Prediction of the Structural Color of Liquid Crystals via Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Liquid Crystal Formulation
2.2. Liquid Crystal Characterization
2.3. Mixture Design Method
2.4. Data Mining
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xuan, Z.; Li, J.; Liu, Q.; Yi, F.; Wang, S.; Lu, W. Artificial Structural Colors and Applications. Innovation 2021, 2, 100081. [Google Scholar] [CrossRef]
- Schertel, L.; Magkiriadou, S.; Yazhgur, P.; Demirörs, A.F. Manufacturing Large-Scale Materials with Structural Color. Chimia 2022, 76, 833–840. [Google Scholar] [CrossRef]
- Daqiqeh Rezaei, S.; Dong, Z.; You En Chan, J.; Trisno, J.; Ng, R.J.H.; Ruan, Q.; Qiu, C.W.; Mortensen, N.A.; Yang, J.K.W. Nanophotonic Structural Colors. ACS Photonics 2021, 8, 18–33. [Google Scholar] [CrossRef]
- Sol, J.A.H.P.; Sentjens, H.; Yang, L.; Grossiord, N.; Schenning, A.P.H.J.; Debije, M.G. Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer. Adv. Mater. 2021, 33, 2103309. [Google Scholar] [CrossRef] [PubMed]
- Sage, I. Thermochromic Liquid Crystals in Devices. In Liquid Crystals, Applications and Uses; Bahadur, B., Ed.; World Scientific: Singapore, 1990; pp. 301–341. [Google Scholar]
- Makow, D.M.; Sanders, C.L. Additive Colour Properties and Colour Gamut of Cholesteric Liquid Crystals. Nature 1978, 276, 248–250. [Google Scholar] [CrossRef]
- Ma, L.L.; Li, C.Y.; Pan, J.T.; Ji, Y.E.; Jiang, C.; Zheng, R.; Wang, Z.Y.; Wang, Y.; Li, B.X.; Lu, Y.Q. Self-Assembled Liquid Crystal Architectures for Soft Matter Photonics. Light Sci. Appl. 2022, 11, 270. [Google Scholar] [CrossRef]
- Kamal, W.; Orr, A.C.J.; Sykes, T.C.; Castrejón-Pita, A.A.; Elston, S.J.; Morris, S.M. On-Demand Pitch Tuning of Printed Chiral Nematic Liquid Crystal Droplets. Mater. Today Adv. 2023, 19, 100416. [Google Scholar] [CrossRef]
- Popov, P.; Mann, E.K.; Jákli, A. Thermotropic Liquid Crystal Films for Biosensors and Beyond. J. Mater. Chem. B 2017, 5, 5061–5078. [Google Scholar] [CrossRef]
- Green, A.A.S.; Dutch, E.; Qi, Z.; Briggs, C.; Park, C.S.; Glaser, M.A.; Maclennan, J.E.; Clark, N.A. A Gas Flow Meter with Linear Sensitivity Based on Freely-Suspended Nanofilms of Smectic Liquid Crystal. Appl. Phys. Lett. 2019, 114, 163705. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Wang, B. A Learning-Based Approach for Solving Shear Stress Vector Distribution from Shear-Sensitive Liquid Crystal Coating Images. Chin. J. Aeronaut. 2022, 35, 55–65. [Google Scholar] [CrossRef]
- Makow, D. Liquid Crystals in Painting and Sculpture. Leonardo 1982, 15, 257–261. [Google Scholar] [CrossRef]
- Guan, Y.; Agra-Kooijman, D.M.; Fu, S.; Jákli, A.; West, J.L. Responsive Liquid-Crystal-Clad Fibers for Advanced Textiles and Wearable Sensors. Adv. Mater. 2019, 31, e1902168. [Google Scholar] [CrossRef]
- Tai, H.S.; Lee, J.Y. Phase Transition Behaviors and Selective Optical Properties of a Binary Cholesteric Liquid Crystals System: Mixtures of Oleyl Cholesteryl Carbonate and Cholesteryl Nonanoate. J. Appl. Phys. 1990, 67, 1001–1006. [Google Scholar] [CrossRef]
- Bak, C.S.; Labes, M.M. Pitch-Concentration Relationships in Multicomponent Liquid Crystal Mixtures. J. Chem. Phys. 1974, 62, 3066–3069. [Google Scholar] [CrossRef]
- Bannigan, P.; Aldeghi, M.; Bao, Z.; Häse, F.; Aspuru-Guzik, A.; Allen, C. Machine Learning Directed Drug Formulation Development. Adv. Drug Deliv. Rev. 2021, 175, 113806. [Google Scholar] [CrossRef] [PubMed]
- Ronowicz, J.; Thommes, M.; Kleinebudde, P.; Krysiński, J. A Data Mining Approach to Optimize Pellets Manufacturing Process Based on a Decision Tree Algorithm. Eur. J. Pharm. Sci. 2015, 73, 44–48. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, Z.; Su, Y.; Zhao, Q.; Li, X.; Ouyang, D. Deep Learning for in Vitro Prediction of Pharmaceutical Formulations. Acta Pharm. Sin. B 2019, 9, 177–185. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, N.; Chang, Q.; Xu, J.; Zhang, J. Development of Ensemble Learning Models to Evaluate the Strength of Coal-Grout Materials. Int. J. Min. Sci. Technol. 2021, 31, 153–162. [Google Scholar] [CrossRef]
- Dierking, I.; Dominguez, J.; Harbon, J.; Heaton, J. Testing Different Supervised Machine Learning Architectures for the Classification of Liquid Crystals. Liq. Cryst. 2023, in press. [Google Scholar] [CrossRef]
- Dierking, I.; Dominguez, J.; Harbon, J.; Heaton, J. Deep Learning Techniques for the Localization and Classification of Liquid Crystal Phase Transitions. Front. Soft Matter 2023, 3, 1114551. [Google Scholar] [CrossRef]
- Betts, R.; Dierking, I. Machine Learning Classification of Polar Sub-Phases in Liquid Crystal MHPOBC. Soft Matter 2023, 19, 7502–7512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, S.; Zhang, R.; Deng, Z.; Liu, Y.; Tian, J.; Yu, L.; Hu, Q.; Ye, Q. Automated Calculation of Liquid Crystal Sensing Images Based on Deep Learning. Anal. Chem. 2022, 94, 12781–12787. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yu, H.; Abbott, N.L.; Zavala, V.M. Machine Learning Algorithms for Liquid Crystal-Based Sensors. ACS Sens. 2018, 3, 2237–2245. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Abbott, N.; Zavala, V.M. Convolutional Network Analysis of Optical Micrographs for Liquid Crystal Sensors. J. Phys. Chem. C 2020, 124, 15152–15161. [Google Scholar] [CrossRef]
- Hedlund, E.; Hedlund, K.; Green, A.; Chowdhury, R.; Park, C.S.; Maclennan, J.E.; Clark, N.A. Detection of Islands and Droplets on Smectic Films Using Machine Learning. Phys. Fluids 2022, 34, 103608. [Google Scholar] [CrossRef]
- Jiang, S.; Noh, J.; Park, C.; Smith, A.D.; Abbott, N.L.; Zavala, V.M. Using Machine Learning and Liquid Crystal Droplets to Identify and Quantify Endotoxins from Different Bacterial Species. Analyst 2021, 146, 1224–1233. [Google Scholar] [CrossRef]
- Yildirim Taser, P.; Onsal, G.; Ugurlu, O. Comparison of Experimental Measurements and Machine Learning Predictions of Dielectric Constant of Liquid Crystals. Bull. Mater. Sci. 2023, 46, 1. [Google Scholar] [CrossRef]
- Zaplotnik, J.; Pišljar, J.; Škarabot, M.; Ravnik, M. Neural Networks Determination of Material Elastic Constants and Structures in Nematic Complex Fluids. Sci. Rep. 2023, 13, 6028. [Google Scholar] [CrossRef]
- Kakiuchida, H.; Suzuki, K.; Kojima, T. Using Pretrained Machine Learning Models to Predict Luminous and Solar Transmittance Controllability of Liquid Crystal/Polymer Composites from Microstructural Images. Opt. Express 2023, 31, 29954. [Google Scholar] [CrossRef]
- Sigaki, H.Y.D.; De Souza, R.F.; De Souza, R.T.; Zola, R.S.; Ribeiro, H.V. Estimating Physical Properties from Liquid Crystal Textures via Machine Learning and Complexity-Entropy Methods. Phys. Rev. E 2019, 99, 013311. [Google Scholar] [CrossRef]
- Sigaki, H.Y.D.; Lenzi, E.K.; Zola, R.S.; Perc, M.; Ribeiro, H.V. Learning Physical Properties of Liquid Crystals with Deep Convolutional Neural Networks. Sci. Rep. 2020, 10, 7664. [Google Scholar] [CrossRef]
- Soon, C.F. Development of a Novel Cell Traction Force Transducer Based on Cholesteryl Ester Liquid Crystals. Ph.D. Thesis, University of Bradford, Bradford, UK, 2012. [Google Scholar]
- Saavedra-Leos, M.Z.; Grajales-Lagunes, A.; González-García, R.; Toxqui-Terán, A.; Pérez-García, S.A.; Abud-Archila, M.A.; Ruiz-Cabrera, M.A. Glass Transition Study in Model Food Systems Prepared with Mixtures of Fructose, Glucose, and Sucrose. J. Food Sci. 2012, 77, E118–E126. [Google Scholar] [CrossRef]
- van der Westhuizen, I.; Focke, W.W. Stabilizing Sunflower Biodiesel with Synthetic Antioxidant Blends. Fuel 2018, 219, 126–131. [Google Scholar] [CrossRef]
- ISO 21348:2007; Space Environment (Natural and Artificial): Process for Determining Solar Irradiances. International Organization for Standardization: Geneva, Switzerland, 2007.
- Mousavizadegan, M.; Hosseini, M.; Sheikholeslami, M.N.; Hamidipanah, Y.; Reza Ganjali, M. Smartphone Image Analysis-Based Fluorescence Detection of Tetracycline Using Machine Learning. Food Chem. 2023, 403, 134364. [Google Scholar] [CrossRef] [PubMed]
- Chilaya, G.S.; Lisetski, L.N. Cholesteric Liquid Crystals: Physical Properties and Molecular-Statistical Theories. Mol. Cryst. Liq. Cryst. 1986, 140, 243–286. [Google Scholar] [CrossRef]
- Dos Passos, J.S.; Matayeva, A.; Biller, P. Synergies during Hydrothermal Liquefaction of Cow Manure and Wheat Straw. J. Environ. Chem. Eng. 2022, 10, 108181. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, Y.; Brear, M.J.; Foong, T.M.; Anderson, J.E. Optimal Octane Number Correlations for Mixtures of Toluene Reference Fuels (TRFs) and Ethanol. Fuel 2017, 188, 408–417. [Google Scholar] [CrossRef]
- Voss, J.; Sackmann, E. Solute and Temperature Induced Pitch Changes and Pretransitional Effects in Cholesteric Liquid Crystals. Z. Für Naturforschung A 1973, 28, 1496–1499. [Google Scholar] [CrossRef]
- Baessler, H.; Labes, M.M. Helical Twisting Power of Steroidal Solutes in Cholesteric Mesophases. J. Chem. Phys. 1970, 52, 631–637. [Google Scholar] [CrossRef]
- Dorset, D.L. Eutectic Interactions between Saturated and Unsaturated Chain Cholesteryl Esters: Comparison of Calculated and Observed Phase Diagrams. Biochim. Biophys. Acta 1990, 1046, 195–201. [Google Scholar] [CrossRef]
- Hawkins, D.M. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Munir, S.; Park, S.Y. Cholesteric Liquid Crystal Droplets for Biosensors. ACS Appl. Mater. Interfaces 2016, 8, 26407–26417. [Google Scholar] [CrossRef]
- Suryantari, R.; Silalahi, H.M.; Liu, Y.M.; Wu, L.Y.; Chen, X.W.; Chen, C.H.; Huang, C.Y. Toward Femtomolar Detection of Heavy Metal Ions Using Uniform Liquid Crystal Films with 1 × 1 cm2 Active Regions. Opt. Laser Technol. 2023, 163, 109352. [Google Scholar] [CrossRef]
- Shen, W.; Li, G. Recent Progress in Liquid Crystal-Based Smart Windows: Materials, Structures, and Design. Laser Photonics Rev. 2023, 17, 2200207. [Google Scholar] [CrossRef]
- Sung, G.-F.; Wu, P.-C.; Zyryanov, V.Y.; Lee, W. Electrically Active and Thermally Passive Liquid-Crystal Device toward Smart Glass. Photonics Res. 2021, 9, 2288. [Google Scholar] [CrossRef]
- Shin, Y.; Jiang, Y.; Wang, Q.; Zhou, Z.; Qin, G.; Yang, D.-K. Flexoelectric-Effect-Based Light Waveguide Liquid Crystal Display for Transparent Display. Photonics Res. 2022, 10, 407. [Google Scholar] [CrossRef]
- Tang, D.; Shao, Z.; Zhou, Y.; Lei, Y.; Chen, L.; Xie, J.; Zhang, X.; Xie, X.; Fan, F.; Liao, L.; et al. Simultaneous Surface Display and Holography Enabled by Flat Liquid Crystal Elements. Laser Photonics Rev. 2022, 16, 2100491. [Google Scholar] [CrossRef]
- Wefers, M.M.; Nelson, K.A. Analysis of Programmable Ultrashort Waveform Generation Using Liquid-Crystal Spatial Light Modulators. J. Opt. Soc. Am. B 1995, 12, 1343–1362. [Google Scholar] [CrossRef]
- Chiang, W.-F.; Silalahi, H.M.; Chiang, Y.-C.; Hsu, M.-C.; Zhang, Y.-S.; Liu, J.-H.; Yu, Y.; Lee, C.-R.; Huang, C.-Y. Continuously Tunable Intensity Modulators with Large Switching Contrasts Using Liquid Crystal Elastomer Films That Are Deposited with Terahertz Metamaterials. Opt. Express 2020, 28, 27676. [Google Scholar] [CrossRef]
Effect | Coefficient Estimate ± Standard Error | p-Value |
---|---|---|
XCOC | 394 ± 3 | <0.0001 |
XCC | 6984 ± 434 | <0.0001 |
XCP | 451 ± 66 | <0.0001 |
XCOCXCC | −8067 ± 749 | <0.0001 |
XCOCXCP | 102 ± 108 | 0.35 |
XCCXCP | −9954 ± 766 | <0.0001 |
XCOCXCC(XCOC − XCC) | 1998 ± 355 | <0.0001 |
XCOCXCP(XCOC − XCP) | −141 ± 61 | 0.0226 |
XCCXCP(XCC − XCP) | −3728 ± 714 | <0.0001 |
XCOCXCCXCP | 3100 ± 880 | 0.0007 |
R2 | RMSE | |
---|---|---|
Scheffe Cubic Model | 0.99898 | 4.42 |
Decision Tree | 0.99904 | 2.79 |
Neural Networks | 0.99694 | 7.12 |
Formulation COC:CC:CP | Predicted Value (Scheffe Cubic Model) | Predicted Value (Neural Network) | Predicted Value (Decision Tree) | Measured Value |
---|---|---|---|---|
20:25:55 | 540.4 ± 0.1 | 549.6 ± 1.1 | 553.1 ± 7.1 | 549.9 ± 0.1 |
30:20:50 | 482.3 ± 0.1 | 504.8 ± 3.3 | 502.6 ± 1.0 | 498.8 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, A.T.; Childs, H.M.; Salter, W.M.; Filippas, A.V.; McInnes, B.T.; Senecal, K.; Lawton, T.J.; D’Angelo, P.A.; Zukas, W.; Alexander, T.E.; et al. Prediction of the Structural Color of Liquid Crystals via Machine Learning. Liquids 2023, 3, 440-455. https://doi.org/10.3390/liquids3040028
Nguyen AT, Childs HM, Salter WM, Filippas AV, McInnes BT, Senecal K, Lawton TJ, D’Angelo PA, Zukas W, Alexander TE, et al. Prediction of the Structural Color of Liquid Crystals via Machine Learning. Liquids. 2023; 3(4):440-455. https://doi.org/10.3390/liquids3040028
Chicago/Turabian StyleNguyen, Andrew T., Heather M. Childs, William M. Salter, Afroditi V. Filippas, Bridget T. McInnes, Kris Senecal, Timothy J. Lawton, Paola A. D’Angelo, Walter Zukas, Todd E. Alexander, and et al. 2023. "Prediction of the Structural Color of Liquid Crystals via Machine Learning" Liquids 3, no. 4: 440-455. https://doi.org/10.3390/liquids3040028
APA StyleNguyen, A. T., Childs, H. M., Salter, W. M., Filippas, A. V., McInnes, B. T., Senecal, K., Lawton, T. J., D’Angelo, P. A., Zukas, W., Alexander, T. E., Ayotte, V., Zhao, H., & Tang, C. (2023). Prediction of the Structural Color of Liquid Crystals via Machine Learning. Liquids, 3(4), 440-455. https://doi.org/10.3390/liquids3040028