.I.; Makarov, D.M. Densities and Volumetric Properties of Aqueous Solutions of {Water (1) + N-Methylurea (2)} Mixtures at Temperatures of 274.15-333.15 K and at Pressures up to 100 MPa. J. Chem. Eng. Data 2017, 62, 4383–4394. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, A. Hydrophobic interactions of methylureas in aqueous solutions estimated with density, molal volume, viscosity and surface tension from 293.15 to 303.15 K. J. Solut. Chem. 2006, 35, 567–582. [Google Scholar] [CrossRef]
- Panic, J.; Vranes, M.; Tot, A.; Ostojic, S.; Gadzuric, S. The organisation of water around creatine and creatinine molecules. J. Chem. Thermodyn. 2019, 128, 103–109. [Google Scholar] [CrossRef]
- Richu; Kumar, A. A Comprehensive Study on Molecular Interactions of l-Ascorbic Acid/Nicotinic Acid in Aqueous [BMIm]Br at Varying Temperatures and Compositions: Spectroscopic and Thermodynamic Insights. J. Chem. Eng. Data 2021, 66, 3859–3880. [Google Scholar] [CrossRef]
- Sharma, R.; Thakur, R.C.; Kumar, H. Study of viscometric properties of L-ascorbic acid in binary aqueous mixtures of D-glucose and D-fructose. Phys. Chem. Liq. 2018, 57, 139–150. [Google Scholar] [CrossRef]
- Hossain, M.F.; Biswas, T.K.; Islam, M.N.; Huque, M.E. Volumetric and viscometric studies on dodecyltrimethylammonium bromide in aqueous and in aqueous amino acid solutions in premicellar region. Monatshefte Chem. 2010, 141, 1297–1308. [Google Scholar] [CrossRef]
- Banipal, T.S.; Beni, A.; Kaur, N.; Banipal, P.K. Volumetric, Viscometric and Spectroscopic Approach to Study the Solvation Behavior of Xanthine Drugs in Aqueous Solutions of NaCl at T = 288.15-318.15 K and at p = 101.325 kPa. J. Chem. Eng. Data 2017, 62, 20–34. [Google Scholar] [CrossRef]
- Vranes, M.; Tot, A.; Jankovic, N.; Gadzuric, S. What is the taste of vitamin-based ionic liquids? J. Mol. Liq. 2019, 276, 902–909. [Google Scholar] [CrossRef]
- Rudan-Tasic, D.; Klofutar, C.; Horvat, J. Viscosity of aqueous solutions of some alkali cyclohexylsulfamates at 25.0 degrees C. Food Chem. 2004, 86, 161–167. [Google Scholar] [CrossRef]
- Horvat, J.; Bester-Rogac, M.; Klofutar, C.; Rudan-Tasic, D. Viscosity of aqueous solutions of lithium, sodium, potassium, rubidium and caesium cyclohexylsulfamates from 293.15 to 323.15 k. J. Solut. Chem. 2008, 37, 1329–1342. [Google Scholar] [CrossRef]
- Dunn, L.A. Apparent Molar Volumes of Electrolytes.3: Some 1-1 and 2-1 Electrolytes in Aqueous Solution at 0, 5. 15. 35, 45, 55, and 65 Degrees C. Trans. Faraday Soc. 1968, 64, 2951–2961. [Google Scholar] [CrossRef]
- Abdulagatov, I.M.; Azizov, N.D. Viscosity of aqueous calcium chloride solutions at high temperatures and high pressures. Fluid Phase Equilibria 2006, 240, 204–219. [Google Scholar] [CrossRef]
- Herrington, T.M.; Roffey, M.G.; Smith, D.P. Densities of Aqueous Electrolytes MnCl2, CoCl2, NiCl2, ZnCl2, and CdCl2 from 25 degrees to 72 degrees at 1 atm. J. Chem. Eng. Data 1986, 31, 221–225. [Google Scholar] [CrossRef]
- Sonika; Thakur, R.C.; Chauhan, S.; Singh, K. Molecular Interactions of Transition Metal Chlorides in Water and Water–Ethanol Mixtures at 298–318 K on Viscometric Data. Russ. J. Phys. Chem. A 2018, 92, 2701–2709. [Google Scholar] [CrossRef]
- Apelblat, A. A new two-parameter equation for correlation and prediction of densities as a function of concentration and temperature in binary aqueous solutions. J. Mol. Liq. 2016, 219, 313–331. [Google Scholar] [CrossRef]
- Clegg, S.L.; Wexler, A.S. Densities and Apparent Molar Volumes of Atmospherically Important Electrolyte Solutions. 1. The Solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)(2)SO4, NH4NO3, and NH4Cl from 0 to 50 degrees C, Including Extrapolations to Very Low Temperature and to the Pure Liquid State, and NaHSO4, NaOH, and NH3 at 25 degrees C. J. Phys. Chem. A 2011, 115, 3393–3460. [Google Scholar]
- Campbell, A.N.; Friesen, R.J. Conductance in the Range of Medium Concentration. Can. J. Chem.-Rev. Can. Chim. 1959, 37, 1288–1293. [Google Scholar] [CrossRef]
- Laliberte, M.; Cooper, W.E. Model for calculating the density of aqueous electrolyte solutions. J. Chem. Eng. Data 2004, 49, 1141–1151. [Google Scholar] [CrossRef]
- Sarma, T.S.; Ahluwalia, J.C. Experimental Studies on Structure of Aqueous Solutions of Hydrophobic Solutes. Chem. Soc. Rev. 1973, 2, 203–232. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Mandal, S.K. Viscosity B-Coefficients of Alkyl Carboxylates. Electrochim. Acta 1983, 28, 1875–1876. [Google Scholar]
- Tamaki, K.; Ohara, Y.; Watanabe, S. Solution Properties of Sodium Perfluoralkanoates. Heats of Solution, Viscosity B-coefficients, and Surface Tensions. Bull. Chem. Soc. Jpn. 1989, 62, 2497–2501. [Google Scholar] [CrossRef]
- Zhao, H. Viscosity B-coefficients and standard partial molar volumes of amino acids, and their roles in interpreting the protein (enzyme) stabilization. Biophys. Chem. 2006, 122, 157–183. [Google Scholar] [CrossRef]
- Rajagopal, K.; Jayabalakrishnan, S.S. Volumetric, ultrasonic speed, and viscometric studies of salbutamol sulphate in aqueous methanol solution at different temperatures. J. Chem. Thermodyn. 2010, 42, 984–993. [Google Scholar] [CrossRef]
- Kabiraz, D.C.; Biswas, T.K.; Huque, M.E. Physico-chemical properties of some electrolytes in water and aqueous sodiumdodecyl sulfate solutions at different temperatures. J. Chem. Thermodyn. 2011, 43, 1917–1923. [Google Scholar] [CrossRef]
- Banipal, T.S.; Kaur, N.; Kaur, A.; Gupta, M.; Banipal, P.K. Effect of food preservatives on the hydration properties and taste behavior of amino acids: A volumetric and viscometric approach. Food Chem. 2015, 181, 339–346. [Google Scholar] [CrossRef]
- Kumar, K.; Patial, B.S.; Chauhan, S. Interactions of Saccharides in Aqueous Glycine and Leucine Solutions at Different Temperatures of (293.15 to 313.15) K: A Viscometric Study. J. Chem. Eng. Data 2015, 60, 47–56. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, G.; Kumar, H.; Kataria, R. Densities, Sound Speed, and Viscosities of Some Amino Acids with Aqueous Tetra-Butyl Ammonium Iodide Solutions at Different Temperatures. J. Chem. Eng. Data 2015, 60, 2600–2611. [Google Scholar] [CrossRef]
- Sarmad, S.; Zafarani-Moattar, M.T.; Nikjoo, D.; Mikkola, J.P. How Different Electrolytes Can Influence the Aqueous Solution Behavior of 1-Ethyl-3-Methylimidazolium Chloride: A Volumetric, Viscometric, and Infrared Spectroscopy Approach. Front. Chem. 2020, 8, 593786. [Google Scholar] [CrossRef]
- Nain, A.K. Insight into solute-solute and solute-solvent interactions of l-proline in aqueous-D-xylose/L-arabinose solutions by using physicochemical methods at temperatures from 293.15 to 318.15 K. J. Mol. Liq. 2020, 318, 114190. [Google Scholar] [CrossRef]
- Rajput, P.; Richu; Sharma, T.; Kumar, A. Temperature dependent physicochemical investigations of some nucleic acid bases (uracil, thymine and adenine) in aqueous inositol solutions. J. Mol. Liq. 2021, 326, 115210. [Google Scholar] [CrossRef]
- Brinzei, M.; Ciocirlan, O. Volumetric and transport properties of ternary solutions of L-serine and L-valine in aqueous NaCl solutions in the temperature range (293.15–323.15) K. J. Chem. Thermodyn. 2021, 154, 106335. [Google Scholar] [CrossRef]
- Bronshtein, I.N.; Semendyayev, A.K. Handbook of Mathematics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Feakins, D.; Bates, F.M.; Waghorne, W.E.; Lawrence, K.G. Relative Viscosities and Quasi-Thermodynamics of Solutions of Ter-Butyl Alcohol in the Methanol-Water System—A Different View of the Alkyl Water Interaction. J. Chem. Soc. Faraday Trans. 1993, 89, 3381–3388. [Google Scholar] [CrossRef]
- Haldar, P.; Das, B. Viscosities of some tetraalkylammonium bromides in 2-ethoxyethanol at 308.15, 313.15, 318.15, and 323.15 K. Can. J. Chem. 2005, 83, 499–504. [Google Scholar] [CrossRef]
- Xu, W.G.; Qi, W.S.; Zhang, Z.H.; Tong, J. Volumetric and viscometric investigation of aqueous solution of Bmim BF4 from 288.15 to 318.15 K. J. Mol. Liq. 2019, 278, 600–606. [Google Scholar] [CrossRef]
- Gupta, J.; Chand, D.; Nain, A.K. Study to reconnoiter solvation consequences of l-arginine/l-histidine and sodium salicylate in aqueous environment probed by physicochemical approach in the temperature range (293.15–318.15) K. J. Mol. Liq. 2020, 305, 112848. [Google Scholar] [CrossRef]
- Ankita; Nain, A.K. Solute-solute and solute-solvent interactions of drug sodium salicylate in aqueous-glucose/sucrose solutions at temperatures from 293.15 to 318.15 K: A physicochemical study. J. Mol. Liq. 2020, 298, 112006. [Google Scholar] [CrossRef]
- Vraneš, M.; Rackov, S.; Papović, S.; Pilić, B. The study of interactions in aqueous solutions of 1-alkyl-3-(3-butenyl)imidazolium bromide ionic liquids. J. Chem. Thermodyn. 2021, 159, 106479. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, L.Q.; Xiong, D.G.; Zhang, Z.; Yu, J.; Cai, J.X.; Yang, Z.Y. Density and viscosity behaviour of EBPBF4, TBPBF4 and HBPBF4 in acetonitrile solutions at different temperatures at T = (293.15–323.15) K. J. Chem. Thermodyn. 2021, 158, 106467. [Google Scholar] [CrossRef]
- Sharma, T.; Bandral, A.; Bamezai, R.K.; Kumar, A. Interaction behavior of sucrose in aqueous tributylmethylammonium chloride solutions at various temperatures: A volumetric, ultrasonic and viscometric study. Chem. Thermodyn. Therm. Anal. 2022, 6, 100043. [Google Scholar] [CrossRef]
- Yao, D.D.; Tang, P.C.; Song, P.; Sun, Z. Viscosities and Densities of Mixed Aqueous Alkali Metal Nitrate Solutions at T = (293.15–333.15) K. J. Chem. Eng. Data 2022, 67, 2088–2097. [Google Scholar] [CrossRef]
- Tong, J.; Zheng, X.; Li, H.; Tong, J.; Liu, Q.S. Densities and Viscosities of Aqueous Amino Acid Ionic Liquids C(n)mim Ala (n = 3, 4, 5). J. Chem. Eng. Data 2017, 62, 2501–2508. [Google Scholar] [CrossRef]
- Li, X.R.; Qin, Y.; Xu, W.G.; Liu, J.G.; Yang, J.Z.; Xu, Q.; Yan, C.W. Investigation of electrolytes of the vanadium redox flow battery (IV): Measurement and prediction of viscosity of aqueous VOSO4 solution at 283.15 to 323.15 K. J. Mol. Liq. 2016, 224, 893–899. [Google Scholar] [CrossRef]
- Banipal, T.S.; Singh, K.; Banipal, P.K.; Sood, A.K.; Singh, P.; Singh, G.; Patyar, P. Volumetric and Viscometric Studies of Some Metal Acetates in Aqueous Solutions at T = (288.15 to 318.15) K. J. Chem. Eng. Data 2008, 53, 2758–2765. [Google Scholar] [CrossRef]
- Roy, M.N.; Sah, R.S.; Pradhan, P.P.; Roy, P.K. Ion-Solvent and Ion-Ion Interactions of Phosphomolybdic Acid in Aqueous Solution of Catechol at 298.15, 308.15, and 318.15 K. Russ. J. Phys. Chem. A 2009, 83, 1887–1895. [Google Scholar] [CrossRef]
- Ameta, R.K.; Singh, M. Surface tension, viscosity, apparent molal volume, activation viscous flow energy and entropic changes of water plus alkali metal phosphates at T = (298.15, 303.15, 308.15) K. J. Mol. Liq. 2015, 203, 29–38. [Google Scholar] [CrossRef]
- Gupta, J.; Nain, A.K. Molecular interactions of gentamicin sulphate in aqueous-l-asparagine/l-glutamine solutions at different temperatures: Volumetric, acoustic and viscometric properties. J. Mol. Liq. 2019, 293, 111547. [Google Scholar] [CrossRef]
- Lin, L.N.; Brandts, J.F.; Brandts, J.M.; Plotnikov, V. Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry. Anal. Biochem. 2002, 302, 144–160. [Google Scholar] [CrossRef]
- Mitra, L.; Smolin, N.; Ravindra, R.; Royer, C.; Winter, R. Pressure perturbation calorimetric studies of the solvation properties and the thermal unfolding of proteins in solution—Experiments and theoretical interpretation. Phys. Chem. Chem. Phys. 2006, 8, 1249–1265. [Google Scholar] [CrossRef]
- Zhai, Y.; Okoro, L.; Cooper, A.; Winter, R. Applications of pressure perturbation calorimetry in biophysical studies. Biophys. Chem. 2011, 156, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Suladze, S.; Kahse, M.; Erwin, N.; Tomazic, D.; Winter, R. Probing volumetric properties of biomolecular systems by pressure perturbation calorimetry (PPC)—The effects of hydration, cosolvents and crowding. Methods 2015, 76, 67–77. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Cummings, P.T.; Kalyuzhnyi, Y.V. Solvation effect on kinetic rate constant of reactions in supercritical solvents. Aiche J. 1998, 44, 667–680. [Google Scholar] [CrossRef]
- Popper, K.R. Conjectures and Refutations: The Growth of Scientific Knowledge; Routledge: Oxfordshire, UK, 2002. [Google Scholar]
- Feynman, R.P. What Do You Care What Other People Think?: Further Adventures of a Curious Character; Norton & Company, Incorporated: New York, NY, USA, 1988. [Google Scholar]
Mixture | Ref. | |||
---|---|---|---|---|
NaCl + H2O | >0 | >0 | >0 (maker) | [104] |
Me4NBr + H2O | >0 | >0 | <0 (breaker) | [104] |
Ni(NO3)2 + H2O | >0 | <0 | >0 (maker) | [115] |
Et4NBr + H2O | >0 | <0 | <0 (breaker) | [104] |
KBr + H2O | <0 | >0 | >0 (maker) | [116] |
KI + H2O | <0 | >0 | <0 (breaker) | [104] |
IG_i+ H2O (a) | <0 | <0 | >0 (maker) | [113] |
[Emim][NTf2] + EG | <0 | <0 | <0 (breaker) | [117] |
j-Solvent | ||||
---|---|---|---|---|
ambient water | >0 | >0 | <0 | 3.7 |
supercritical water | <0 | <0 | <0 | 14.2 |
subcritical water | >0 | <0 | <0 | 8.1 |
dimethyl sulfoxide | >0 | >0 | <0 | 5.8 |
N-N dimethyl formamide | >0 | >0 | <0 | 5.0 |
Tetrahydrofuran | >0 | >0 | <0 | 4.6 |
NN-Dimethylacetamide | >0 | >0 | <0 | 5.4 |
acetonitrile | >0 | >0 | <0 | 3.9 |
ethylene glycol | >0 | >0 | <0 | 7.3 |
1,4 dioxane | >0 | >0 | <0 | 5.5 |
methanol | >0 | >0 | <0 | 4.0 |
ethanol | >0 | >0 | <0 | 5.1 |
1-propanol | >0 | >0 | <0 | 5.9 |
t-butanol | >0 | >0 | <0 | 6.9 |
trifluoroethanol | >0 | >0 | <0 | 5.7 |
acetone | >0 | >0 | <0 | 4.0 |
propylene carbonate??? | >0 | >0 | <0 | 6.3 |
alfa-butyrolactonate | >0 | >0 | <0 | 5.8 |
formamide | >0 | >0 | <0 | 5.8 |
n-methyl formamide | >0 | >0 | <0 | 5.5 |
tetramethylurea | >0 | >0 | <0 | 6.1 |
n-methylpyrrolidinone | >0 | >0 | <0 | 5.9 |
pyridine | >0 | >0 | <0 | 5.7 |
benzonitrile | >0 | >0 | <0 | 5.7 |
nitromethane | >0 | >0 | <0 | 4.7 |
nitrobenzene | >0 | >0 | <0 | 6.1 |
chloroform | >0 | >0 | <0 | 4.7 |
1-1 dichloroethane | >0 | >0 | <0 | 4.6 |
1-2 dichloroethane | >0 | >0 | <0 | 5.0 |
tetramethylenesulfone | >0 | >0 | <0 | 7.8 |
tetrahydrothiophene | >0 | >0 | <0 | 5.3 |
trimethylphosphate | >0 | >0 | <0 | 6.4 |
i-Solute | Ref. | ||||
---|---|---|---|---|---|
water (a) | unperturbed | 0 | 0 | maker | [4] |
urea | breaker | >0 | >0 | breaker [130] | [71,131,132] |
N-methyl urea | breaker | >0 | >0 | breaker [133] | [71,132,134] |
(1,3)-dimethyl urea | breaker | >0 | >0 | maker [130] | [71,132,134] |
creatine | breaker | <0 | >0 | maker | [135] |
creatinine | breaker | <0 | >0 | maker | [135] |
nicotinic acid | breaker | <0 | >0 | maker | [136] |
l-ascorbic acid | breaker | >0 | >0 | breaker | [71,136,137] |
glycine | breaker | >0 | >0 | breaker | [138] |
alanine | breaker | >0 | >0 | breaker | [138] |
DTAB | breaker | >0 | <0 | breaker | [138] |
caffeine | breaker | >0 | >0 | maker | [139] |
theophilline | breaker | >0 | >0 | maker | [139] |
theobromine | breaker | >0 | >0 | maker | [139] |
l-serine | breaker | <0 | >0 | maker | [109] |
l-arginine | breaker | <0 | >0 | maker | [109] |
choline-biotinate | breaker | <0 | >0 | maker | [140] |
choline-nicotinate | breaker | <0 | >0 | maker | [140] |
choline-ascorbate | breaker | >0 | >0 | maker | [140] |
LiCy | breaker | <0 | >0 | breaker | [141,142] |
NaCy | breaker | ~0 | >0 | maker | [141,142] |
KCy | breaker | >0 | >0 | maker | [141,142] |
CaCl2 | maker | >0 | >0 | breaker | [143,144] |
CdCl2 | maker | <0 | >0 | breaker | [145,146] |
NiCl2 | maker | >0 | <0 | breaker | [146,147] |
NH4NO3 | breaker | >0 | <0 | breaker | [148,149] |
MgCl2 | maker | <0 | >0 | breaker | [146,150] |
i-Solute | (kJ/mol) | (%) |
---|---|---|
24.5 | −12 | |
26.7 | −16 | |
12.6 | 38 | |
35.1 | −24 | |
11.7 | 53 | |
90.9 | −14 | |
172.7 | −26 | |
39.5 | −33 | |
19.9 | 8 | |
41.4 | −35 | |
76.0 | −41 | |
73.9 | −42 | |
62.6 | −34 | |
74.8 | −41 | |
130.3 | −54 | |
113.8 | −51 | |
108.3 | −50 | |
152.6 | −57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chialvo, A.A. On the Solute-Induced Structure-Making/Breaking Phenomena: Myths, Verities, and Misuses in Solvation Thermodynamics. Liquids 2024, 4, 592-623. https://doi.org/10.3390/liquids4030033
Chialvo AA. On the Solute-Induced Structure-Making/Breaking Phenomena: Myths, Verities, and Misuses in Solvation Thermodynamics. Liquids. 2024; 4(3):592-623. https://doi.org/10.3390/liquids4030033
Chicago/Turabian StyleChialvo, Ariel A. 2024. "On the Solute-Induced Structure-Making/Breaking Phenomena: Myths, Verities, and Misuses in Solvation Thermodynamics" Liquids 4, no. 3: 592-623. https://doi.org/10.3390/liquids4030033
APA StyleChialvo, A. A. (2024). On the Solute-Induced Structure-Making/Breaking Phenomena: Myths, Verities, and Misuses in Solvation Thermodynamics. Liquids, 4(3), 592-623. https://doi.org/10.3390/liquids4030033