Rheological Investigation of Highly Filled Copper(II) Oxide Nanosuspensions to Optimize Precursor Particle Content in Reductive Laser-Sintering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation and Characterization of the Nanosuspension
2.3. Rheological Characterization
2.4. Doctor Blade Coating for Reductive Laser Sintering
3. Results
3.1. Characterization of the Nanoparticles
3.2. Flow Behavior of the Diluted Precursors
3.3. Viscoelastic Behavior of the Diluted Precursors
3.4. Coating Quality of the Diluted Precursors
3.5. Generation of Copper Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
3ITT | Three-interval thixotropy test |
COC | Cyclic olefin copolymers |
Cu | Copper |
CuO | Copper(II) oxide |
EG | Ethylene glycol |
LSM | Laser scanning microscopy |
NPs | Nanoparticles |
PC | Precursor |
RLS | Reductice laser sintering |
SEM | Scanning electron microscopy |
References
- Martins, P.; Pereira, N.; Lima, A.C.; Garcia, A.; Mendes-Filipe, C.; Policia, R.; Correia, V.; Lanceros-Mendez, S. Advances in Printing and Electronics: From Engagement to Commitment. Adv. Funct. Mater. 2023, 33, 2213744. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Jayakumar, A.; Velu, R. A Comprehensive Review on Printed Electronics: A Technology Drift towards a Sustainable Future. Nanomaterials 2022, 12, 4251. [Google Scholar] [CrossRef] [PubMed]
- Kamyshny, A.; Magdassi, S. Conductive nanomaterials for printed electronics. Small 2014, 10, 3515–3535. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Sun, Q.; Li, L.; Jiu, J.; Liu, X.Y.; Kanehara, M.; Minari, T.; Suganuma, K. The rise of conductive copper inks: Challenges and perspectives. Appl. Mater. Today 2020, 18, 100451. [Google Scholar] [CrossRef]
- Nam, V.B.; Giang, T.T.; Koo, S.; Rho, J.; Lee, D. Laser digital patterning of conductive electrodes using metal oxide nanomaterials. Nano Converg. 2020, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Kefer, S.; Bischoff, K.; Roth, G.L.; Haubner, J.; Schmauss, B.; Hellmann, R. Tunable Bulk Polymer Planar Bragg Gratings Electrified via Femtosecond Laser Reductive Sintering of CuO Nanoparticles. Adv. Opt. Mater. 2021, 9, 2002203. [Google Scholar] [CrossRef]
- Roth, G.L.; Haubner, J.; Kefer, S.; Esen, C.; Hellmann, R. Fs-laser based hybrid micromachining for polymer micro-opto electrical systems. Opt. Lasers Eng. 2021, 137, 106362. [Google Scholar] [CrossRef]
- Kang, B.; Han, S.; Kim, J.; Ko, S.; Yang, M. One-Step Fabrication of Copper Electrode by Laser-Induced Direct Local Reduction and Agglomeration of Copper Oxide Nanoparticle. J. Phys. Chem. C 2011, 115, 23664–23670. [Google Scholar] [CrossRef]
- Manshina, A.A.; Povolotskiy, A.V.; Ivanova, T.Y.; Tver’yanovich, Y.S.; Tunik, S.P.; Kim, D.; Kim, M.; Kwon, S.C. Effect of salt precursor on laser-assisted copper deposition. Appl. Phys. A 2007, 89, 755–759. [Google Scholar] [CrossRef]
- Song, S.M.; Cho, S.M. Copper Ion Inks Capable of Screen Printing and Intense Pulsed-Light Sintering on PET Substrates. ACS Appl. Electron. Mater. 2022, 4, 1882–1890. [Google Scholar] [CrossRef]
- Jones, J.; Snowdon, M.R.; Rathod, S.; Peng, P. Direct laser writing of copper and copper oxide structures on plastic substrates for memristor devices. Flex. Print. Electron. 2023, 8, 015008. [Google Scholar] [CrossRef]
- Mizoshiri, M.; Aoyama, K.; Uetsuki, A.; Ohishi, T. Direct Writing of Copper Micropatterns Using Near-Infrared Femtosecond Laser-Pulse-Induced Reduction of Glyoxylic Acid Copper Complex. Micromachines 2019, 10, 401. [Google Scholar] [CrossRef] [PubMed]
- Avilova, E.A.; Khairullina, E.M.; Shishov, A.Y.; Eltysheva, E.A.; Mikhailovskii, V.; Sinev, D.A.; Tumkin, I.I. Direct Laser Writing of Copper Micropatterns from Deep Eutectic Solvents Using Pulsed near-IR Radiation. Nanomaterials 2022, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Khairullina, E.; Shishov, A.; Gordeychuk, D.; Logunov, L.; Levshakova, A.; Sosnovsky, V.B.; Koroleva, A.; Mikhailovsky, V.; Gurevich, E.L.; Chernyshov, I.; et al. Rapid and effective method of laser metallization of dielectric materials using deep eutectic solvents with copper acetate. J. Mater. Sci. 2023, 58, 9322–9336. [Google Scholar] [CrossRef]
- Arakane, S.; Mizoshiri, M.; Hata, S. Direct patterning of Cu microstructures using femtosecond laser-induced CuO nanoparticle reduction. Jpn. J. Appl. Phys. 2015, 54, 06FP07. [Google Scholar] [CrossRef]
- Mizoshiri, M.; Ito, Y.; Arakane, S.; Sakurai, J.; Hata, S. Direct fabrication of Cu/Cu2O composite micro-temperature sensor using femtosecond laser reduction patterning. Jpn. J. Appl. Phys. 2016, 55, 06GP05. [Google Scholar] [CrossRef]
- Tumkin, I.I.; Khairullina, E.M.; Panov, M.S.; Yoshidomi, K.; Mizoshiri, M. Copper and Nickel Microsensors Produced by Selective Laser Reductive Sintering for Non-Enzymatic Glucose Detection. Materials 2021, 14, 2493. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, X.; Li, M.; Xu, M.; Long, J. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles. Opt. Express 2021, 29, 4453. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, Z.; Tu, Z.; Bian, H. Influence of Electrode Structure on Performance of Laser Direct Writing Cu-PI Flexible Humidity Sensor. Micromachines 2022, 13, 992. [Google Scholar] [CrossRef]
- Binh Nam, V.; Thi Giang, T.; Lee, D. Laser digital patterning of finely-structured flexible copper electrodes using copper oxide nanoparticle ink produced by a scalable synthesis method. Appl. Surf. Sci. 2021, 570, 151179. [Google Scholar] [CrossRef]
- Back, S.; Kang, B. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer. Opt. Lasers Eng. 2018, 101, 78–84. [Google Scholar] [CrossRef]
- Bischoff, K.; Esen, C.; Hellmann, R. Preparation of Dispersed Copper(II) Oxide Nanosuspensions as Precursor for Femtosecond Reductive Laser Sintering by High-Energy Ball Milling. Nanomaterials 2023, 13, 2693. [Google Scholar] [CrossRef]
- Kulkarni, D.P.; Das, D.K.; Chukwu, G.A. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). J. Nanosci. Nanotechnol. 2006, 6, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Dzido, G.; Chmiel-Kurowska, K.; Gierczycki, A.; Jarzębski, A.B. Application of Klein’s equation for description of viscosity of nanofluid. In 19th European Symposium on Computer Aided Process Engineering; Computer-Aided Chemical Engineering 1570-7946; Jeżowski, J., Ed.; Elsevier: Amsterdam, The Netherlands; London, UK, 2009; Volume 26, pp. 955–960. [Google Scholar] [CrossRef]
- Patra, A.K.; Nayak, M.K.; Misra, A. Viscosity of nanofluids—A Review. Int. J. Thermofluid Sci. Technol. 2020, 7, 070202. [Google Scholar] [CrossRef]
- Ye, X.; Kandlikar, S.G.; Li, C. Viscosity of nanofluids containing anisotropic particles: A critical review and a comprehensive model. Eur. Phys. J. E Soft Matter 2019, 42, 159. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, W.; Kuhn, H. Die Abhängigkeit der Viskosität vom Strömungsgefälle bei hochverdünnten Suspensionen und Lösungen. Helv. Chim. Acta 1945, 28, 97–127. [Google Scholar] [CrossRef]
- Mueller, S.; Llewellin, E.W.; Mader, H.M. The rheology of suspensions of solid particles. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 1201–1228. [Google Scholar] [CrossRef]
- Chang, H.; Jwo, C.S.; Lo, C.H.; Tsung, T.T.; Kao, M.J.; Lin, H.M. Rheology of CuO nanoparticle suspension prepared by asnss. Rev. Adv. Mater. Sci. 2005, 10, 128–132. [Google Scholar]
- Shestakov, D.; Khairullina, E.; Shishov, A.; Khubezhov, S.; Makarov, S.; Tumkin, I.; Logunov, L. Picosecond laser writing of highly conductive copper micro-contacts from deep eutectic solvents. Opt. Laser Technol. 2023, 167, 109777. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, W.; Zhu, Y.; Peng, P. The laser writing of highly conductive and anti-oxidative copper structures in liquid. Nanoscale 2020, 12, 563–571. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, X.; Chen, J.; Guo, W.; He, S.; Gao, S.; Peng, P. Laser—Patterned Copper Electrodes for Proximity and Tactile Sensors. Adv. Mater. Interfaces 2020, 7, 1901845. [Google Scholar] [CrossRef]
- Sato, T.; Kohnosu, S. Effect of polyvinylpyrrolidone on the physical properties of titanium dioxide suspensions. Colloids Surf. A Physicochem. Eng. Asp. 1994, 88, 197–205. [Google Scholar] [CrossRef]
Suspension No. | CuO:EG Mass Ratio | CuO NP Mass Concentration in wt% | CuO:PVP Mass Ratio |
---|---|---|---|
stock | 2.50 | 61.86 | 4.62 |
1 | 2.22 | 60.00 | |
2 | 2.00 | 58.25 | |
3 | 1.67 | 55.05 | |
4 | 1.33 | 50.85 | |
5 | 1.00 | 45.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bischoff, K.; Mücke, D.; Schubert, A.; Esen, C.; Hellmann, R. Rheological Investigation of Highly Filled Copper(II) Oxide Nanosuspensions to Optimize Precursor Particle Content in Reductive Laser-Sintering. Liquids 2024, 4, 382-392. https://doi.org/10.3390/liquids4020019
Bischoff K, Mücke D, Schubert A, Esen C, Hellmann R. Rheological Investigation of Highly Filled Copper(II) Oxide Nanosuspensions to Optimize Precursor Particle Content in Reductive Laser-Sintering. Liquids. 2024; 4(2):382-392. https://doi.org/10.3390/liquids4020019
Chicago/Turabian StyleBischoff, Kay, Dominik Mücke, Andreas Schubert, Cemal Esen, and Ralf Hellmann. 2024. "Rheological Investigation of Highly Filled Copper(II) Oxide Nanosuspensions to Optimize Precursor Particle Content in Reductive Laser-Sintering" Liquids 4, no. 2: 382-392. https://doi.org/10.3390/liquids4020019
APA StyleBischoff, K., Mücke, D., Schubert, A., Esen, C., & Hellmann, R. (2024). Rheological Investigation of Highly Filled Copper(II) Oxide Nanosuspensions to Optimize Precursor Particle Content in Reductive Laser-Sintering. Liquids, 4(2), 382-392. https://doi.org/10.3390/liquids4020019