Application of Reichardt’s Solvent Polarity Scale (ET(30)) in the Selection of Bonding Agents for Composite Solid Rocket Propellants
Abstract
:1. Introduction
2. Experimental Section
2.1. Typical Measurement Procedure of the Liquid Polarity with Reichardt’s Dye
2.2. Mechanical Properties of HTPB-SRP with Different BA
3. Results
3.1. Measurement of ET(30) Value of Selected Current BA and Potential BA Candidates
3.2. Evaluation of Selected BA in a Standard CSRP
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Mason, B.P.; Roland, C.M. Solid propellants. Rubber Chem. Technol. 2019, 92, 1–24. [Google Scholar] [CrossRef]
- Koch, E.C. High Explosive, Propellants, Pyrotechnics; W. De Gruyter GmbH: Berlin, Germany, 2021. [Google Scholar]
- Varghese, T.L.; Krishnamurthy, V.N. The Chemistry and Technology of Solid Rocket Propellants; Allied Publishers: New Dehli, India, 2017. [Google Scholar]
- Lysien, K.; Stolarczyk, A.; Jarosz, T. Solid propellant formulations: A review of recent progress and utilized components. Materials 2021, 14, 6657. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T. Review of novel energetic polymers and binders–high energy propellant ingredients for the new space race. Des. Monom. Polym. 2019, 22, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.; Zhang, X.; Zhang, W.; Hang, R.; Xie, W.; Liu, Y.; Luo, W.; Chen, Y. Research progress of bonding agents and their performance evaluation methods. Molecules 2022, 27, 340. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Phan, D.N.; Nguyen, D.C.; Do, V.T.; Bach, L.G. The chemical compatibility and adhesion of energetic materials with several polymers and binders: A study. Polymers 2018, 10, 1396. [Google Scholar] [CrossRef] [PubMed]
- Naseem, H.; Yerra, J.; Murthy, H.; Ramakrishna, P.A. Ageing studies on AP/HTPB based composites solid propellants. Energetic Mater. Front. 2021, 2, 111–124. [Google Scholar]
- Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Reichardt, C. Pyridinium-N-phenolate betaine dyes as empirical indicators of solvent polarity: Some new findings. Pure Appl. Chem. 2008, 80, 1415–1432. [Google Scholar] [CrossRef]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed.; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Wielgus, M.; Zaleśny, R.; Murugan, N.A.; Kongsted, J.; Ågren, H.; Samoc, M.; Bartkowiak, W. Two-photon solvatochromism ii: Experimental and theoretical study of solvent effects on the two-photon absorption spectrum of Reichardt’s dye. Chem. Phys. Chem. 2013, 14, 3731–3739. [Google Scholar] [CrossRef]
- Cerón-Carrasco, J.P.; Jacquemin, D.; Laurence, C.; Planchat, A.; Reichardt, C.; Sraïdi, K. Solvent polarity scales: Determination of new ET(30) values for 84 organic solvents. J. Phys. Org. Chem. 2014, 27, 512–518. [Google Scholar] [CrossRef]
- Reichardt, C. Solvation effects in organic chemistry: A short historical overview. J. Org. Chem. 2021, 87, 1616–1629. [Google Scholar] [CrossRef]
- Cataldo, F. Ozone solvatochromism in selected solvents. J. Mol. Liq. 2018, 265, 733–739. [Google Scholar] [CrossRef]
- Mchedlov-Petrossyan, N.O.; Vodolazkaya, N.A. Protolytic equilibria in organized solutions: Ionization and tautomerism of fluorescein dyes and related indicators in cetyltrimethylammonium chloride micellar solutions at high ionic strength of the bulk phase. Liquids 2021, 1, 1–24. [Google Scholar] [CrossRef]
- Spange, S.; Weiß, N.; Schmidt, C.H.; Schreiter, K. Reappraisal of empirical solvent polarity scales for organic solvents. Chem.-Methods 2021, 1, 42–60. [Google Scholar] [CrossRef]
- NourEldin, A.F.; Adel, W.M.; Attai, Y.A.; Ismail, M.A. IOP Conf. Ser. Mater. Sci. Eng. 2020, 973, 012030. [Google Scholar]
- Boshra, I.K.; Lin, G.; Elbeih, A. Influence of different crosslinking mixtures on the mechanical properties of composite solid rocket propellants based on HTPB. High Perf. Polym. 2021, 33, 52–60. [Google Scholar] [CrossRef]
- Ozari, Y.; Jagur-Grodzinski, J. Donor strength of N-substituted phosphoramides. J. Chem. Soc. Chem. Comm. 1974, 8, 295–296. [Google Scholar] [CrossRef]
- Bollinger, J.C.; Yvernault, G.; Yvernault, T.; Julg, A.; Rajzmann, M. Moments dipolaires et conformations de l’hexaméthyl-phosphotriamide (HMPT) et des dérivés aziridinylés correspondants. J. Mol. Struct. 1980, 69, 273–288. [Google Scholar] [CrossRef]
- Diggle, J.W.; Bogsanyi, D. Physical properties and electrochemical stability of the thio solvents dimethylthioformamide and hexamethylphosphorothioic triamide. J. Phys. Chem. 1974, 78, 1018–1020. [Google Scholar] [CrossRef]
- Dean, J.A. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Cataldo, F. A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Eur. Chem. Bull. 2015, 4, 92–97. [Google Scholar]
- Gal, J.F.; Maria, P.C.; Yáñez, M.; Mó, O. On the Lewis basicity of phosphoramides: A critical examination of their donor number through comparison of enthalpies of adduct formation with SbCl5 and BF3. Chem. Phys. Chem 2019, 20, 2566–2576. [Google Scholar] [CrossRef]
- Chance, L.H.; Drake, G.L., Jr.; Reeves, W.A. Flame Resistant Organic Textiles and Method of Production. U.S. Patent No. 2,891,877, 23 June 1959. [Google Scholar]
- Pearce, E. (Ed.) Flame Retardant Polymeric Materials; Plenum Press: New York, NY, USA, 1975. [Google Scholar]
- Hudson, P.S.; Bice, C.C. Solid Composite Propellants Containing Aziridinyl Curing Agents. U.S. Patent No. 3,087,844, 30 April 1963. [Google Scholar]
- Obert, A. Bonding Agents for HTPB-Type Solid Propellants. U.S. Patent No. 5,417,895, 23 May 1995. [Google Scholar]
- McClellan, A.L. Tables of Experimental Dipole Moments; W.H. Freeman and Co., Ltd.: San Francisco, CA, USA, 1963; p. 9. [Google Scholar]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2005. [Google Scholar]
- O’Neal, M.J. (Ed.) Merck Index, 14th ed.; paragraph 5936; Merck Research Laboratories: Whitehouse Station, NJ, USA, 2006. [Google Scholar]
- Data from Chemspider Website. Available online: http://www.chemspider.com/ (accessed on 4 August 2022).
- O’Neal, M.J. (Ed.) Merck Index, 14th ed.; paragraph 9672; Merck Research Laboratories: Whitehouse Station, NJ, USA, 2006. [Google Scholar]
- O’Neal, M.J. (Ed.) Merck Index, 14th ed.; paragraph 9673; Merck Research Laboratories: Whitehouse Station, NJ, USA, 2006. [Google Scholar]
- Heath, D.F. Organophosphorus Poisons Anticholinesterases and Related Compounds; Pergamon Press: Oxford, UK, 1961. [Google Scholar]
- TTPT Safety Data Sheet from Merck Website. Available online: https://www.sigmaaldrich.com/IT/en/sds/aldrich/93404 (accessed on 2 August 2022).
- Cox, J.D.; Pilcher, G. Thermochemistry of Organic and Organometallic Compounds; Academic Press: London, UK, 1970; p. 574. [Google Scholar]
- Van Krevelen, D.W. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier: Amsterdam, The Netherlands, 1990; Chapter 20. [Google Scholar]
- Cataldo, F. Actinium Chemical Research, Rome, Italy. 2015, unpublished work. [Google Scholar]
λmax; nm | ṽ; cm−1 | ET(30); kcal/mol | ET(30); kJ/mol | εr; Dielectric Constant | µ; Debye | Notes | Reference | |
---|---|---|---|---|---|---|---|---|
Triethanolamine (TEA) | 534.4 | 18,713 | 53.5 | 223.8 | 29.4 | 3.57 | ref. [10] reports ET(30) = 49.6 kcal/mol | This work |
Diethanolamine (DEA) | 536.1 | 18,653 | 53.3 | 223.1 | 24.0 | 2.8 | This work | |
Tris-(tripyrrolidino)-phosphoric acid triamide (TTPT) | 543.8 | 18,389 | 52.6 | 219.9 | 45.1 | 7.3 | ε and µ from ref. [20] µ = 5.52 D in bz 7.3 D in bulk | This work |
1,1-Isophthaloyl-bis-(2-methylaziridine) (HX752 or BIFA) | 607.1 | 16,472 | 47.1 | 197.0 | This work | |||
Propylene carbonate | 618.5 | 16,168 | 46.2 | 193.4 | 66.1 | 4.9 | ref. [10] reports ET(30) = 46.0 kcal/mol | This work |
Dimethyl sulfoxide | 625.0 | 16,000 | 45.7 | 191.4 | 47.2 | 4.0 | ref. [10] reports ET(30) = 45.1 kcal/mol | This work |
Acetonitrile | 627.0 | 15,949 | 45.6 | 190.7 | 36.6 | 3.9 | [9,10,11] | |
TEPAN (*) | 642.2 | 15,571 | 44.5 | 186.2 | This work | |||
Sulfolane | 649.8 | 15,389 | 44.0 | 184.1 | 43.3 | 4.8 | [9,10,11] | |
Trimethylphosphate (TMP) | 655.7 | 15,251 | 43.6 | 182.4 | 20.6 | 3.2 | [9,10,11] | |
Tris-(2-chloroethyl)phosphate (TCEP) | 655.4 | 15,258 | 43.6 | 182.5 | This work | |||
N,N-Dimethylformamide (DMF) | 661.8 | 15,110 | 43.2 | 180.7 | 38.2 | 3.8 | [9,10,11] | |
N,N-Dimethylacetamide (DMAC) | 666.4 | 15,006 | 42.9 | 179.5 | 38.8 | 3.8 | [9,10,11] | |
N-Methyl-pirrolidone (NMP) | 677.5 | 14,760 | 42.2 | 176.5 | 32.2 | 4.1 | [9,10,11] | |
Tris-(2,4,6-dimethylaminomethyl) phenol (K54) | 682.4 | 14,654 | 41.9 | 175.3 | This work | |||
Triethylphosphate (TEP) | 685.6 | 14,586 | 41.7 | 174.4 | 13.2 | 3.08 | [9,10,11] | |
Benzonitrile | 688.9 | 14,516 | 41.5 | 173.6 | 25.2 | 4.2 | [9,10,11] | |
Tris-(2-methyl-1-aziridinyl)-phosphine oxide (MAPO) | 691.3 | 14,465 | 41.4 | 173.0 | 14.6 | 3.5 | ε and µ from ref. [21] data on APO | This work |
Tris-(2-buthoxyethyl)phosphate (TBUOP) | 696.3 | 14,362 | 41.1 | 171.8 | This work | |||
Tri-n-propylphosphate (TPP) | 706.0 | 14,165 | 40.5 | 169.4 | 10.0 | 3.75 | [9,10,11] | |
Hexamethylphosphoramide (HMPA) or Hexamethylphosphoric acid triamide (HMPT) | 699.0 | 14,306 | 40.9 | 171.1 | 31.3 | 5.5 | from ref. [10,11] µ = 4.37 in bz and 5.5 in bulk | [9,10,11] |
Hexamethyl phosphorothioic acid triamide (HMPTS) | 723.8 | 13,816 | 39.5 | 165.2 | 39.5 | 4.8 | ε and µ from ref. [22] | [9,10,11] |
Tributyl phosphate (TBP) | 728.5 | 13,727 | 39.2 | 164.2 | 8.3 | 3.07 | [9,10,11] | |
Aziridine or ethylenimine | 18.3 | 1.9 | ||||||
Diethylamine | 807.6 | 12,382 | 35.4 | 148.1 | 3.68 | 0.92 | [9,10,11] | |
Trietylamine | 890.7 | 11,227 | 32.1 | 134.3 | 2.4 | 0.66 | [9,10,11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cataldo, F. Application of Reichardt’s Solvent Polarity Scale (ET(30)) in the Selection of Bonding Agents for Composite Solid Rocket Propellants. Liquids 2022, 2, 289-302. https://doi.org/10.3390/liquids2040017
Cataldo F. Application of Reichardt’s Solvent Polarity Scale (ET(30)) in the Selection of Bonding Agents for Composite Solid Rocket Propellants. Liquids. 2022; 2(4):289-302. https://doi.org/10.3390/liquids2040017
Chicago/Turabian StyleCataldo, Franco. 2022. "Application of Reichardt’s Solvent Polarity Scale (ET(30)) in the Selection of Bonding Agents for Composite Solid Rocket Propellants" Liquids 2, no. 4: 289-302. https://doi.org/10.3390/liquids2040017
APA StyleCataldo, F. (2022). Application of Reichardt’s Solvent Polarity Scale (ET(30)) in the Selection of Bonding Agents for Composite Solid Rocket Propellants. Liquids, 2(4), 289-302. https://doi.org/10.3390/liquids2040017