Application of Solution Calorimetry to Determining the Fusion Enthalpy of an Arylaliphatic Compound at 298.15 K: n-Octadecanophenone
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Differential Scanning Calorimetry
2.3. Solution Calorimetry
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weir, R.D.; de Loos, T.W. Measurement of the Thermodynamic Properties of Multiple Phases; Gulf Professional Publishing: Woburn, MA, USA, 2005. [Google Scholar]
- Dannenfelser, R.-M.; Yalkowsky, S.H. Estimation of Entropy of Melting from Molecular Structure: A Non-Group Contribution Method. Ind. Eng. Chem. Res. 1996, 35, 1483–1486. [Google Scholar] [CrossRef]
- Jain, A.; Yang, G.; Yalkowsky, S.H. Estimation of Melting Points of Organic Compounds. Ind. Eng. Chem. Res. 2004, 43, 7618–7621. [Google Scholar] [CrossRef]
- Wu, M.; Yalkowsky, S. Estimation of the molar heat capacity change on melting of organic compounds. Ind. Eng. Chem. Res. 2008, 48, 1063–1066. [Google Scholar] [CrossRef]
- Chickos, J.S.; Acree, W.E. Total phase change entropies and enthalpies. An update on fusion enthalpies and their estimation. Thermochim. Acta 2009, 495, 5–13. [Google Scholar] [CrossRef]
- Bondi, A. A Correlation of the Entropy of Fusion of Molecular Crystals with Molecular Structure. Chem. Rev. 1967, 67, 565–580. [Google Scholar] [CrossRef]
- Naef, R.; Acree, W.E. Calculation of five thermodynamic molecular descriptors by means of a general computer algorithm based on the group-additivity method: Standard enthalpies of vaporization, sublimation and solvation, and entropy of fusion of ordinary organic molecules and total phase-change entropy of liquid crystals. Molecules 2017, 22, 1059. [Google Scholar] [PubMed]
- Gharagheizi, F.; Babaie, O.; Mazdeyasna, S. Prediction of vaporization enthalpy of pure compounds using a group contribution-based method. Ind. Eng. Chem. Res. 2011, 50, 6503–6507. [Google Scholar] [CrossRef]
- Mulero, A.; Cachadina, I.; Parra, M.I. Comparison of corresponding-states-based correlations for the prediction of the vaporization enthalpy of fluids. Ind. Eng. Chem. Res. 2008, 47, 7903–7916. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Yagofarov, M.I. An approach for the calculation of vaporization enthalpies of aromatic and heteroaromatic compounds at 298.15 K applicable to supercooled liquids. J. Mol. Liq. 2020, 319, 114330. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Yagofarov, M.I. Compensation relationship in Thermodynamics of solvation and vaporization: Features and applications. I. Non-hydrogen-bonded systems. J. Mol. Liq. 2022. submitted. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree Jr, W.E. Estimation of enthalpies of sublimation of organic, organometallic and inorganic compounds. Fluid Phase Equilibria 2020, 515, 112575. [Google Scholar] [CrossRef]
- Bustamante, P.; Peña, M.A.; Barra, J. Partial-solubility Parameters of Naproxen and Sodium Diclofenac. J. Pharm. Pharmacol. 2011, 50, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Cheuk, D.; Svärd, M.; Rasmuson, Å.C. Thermodynamics of the Enantiotropic Pharmaceutical Compound Benzocaine and Solubility in Pure Organic Solvents. J. Pharm. Sci. 2020, 109, 3370–3377. [Google Scholar] [CrossRef] [PubMed]
- Neau, S.H.; Bhandarkar, S.V.; Hellmuth, E.W. Differential molar heat capacities to test ideal solubility estimations. Pharm. Res. 1997, 14, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.A.; Paruta, A.N. Solution thermodynamics of alkyl p-aminobenzoates. J. Pharm. Sci. 1976, 65, 252–257. [Google Scholar] [CrossRef]
- Pappa, G.D.; Voutsas, E.C.; Magoulas, K.; Tassios, D.P. Estimation of the differential molar heat capacities of organic compounds at their melting point. Ind. Eng. Chem. Res. 2005, 44, 3799–3806. [Google Scholar] [CrossRef]
- Hoffman, J.D. Thermodynamic driving force in nucleation and growth processes. J. Chem. Phys. 1958, 29, 1192–1193. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Z.; Gui, Y.; Shi, C.; Zhang, G.G.; Yu, L. Crystal nucleation rates in glass-forming molecular liquids: D-sorbitol, d-arabitol, d-xylitol, and glycerol. J. Chem. Phys. 2018, 149, 054503. [Google Scholar] [CrossRef]
- Yagofarov, M.I.; Solomonov, B.N. Calculation of the fusion enthalpy temperature dependence of polyaromatic hydrocarbons from the molecular structure: Old and new approaches. J. Chem. Thermodyn. 2021, 152, 106278. [Google Scholar] [CrossRef]
- Yagofarov, M.I.; Nagrimanov, R.N.; Solomonov, B.N. New aspects in the thermochemistry of solid-liquid phase transitions of organic non-electrolytes. J. Mol. Liq. 2018, 256, 58–66. [Google Scholar] [CrossRef]
- Yagofarov, M.I.; Lapuk, S.E.; Mukhametzyanov, T.A.; Ziganshin, M.A.; Valiakhmetov, T.F.; Solomonov, B.N. The fusion thermochemistry of self-associated aromatic compounds at 298.15 K studied by solution calorimetry. J. Chem. Thermodyn. 2019, 137, 43–47. [Google Scholar] [CrossRef]
- Nagrimanov, R.N.; Samatov, A.A.; Solomonov, B.N. Additive scheme of solvation enthalpy for linear, cyclic and branched-chain aliphatic compounds at 298.15 K. J. Mol. Liq. 2019, 292, 111365. [Google Scholar] [CrossRef]
- Yagofarov, M.I.; Sokolov, A.A.; Gerasimov, A.V.; Solomonov, B.N.; Stepurko, E.N.; Yurkshtovich, Y.N. Thermodynamic Properties of Thioxanthone between 80 and 540 K. J. Chem. Eng. Data 2022, in press. [Google Scholar] [CrossRef]
- Yagofarov, M.I.; Bolmatenkov, D.N.; Solomonov, B.N. Relationship between the vaporization enthalpies of aromatic compounds and the difference between liquid and ideal gas heat capacities. J. Chem. Thermodyn. 2021, 158, 106443. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Varfolomeev, M.A.; Nagrimanov, R.N.; Novikov, V.B.; Zaitsau, D.H.; Verevkin, S.P. Solution calorimetry as a complementary tool for the determination of enthalpies of vaporization and sublimation of low volatile compounds at 298.15 K. Thermochim. Acta 2014, 589, 164–173. [Google Scholar] [CrossRef]
- Bolmatenkov, D.N.; Notfullin, A.A.; Yagofarov, M.I.; Nagrimanov, R.N.; Italmasov, A.R.; Solomonov, B.N. Vaporization thermodynamics of normal alkyl phenones. J. Mol. Liq. 2023, 370, 121000. [Google Scholar] [CrossRef]
- Lu, J.Z.; Acree, W.E.; Abraham, M.H. Updated Abraham model correlations for enthalpies of solvation of organic solutes dissolved in benzene and acetonitrile. Phys. Chem. Liq. 2019, 57, 84–99. [Google Scholar] [CrossRef]
- Varfolomeev, M.A.; Rakipov, I.T.; Acree, W.E., Jr.; Brumfield, M.; Abraham, M.H. Examination of hydrogen-bonding interactions between dissolved solutes and alkylbenzene solvents based on Abraham model correlations derived from measured enthalpies of solvation. Thermochim. Acta 2014, 594, 68–79. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Yagofarov, M.I.; Nagrimanov, R.N. Additivity of vaporization enthalpy: Group and molecular contributions exemplified by alkylaromatic compounds and their derivatives. J. Mol. Liq. 2021, 342, 117472. [Google Scholar] [CrossRef]
m/mg | Tm/K | ΔcrlH(Tm)/(kJ·mol−1) |
---|---|---|
8.54 | 337.6 | 70.65 |
8.54 | 337.6 | 70.84 |
10.31 | 337.5 | 71.82 |
10.31 | 337.5 | 71.95 |
Average b | 337.6 ± 0.1 | 71.3 ± 2.1 |
Compound | m/mg b | b/(mmol·kg−1) c | ΔsolnH/(kJ·mol−1) d |
---|---|---|---|
n-Octanophenone | 49.8 | 3.15 | −0.28 |
50.6 | 3.20 | −0.48 | |
51.0 | 6.37 | −0.34 | |
49.7 | 6.34 | −0.51 | |
Average e | −0.40 ± 0.11 | ||
n-Octadecanophenone | 37.2 | 1.39 | 71.54 |
48.9 | 1.83 | 70.78 | |
43.8 | 3.03 | 71.07 | |
43.9 | 3.48 | 70.72 | |
Average e | 71.0 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagofarov, M.I.; Balakhontsev, I.S.; Sokolov, A.A.; Solomonov, B.N. Application of Solution Calorimetry to Determining the Fusion Enthalpy of an Arylaliphatic Compound at 298.15 K: n-Octadecanophenone. Liquids 2023, 3, 1-6. https://doi.org/10.3390/liquids3010001
Yagofarov MI, Balakhontsev IS, Sokolov AA, Solomonov BN. Application of Solution Calorimetry to Determining the Fusion Enthalpy of an Arylaliphatic Compound at 298.15 K: n-Octadecanophenone. Liquids. 2023; 3(1):1-6. https://doi.org/10.3390/liquids3010001
Chicago/Turabian StyleYagofarov, Mikhail I., Ilya S. Balakhontsev, Andrey A. Sokolov, and Boris N. Solomonov. 2023. "Application of Solution Calorimetry to Determining the Fusion Enthalpy of an Arylaliphatic Compound at 298.15 K: n-Octadecanophenone" Liquids 3, no. 1: 1-6. https://doi.org/10.3390/liquids3010001
APA StyleYagofarov, M. I., Balakhontsev, I. S., Sokolov, A. A., & Solomonov, B. N. (2023). Application of Solution Calorimetry to Determining the Fusion Enthalpy of an Arylaliphatic Compound at 298.15 K: n-Octadecanophenone. Liquids, 3(1), 1-6. https://doi.org/10.3390/liquids3010001