Gut Microbiome Modulation by Probiotics: Implications for Livestock Growth Performance and Health—Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Gut Microbiome in Livestock: An Overview
| Factor | Ruminants (Cattle, Sheep, Goats) | Monogastrics (Pigs, Poultry, Rabbits) | References |
|---|---|---|---|
| Diet | High-fiber forage diets favor fibrolytic taxa such as Ruminococcus albus, Fibrobacter succinogenes, Butyrivibrio fibrisolvens, and Treponema bryantii, promoting acetate and butyrate formation. High-concentrate diets reduce diversity, increase Succinivibrio and Prevotella abundance while predisposed to acidosis. | Fiber-rich diets increase Lactobacillus, Faecalibacterium, and SCFA producers (Roseburia, Coprococcus). Weaning or high-starch diets enrich Clostridium spp., Bacteroides, and Megasphaera elsdenii. | [38,47,48,49] |
| Age | Early colonizers: Escherichia–Shigella, Enterococcus, Lacticaseibacillus, Streptococcus. Pre-weaning: Prevotella, Blautia, Ruminococcaceae. Weaning (2–4 months): rise in Treponema, Fibrobacter, Azoarcus, Dialister; decline in Anaeroplasma. Adult: Ruminococcus, Butyrivibrio, Methanobrevibacter. | Neonates show low diversity dominated by Enterococcus, Lactobacillus, and Escherichia coli; post-weaning, Prevotella, Clostridium cluster, Roseburia, and Faecalibacterium dominate. In chicks, maturation shifts from Lactobacillus and Enterococcus to Bacteroides and Ruminococcus post-hatch. | [49,50,51,52,53,54,55] |
| Environment/Rearing system | Pasture-based or extensive systems increase Ruminococcaceae, Lachnospiraceae, and Succinivibrionaceae diversity; reduce methanogens (Methanobrevibacter spp.). Seasonal grazing alters Prevotella and Bacteroides ratios. Indoor housing favors Proteobacteria and decreases richness. | Outdoor or free-range pigs and chickens show higher Firmicutes/Bacteroidetes ratios, more Lactobacillus and Ruminococcus, and fewer opportunists (Clostridium, E. coli). Confinement or antibiotic litter reduces diversity and enriches Enterobacteriaceae. | [49,56,57,58,59] |
| Host Genetics and Management | Holstein vs. Jersey had differences in Prevotella ruminicola, Methanobrevibacter smithii, Succinivibrio dexi. Indigenous breeds (Tibetan sheep, Mongolian cattle) show higher Bacteroidetes and Spirochaetes richness under harsh climates. Candidate genes (TAS1R2) modulate rumen microbiota composition. Feed efficiency linked to enriched Ruminococcus, Butyrivibrio, and archaeal diversity; stress and high stocking density reduce Lachnospiraceae. | Duroc vs. Taoyuan pigs differ in Prevotella, Bacteroides, and gut fungi (Candida, Piromyces). Xiangcun hybrids display intermediate mycobiomes. Weaning stress reduces Lactobacillus and increases Bacteroides. FMT restores Faecalibacterium prausnitzii and L. reuteri. Probiotic supplementation enhances | [48,49,60,61,62,63,64] |
| Bifidobacterium and Limosilactobacillus. | |||
| Antibiotic Exposure | Antibiotic use enriches resistance genes (tet(W), β-lactamase). Stall-fed cattle show up to 10× higher resistome than pasture-fed. Dysbiosis reduces Ruminococcus and Fibrobacter, increases Proteobacteria. Recovery > 18 days post-withdrawal; FMT accelerates restoration. | Antibiotics deplete Lactobacillus, Bifidobacterium, Butyricicoccus, allowing proliferation of Clostridium and E. coli. Recovery through probiotics (e.g., L. rhamnosus, L. plantarum) re-establishes SCFA balance. Repeated exposure increases ARGs (ermB, tetM) in pig and poultry farms. | [43,49,65,66,67] |
3.2. Mechanism of Action of Probiotics
3.3. Effect of Probiotic-Mediated Gut Microbiome Modulation on Livestock Health and Growth Performance
3.3.1. Growth Performance, Feed Efficiency, and Antioxidant-Metabolic Regulation
3.3.2. Immune Modulation and Anti-Inflammatory Effects
3.3.3. Intestinal Morphology and Barrier Integrity
3.3.4. Reproductive and Maternal Transfer Effects
3.3.5. Limitations of Probiotics
Probiotic Regulatory Frameworks Relevant to Livestock Production
Economic Feasibility and Challenges to Industry-Scale Implementation
3.3.6. Conclusions and Implications
3.3.7. Future Direction
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Celi, P.; Cowieson, A.J.; Fru-Nji, F.; Steinert, R.E.; Kluenter, A.M.; Verlhac, V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim. Feed Sci. Technol. 2017, 234, 88–100. [Google Scholar] [CrossRef]
- Deng, X.; Li, H.; Wu, A.; He, J.; Mao, X.; Dai, Z.; Tian, G.; Cai, J.; Tang, J.; Luo, Y. Composition, influencing factors, and effects on host nutrient metabolism of fungi in gastrointestinal tract of monogastric animals. Animals 2025, 15, 710. [Google Scholar] [CrossRef]
- Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. 2018, 9, 2013. [Google Scholar] [CrossRef]
- Akinmoladun, O.F. Stress amelioration potential of vitamin C in ruminants. A review. Trop. Anim. Health Prod. 2022, 54, 24. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, Y.; Li, B.; Zhang, K.; Wang, X. Characterization and comparison of microbiota in the gastrointestinal tracts of the goat (Capra hircus) during preweaning development. Front. Microbiol. 2019, 10, 2125. [Google Scholar] [CrossRef]
- Rodrigues, G.; Maximiano, M.R.; Franco, O.L. Antimicrobial peptides used as growth promoters in livestock production. Appl. Microbiol. Biotechnol. 2021, 105, 7115–7121. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO); World Health Organization (WHO). Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation (FAO Food and Nutrition Paper No. 85); FAO: Rome, Italy, 2006; Available online: https://www.fao.org/3/a0512e/a0512e.pdf (accessed on 5 November 2025).
- Alou, M.T.; Lagier, J.C.; Raoult, D. Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Human Microbiome J. 2016, 1, 3–11. [Google Scholar] [CrossRef]
- Cattaneo, L.; Lopreiato, V.; Piccioli-Cappelli, F.; Trevisi, E.; Minuti, A. Effect of supplementing live Saccharomyces cerevisiae yeast on performance, rumen function, and metabolism during the transition period in Holstein dairy cows. J. Dairy Sci. 2023, 106, 4353–4365. [Google Scholar] [CrossRef]
- Hussein, E.; Selim, S. Efficacy of yeast and multi-strain probiotic alone or in combination on growth performance, carcass traits, blood biochemical constituents, and meat quality of broiler chickens. Livest. Sci. 2018, 216, 153–159. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, C.; Ma, Z.; Che, L.; Feng, B.; Fang, Z.; Xu, S.; Zhuo, Y.; Li, J.; Zhang, J.; et al. Effects of yeast culture supplementation in wheat–rice-based diet on growth performance, meat quality, and gut microbiota of growing–finishing pigs. Animals 2022, 12, 2177. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wang, L.; Zhou, L.; Yang, X.; Zhao, X. Using in vitro immunomodulatory properties of lactic acid bacteria for selection of probiotics against Salmonella infection in broiler chicks. PLoS ONE 2016, 11, e0147630. [Google Scholar] [CrossRef]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P.; Singh, B.R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS ONE 2018, 13, e0192978. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ma, N.; Feng, Y.; Zhou, M.; Li, H.; Zhang, X.; Ma, X. From probiotics to postbiotics: Concepts and applications. Anim. Res. One Health 2023, 1, 92–114. [Google Scholar] [CrossRef]
- Pawar, L.; Singh, A.; Chouhan, N.; Amer, H.A.; Likitha, K.; Prasanthmadduluri, N.; Singh, S.K.; Soltani, M. Physiology of Spore Formation for Bacillus Probiotic Production. In Bacillus Probiotics for Sustainable Aquaculture; CRC Press: Boca Raton, FL, USA, 2025; pp. 64–86. [Google Scholar]
- Yoha, K.S.; Nida, S.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Targeted delivery of probiotics: Perspectives on research and commercialization. Probiotics Antimicrob. Proteins 2022, 14, 15–48. [Google Scholar] [CrossRef]
- Fathima, S.; Shanmugasundaram, R.; Adams, D.; Selvaraj, R.K. Gastrointestinal microbiota and their manipulation for improved growth and performance in chickens. Foods 2022, 11, 1401. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Ali, S.A. Probiotics and gut microbiota: Mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct. 2022, 13, 7423–7447. [Google Scholar] [CrossRef]
- Sabih Ur Rehman, S.; Nasar, M.I.; Mesquita, C.S.; Al Khodor, S.; Notebaart, R.A.; Ott, S.; Mundra, S.; Arasardanam, R.P.; Muhammad, K.; Alam, M.T. Integrative systems biology approaches for analyzing microbiome dysbiosis and species interactions. Brief. Bioinform. 2025, 26, bbaf323. [Google Scholar] [CrossRef]
- Yang, S.Y.; Han, S.M.; Lee, J.Y.; Kim, K.S.; Lee, J.E.; Lee, D.W. Advancing Gut Microbiome Research: The Shift from Metagenomics to Multi-Omics and Future Perspectives. J. Microbiol. Biotechnol. 2025, 35, e2412001. [Google Scholar] [CrossRef]
- Shehata, A.M.; Paswan, V.K.; Attia, Y.A.; Abdel-Moneim, A.M.E.; Abougabal, M.S.; Sharaf, M.; Elmazoudy, R.; Alghafari, W.T.; Osman, M.A.; Farag, M.R.; et al. Managing gut microbiota through in ovo nutrition influences early-life programming in broiler chickens. Animals 2021, 11, 3491. [Google Scholar] [CrossRef]
- Guo, W.; Wang, C.; Qin, K.; Shi, H.; Yang, X.; Yang, X. Lactobacillus plantarum injection at the embryonic stage alters the early growth performance and lipid metabolism of broilers by specific genera of bacteria. Poult. Sci. 2023, 102, 102522. [Google Scholar] [CrossRef]
- Xiang, Q.; Wu, X.; Pan, Y.; Wang, L.; Guo, Y.; Cui, C.; Hu, L.; Zhu, L.; Peng, J.; Wei, H. Early intervention using fecal microbiota transplantation combined with probiotics influence the growth performance, diarrhea, and intestinal barrier function of piglets. Appl. Sci. 2020, 10, 568. [Google Scholar] [CrossRef]
- Zhang, C.; Virk, A.K.; Khan, I.; Qin, H. Gut Microbiota and Health. In Gut Remediation of Environmental Pollutants: Potential Roles of Probiotics and Gut Microbiota; Springer: Singapore, 2020; pp. 31–79. [Google Scholar]
- Li, K.; Shi, B.; Na, R. The colonization of rumen microbiota and intervention in pre-weaned ruminants. Animals 2023, 13, 994. [Google Scholar] [CrossRef]
- Idowu, P.A.; Mpofu, T.J.; Magoro, A.M.; Modiba, M.C.; Nephawe, K.A.; Mtileni, B. Impact of probiotics on chicken gut microbiota, immunity, behavior, and productive performance—A systematic review. Front. Anim. Sci. 2025, 6, 1562527. [Google Scholar] [CrossRef]
- Garcia-Bonete, M.J.; Rajan, A.; Suriano, F.; Layunta, E. The underrated gut microbiota helminths, bacteriophages, fungi, and archaea. Life 2023, 13, 1765. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Y.; Yu, Z.; Xu, Q.; Zheng, N.; Zhao, S.; Huang, G.; Wang, J. Ruminal microbiota–host interaction and its effect on nutrient metabolism. Anim. Nutr. 2021, 7, 49–55. [Google Scholar] [CrossRef]
- Weimer, P.J. Degradation of cellulose and hemicellulose by ruminal microorganisms. Microorganisms 2022, 10, 2345. [Google Scholar] [CrossRef] [PubMed]
- Palmonari, A.; Federiconi, A.; Formigoni, A. Animal board invited review: The effect of diet on rumen microbial composition in dairy cows. Animal 2024, 18, 101319. [Google Scholar] [CrossRef]
- Choudhury, P.K.; Jena, R.; Tomar, S.K.; Puniya, A.K. Reducing enteric methanogenesis through alternate hydrogen sinks in the rumen. Methane 2022, 1, 320–341. [Google Scholar] [CrossRef]
- da Silva Pereira, M.; Alcantara, L.M.; de Freitas, L.M.; de Oliveira Ferreira, A.L.; Leal, P.L. Microbial Rumen proteome analysis suggests Firmicutes and Bacteroidetes as key producers of lignocellulolytic enzymes and carbohydrate-binding modules. Braz. J. Microbiol. 2025, 56, 817–833. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Guevarra, R.B.; Kim, E.S.; Cho, J.H.; Song, M.; Cho, J.H.; Lee, J.H.; Kim, H.; Kim, S.; Keum, G.B.; Lee, C.H.; et al. Gut microbial shifts by synbiotic combination of Pediococcus acidilactici and lactulose in weaned piglets challenged with Shiga toxin-producing Escherichia coli. Front. Vet. Sci. 2023, 9, 1101869. [Google Scholar] [CrossRef]
- Gilsenan, S.; Leong, D.; Cotter, P.D.; Brennan, L.; Nilaweera, K.N. Digging deep for nutrients and metabolites derived from high dietary protein intake and their potential functions in metabolic health. Nutr. Res. Rev. 2024, 38, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.Y.; Ji, S.K.; Yan, H.; Wang, Y.J.; Liu, J.J.; Cao, Z.J.; Yang, H.J.; Zhang, W.J.; Li, S.L. Dynamic change of the gastrointestinal bacterial ecology in cows from birth to adulthood. Microbiologyopen 2020, 9, e1119. [Google Scholar] [CrossRef]
- Yin, Z.; Ji, S.; Yang, J.; Guo, W.; Li, Y.; Ren, Z.; Yang, X. Cecal microbial succession and its apparent association with nutrient metabolism in broiler chickens. Msphere 2023, 8, e00614-22. [Google Scholar] [CrossRef]
- Uyeno, Y.; Sekiguchi, Y.; Kamagata, Y. Impact of consumption of forage or grain on rumen microbial populations. Anim. Sci. J. 2015, 86, 356–363. [Google Scholar]
- Faniyi, T.O.; Adegbeye, M.J.; Elghandour, M.M.M.Y.; Pilego, A.B.; Salem, A.Z.M.; Olaniyi, T.A.; Adediran, O.; Adewumi, M.K. Role of diverse fermentative factors towards microbial community shift in ruminants. J. Appl. Microbiol. 2019, 127, 2–11. [Google Scholar] [CrossRef]
- Hubert, S.M.; Al-Ajeeli, M.; Bailey, C.A.; Athrey, G. The role of housing environment and dietary protein source on the gut microbiota of chicken. Animals 2019, 9, 1085. [Google Scholar] [CrossRef]
- Wen, C.; Van Dixhoorn, I.; Schokker, D.; Woelders, H.; Stockhofe-Zurwieden, N.; Rebel, J.M.; Smidt, H. Environmentally enriched housing conditions affect pig welfare, immune system and gut microbiota in early life. Anim. Microbiome 2021, 3, 52. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, R. Probiotics and prebiotics. In Handbook of Molecular Biotechnology; CRC Press: Boca Raton, FL, USA, 2024; pp. 485–492. [Google Scholar]
- Rabee, A.E.; Abou-Souliman, I.; Yousif, A.I.; Lamara, M.; El-Sherbieny, M.A.; Elwakeel, E.A.; Sallam, A.M. Variations in rumen microbiota and host genome impacted feed efficiency in goat breeds. Front. Microbiol. 2025, 16, 1492742. [Google Scholar] [CrossRef]
- Enshaie, E.; Nigam, S.; Patel, S.; Rai, V. Livestock Antibiotics Use and Antimicrobial Resistance. Antibiotics 2025, 14, 621. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Li, X.; Zhang, Y.; Sun, S. Antibiotic-driven alterations in gut microbiota and resistance gene dynamics in pigs. Front. Microbiol. 2019, 10, 2730. [Google Scholar]
- Kumar, S.; Singh, O.; Kundgir, S.; Mahna, N.; Gupta, M.; Yadav, P.; Tyagi, N.; Samanta, A.K.; Tyagi, A.K. Prospects of probiotics in improvement of health and productivity of dairy animals and reducing antibiotic load on the environment. Biotechnol. Environ. 2025, 2, 13. [Google Scholar] [CrossRef]
- Malmuthuge, N. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health. J. Dairy Sci. 2017, 100, 5996–6005. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Nagaoka, K.; Nishimura, N.; Koike, S.; Inoue, R. Comparison of the fecal microbiota of two monogastric herbivorous and five omnivorous mammals. Anim. Sci. J. 2020, 91, e13366. [Google Scholar] [CrossRef]
- Tardiolo, G.; La Fauci, D.; Riggio, V.; Daghio, M.; Di Salvo, E.; Zumbo, A.; Sutera, A.M. Gut Microbiota of Ruminants and Monogastric Livestock: An Overview. Animals 2025, 15, 758. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Chen, H.; Wei, H.; Meng, Q. Development of intestinal microbiota in chickens and its correlation with growth performance. Poult. Sci. 2019, 98, 4260–4269. [Google Scholar]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef]
- Pan, Z.; Ma, T.; Steele, M.; Guan, L.L. Varied microbial community assembly and specialization patterns driven by early life microbiome perturbation and modulation in young ruminants. ISME Commun. 2024, 4, ycae044. [Google Scholar] [CrossRef]
- Alawneh, A.M.; Pan, X.; Machado, V.S. Temporal microbial succession in the gastrointestinal tract of young ruminants: Linking age with metabolic development. Front. Microbiol. 2024, 15, 12765. [Google Scholar]
- Machado, M.O.; Santana, D.A.D.; de Carvalho, M.B.; Ollhoff, R.D.; Weber, S.H.; Sotomaior, C.S. Performance, ruminal and fecal microbiome of lambs fed diets supplemented with probiotics. Trop. Anim. Health Prod. 2024, 56, 319. [Google Scholar] [CrossRef]
- Such, N.; Csitári, G.; Stankovics, P.; Wágner, L.; Koltay, I.A.; Farkas, V.; Pál, L.; Strifler, P.; Dublecz, K. Effects of probiotics and wheat bran supplementation of broiler diets on the ammonia emission from excreta. Animals 2021, 11, 2703. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, M.; He, Y. Pasture-based management enhances microbial diversity and rumen stability in dairy cattle. Appl. Environ. Microbiol. 2016, 82, 5960–5970. [Google Scholar]
- Ngunjiri, J.M.; Taylor, K.J.; Abundo, M.C.; Jang, H.; Elaish, M.; Kc, M.; Ghorbani, A.; Wijeratne, S.; Weber, B.P.; Johnson, T.J.; et al. Farm stage, bird age, and body site dominantly affect the quantity, taxonomic composition, and dynamics of respiratory and gut microbiota of commercial layer chickens. Appl. Environ. Microbiol. 2019, 85, e03137-18. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, Y.; Wang, J.; Wu, Y.; Yang, C. The impact of housing systems on gut microbiota and immune response of laying hens. Poult. Sci. 2021, 100, 101024. [Google Scholar]
- Pan, Y.; Wang, J.; Ye, H.; Zeng, D.; Zhou, L.; Wang, G.; Qiao, S. Comparison of the gut microbiota composition between free-range and caged pigs. Front. Microbiol. 2022, 13, 856709. [Google Scholar]
- Zhu, Q.; Song, M.; Azad, M.A.K.; Ma, C.; Yin, Y.; Kong, X. Probiotics and synbiotics addition to bama mini-pigs’ diet improve carcass traits and meat quality by altering plasma metabolites and related gene expression of offspring. Front. Vet. Sci. 2022, 9, 779745. [Google Scholar] [CrossRef]
- Dill-McFarland, K.A.; Breaker, J.D.; Suen, G. Microbial succession in the gastrointestinal tract of dairy cows from birth to adulthood. Nat. Commun. 2017, 8, 14975. [Google Scholar]
- Kogut, M.H.; Arsenault, R.J.; Tellez, G. Influence of nutrition and management on gut microbiota resilience in poultry production. Front. Vet. Sci. 2019, 6, 193. [Google Scholar]
- Malmuthuge, N.; Liang, G.; Guan, L.L. Regulation of rumen development in neonatal ruminants through microbial and host interactions. Front. Microbiol. 2015, 6, 647. [Google Scholar]
- McLoughlin, R.; O’Donnell, M.M.; Harris, H.M.B.; Ross, R.P.; O’Toole, P.W. Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals. MicrobiologyOpen 2017, 6, e509. [Google Scholar]
- Wang, J.; Ji, H. Influence of probiotics on dietary protein digestion and utilization in the gastrointestinal tract. Curr. Protein Pept. Sci. 2019, 20, 125–131. [Google Scholar] [CrossRef]
- Thomas, A.D. Supplementation of Two Novel Probiotics in the Diet of Lactating Dairy Cows. Master’s Thesis, Iowa State University, Ames, IA, USA, 2017. [Google Scholar]
- Jasim, A.Y.; Dahham, M.T.; Harbi, S.M.; Alkurdi, N.M.; Abd, S.; Alkadir, O.K.A.; Abdulhussein, N.A.; Alsalame, H.A.A.A. Long-term effects of antibiotic usage on gut microbiota in livestock. J. Anim. Health Prod. 2025, 13, 511–516. [Google Scholar] [CrossRef]
- Anjana, A.; Tiwari, S.K. Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota. Front. Cell. Infect. Microbiol. 2022, 12, 851140. [Google Scholar] [CrossRef]
- Caballero-Flores, G.; Pickard, J.M.; Núñez, G. Microbiota-mediated colonization resistance: Mechanisms and regulation. Nat. Rev. Microbiol. 2023, 21, 347–360. [Google Scholar] [CrossRef]
- Kober, A.H.; Riaz Rajoka, M.S.; Mehwish, H.M.; Villena, J.; Kitazawa, H. Immunomodulation potential of probiotics: A novel strategy for improving livestock health, immunity, and productivity. Microorganisms 2022, 10, 388. [Google Scholar] [CrossRef]
- Ahmad, R.; Yu, Y.H.; Hsiao, F.S.H.; Dybus, A.; Ali, I.; Hsu, H.C.; Cheng, Y.H. Probiotics as a friendly antibiotic alternative: Assessment of their effects on the health and productive performance of poultry. Fermentation 2022, 8, 672. [Google Scholar] [CrossRef]
- Shinde, T.; Hansbro, P.M.; Sohal, S.S.; Dingle, P.; Eri, R.; Stanley, R. Microbiota modulating nutritional approaches to countering the effects of viral respiratory infections including SARS-CoV-2 through promoting metabolic and immune fitness with probiotics and plant bioactives. Microorganisms 2020, 8, 921. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Gomez-Llorente, C.; Fontana, L.; Gil, A. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J. Gastroenterol. WJG 2014, 20, 15632. [Google Scholar] [CrossRef]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Chousalkar, K.K. Functional enrichment of gut microbiome by early supplementation of Bacillus based probiotic in cage free hens: A field study. Anim. Microbiome 2021, 3, 50. [Google Scholar] [CrossRef] [PubMed]
- Terciolo, C.; Dapoigny, M.; Andre, F. Beneficial effects of Saccharomyces boulardii CNCM I-745 on clinical disorders associated with intestinal barrier disruption. Clin. Exp. Gastroenterol. 2019, 12, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, X.; Zhu, Y.; Wei, J.; Zhang, C.; Kong, Q.; Nie, X.; Zhang, Q.; Wang, Z. Genome-wide association analysis of milk production, somatic cell score, and body conformation traits in Holstein cows. Front. Vet. Sci. 2022, 9, 932034. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, H.; Liu, Z.; Liu, Y.; DeJi Li, B.; Huang, X. Recent perspective of Lactobacillus in reducing oxidative stress to prevent disease. Antioxidants 2023, 12, 769. [Google Scholar] [CrossRef]
- Maake, T.W.; Aiyegoro, O.A.; Adeleke, M.A. Effects of Lactobacillus rhamnosus and Enterococcus faecalis supplementation as direct-fed microbials on rumen microbiota of boer and speckled goat breeds. Vet. Sci. 2021, 8, 103. [Google Scholar] [CrossRef]
- Dias, J.A.R.; Alves, L.L.; Barros, F.A.L.; Cordeiro, C.A.M.; Meneses, J.O.; Santos, T.B.R.; Santos, C.C.M.; Paixão, P.E.G.; Filho, R.M.N.; Martins, M.L.; et al. Comparative effects of autochthonous single-strain and multi-strain probiotics on the productive performance and disease resistance in Colossoma macropomum (Cuvier, 1818). Aquac. Res. 2022, 53, 4141–4154. [Google Scholar] [CrossRef]
- Tufarelli, V.; Losacco, C.; Pugliese, G.; Tateo, A.; Schiavitto, M.; Iarussi, F.; Laudadio, V.; Passantino, L. Effects of a multi-strain probiotic on productive traits, antioxidant defence, caecal microbiota and short-chain fatty acid profile, and intestinal histomorphology in rabbits. Anim. Biosci. 2025, 38, 1247. [Google Scholar] [CrossRef] [PubMed]
- Emu, Q.; Guan, H.; Zhu, J.; Zhang, L.; Fan, J.; Ji, Y.; Lin, Y.; Li, C.; Dan, X.; Aguo, Y.; et al. Grazing and supplementation of dietary yeast probiotics shape the gut microbiota and improve the immunity of black fattening goats (Capra hircus). Front. Microbiol. 2021, 12, 666837. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Yang, Z.; Li, C.; Liang, H.; Wu, Z.; Pu, W. Yeast probiotics shape the gut microbiome and improve the health of early-weaned piglets. Front. Microbiol. 2018, 9, 2011. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Wang, J.; Shi, L.; Wang, S.; Niu, B.; Tian, X.; Lv, Q.; Wei, L.; Li, M.; et al. Bacillus coagulans alleviates intestinal barrier injury induced by Klebsiella pneumoniae in rabbits by regulating the TLR4/MyD88/NF-κB signalling pathway. Vet. Microbiol. 2025, 301, 110364. [Google Scholar] [CrossRef]
- Zhang, A.; Yang, Y.; Li, Y.; Zheng, Y.; Wang, H.; Cui, H.; Yin, W.; Lv, M.; Liang, Y.; Chen, W. Effects of wheat-based fermented liquid feed on growth performance, nutrient digestibility, gut microbiota, intestinal morphology, and barrier function in grower–finisher pigs. J. Anim. Sci. 2024, 102, skae229. [Google Scholar] [CrossRef]
- Chavan, N.; Gupta, M.; Bahiram, K.B.; Korde, J.P.; Kadam, M.; Dhok, A.; Kumar, S. Ligilactobacillus salivarius and Limosilactobacillus reuteri improve growth and intestinal health in broilers via modulating gut microbiota and immune response. Res. Vet. Sci. 2025, 194, 105837. [Google Scholar] [CrossRef]
- Boranbayeva, G.; Tekebayeva, Z.; Temirkhanov, A.; Temirbekova, A.; Yevneyeva, D.; Abilkhadirov, A.; Mkilima, T.; Abzhalelov, A. Probiotic consortium from poultry strains for supporting gut immunity against pathogens. Microb. Pathog. 2025, 204, 107584. [Google Scholar] [CrossRef]
- Joysowal, M.; Saikia, B.N.; Dowarah, R.; Tamuly, S.; Kalita, D.; Choudhury, K.D. Effect of probiotic Pediococcus acidilactici FT28 on growth performance, nutrient digestibility, health status, meat quality, and intestinal morphology in growing pigs. Vet. World 2018, 11, 1669. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Huang, W.; Zhang, Q.; Liu, L.; Zhao, J.; Chen, Y. Inactivated Lactiplantibacillus plantarum Ps-8 enhances growth performance and intestinal health in broiler chickens via gut microbiota and serum metabolite modulation. Poult. Sci. 2025, 104, 105611. [Google Scholar] [CrossRef]
- Gao, M.; Ren, Y.; Lu, S.; Reddyvari, R.; Amalaradjou, M.A. Probiotic application to hatching egg surface supports microbiota development and acquisition in broiler embryos and hatchlings. Poult. Sci. 2025, 104, 105391. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.A.; Anas, H.; Alduwish, M.A.; Alharbi, N.A.; Alian, H.A.; Youssef, I.M.; Moustafa, M.; Elolimy, A.A.; El-Hack, M.E.A.; Saber, H.S. Influence of probiotic supplementation on growth, health and gut characteristics in growing rabbits. Ital. J. Anim. Sci. 2025, 24, 1499–1514. [Google Scholar] [CrossRef]
- Colombino, E.; Biasato, I.; Michetti, A.; Rubino, M.G.; Franciosa, I.; Giribaldi, M.; Antoniazzi, S.; Bergagna, S.; Paliasso, G.; Ferrocino, I.; et al. Effects of dietary supplementation of lactobacillus acidophilus on blood parameters and gut health of rabbits. Animals 2022, 12, 3543. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Y.H.; Zhou, D.; Wu, Q.; Song, D.; Dicksved, J.; Wang, J.F. Oral administration of a select mixture of Bacillus probiotics affects the gut microbiota and goblet cell function following Escherichia coli challenge in newly weaned pigs of genotype MUC4 that are supposed to be enterotoxigenic E. coli F4ab/ac receptor negative. Appl. Environ. Microbiol. 2017, 83, e02747-16. [Google Scholar]
- Zaghari, M.; Sarani, P.; Hajati, H. Comparison of two probiotic preparations on growth performance, intestinal microbiota, nutrient digestibility and cytokine gene expression in broiler chickens. J. Appl. Anim. Res. 2020, 48, 166–175. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Q.; Zeng, X.; Xu, Y.; Jin, K.; Liu, J.; Cao, G. Effects of probiotics on the growth performance, antioxidant functions, immune responses, and caecal microbiota of broilers challenged by lipopolysaccharide. Front. Vet. Sci. 2022, 9, 846649. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.K.; Vasquez, R.; Kim, S.H.; Hwang, I.C.; Song, J.H.; Park, J.H.; Kim, I.H.; Kang, D.K. Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota. J. Anim. Sci. Technol. 2021, 63, 1142. [Google Scholar] [CrossRef] [PubMed]
- Myhill, L.J.; Stolzenbach, S.; Mejer, H.; Krych, L.; Jakobsen, S.R.; Kot, W.; Skovgaard, K.; Canibe, N.; Nejsum, P.; Nielsen, D.S.; et al. Parasite-probiotic interactions in the gut: Bacillus sp. and Enterococcus faecium regulate type-2 inflammatory responses and modify the gut microbiota of pigs during helminth infection. Front. Immunol. 2022, 12, 793260. [Google Scholar] [CrossRef]
- Mao, H.; Ji, W.; Yun, Y.; Zhang, Y.; Li, Z.; Wang, C. Influence of probiotic supplementation on the growth performance, plasma variables, and ruminal bacterial community of growth-retarded lamb. Front. Microbiol. 2023, 14, 1216534. [Google Scholar] [CrossRef]
- El Ghany, K.; Mallasiy, L.O.; Haredy, S.A.; Ahmed-Farid, O.A.; Aboukhezam, B.; Elshafey, N. Lactobacillus-based probiotics restore gut microbial balance in weaned rabbits: Insights into dietary modulation and molecular docking analysis. Food Biosci. 2025, 68, 106466. [Google Scholar] [CrossRef]
- Luise, D.; Bosi, P.; Raff, L.; Amatucci, L.; Virdis, S.; Trevisi, P. Bacillus spp. probiotic strains as a potential tool for limiting the use of antibiotics, and improving the growth and health of pigs and chickens. Front. Microbiol. 2022, 13, 801827. [Google Scholar] [CrossRef]
- Al-Marzooqi, W.; Elaswad, A.; El-Zaiat, H.M. Impact of Bacillus subtilis supplementation on growth, gut histology, and mi-crobial genetic diversity in native and commercial chickens. Ger. J. Vet. Res. 2025, 5, 102–114. [Google Scholar]
- Yu, L.; Zhang, L.; Zhang, S.; Zhao, Y.; Bi, Z.; Xu, J.; Fu, H.; Zhang, X. Effects of dietary Bacillus velezensis Y01 supplementation on growth performance, immune function, and cecal microbiota of 1 to 42 days Langya chickens. BMC Microbiol. 2025, 25, 288. [Google Scholar] [CrossRef]
- Merino-Guzman, R.; Luna-Cardoso, M.L.C.M.; Tellez-Isaías, G.; Latorre, J.D.; Hargis, B.M. Effect of Glucose Oxidase and a Commercial Bacillus-based Direct Feed Microbial Supplementation on the Productive Performance, Intestinal IgA, Gut Permeability, and Cecal Microbiota of Broiler Chickens. J. Poult. Sci. Avian Dis. 2025, 3, 1–11. [Google Scholar] [CrossRef]
- Dunière, L.; Renaud, J.B.; Steele, M.A.; Achard, C.S.; Forano, E.; Chaucheyras-Durand, F. A live yeast supplementation to gestating ewes improves bioactive molecule composition in colostrum with no impact on its bacterial composition and beneficially affects immune status of the offspring. J. Nutr. Sci. 2022, 11, e5. [Google Scholar] [CrossRef]
- Sheikh, G.G.; Ganai, A.M.; Ahmad Sheikh, A.; Mir, D.M. Rumen microflora, fermentation pattern and microbial enzyme activity in sheep fed paddy straw based complete feed fortified with probiotics. Biol. Rhythm Res. 2022, 53, 547–558. [Google Scholar] [CrossRef]
- Melara, E.G.; Avellaneda, M.C.; Valdivié, M.; García-Hernández, Y.; Aroche, R.; Martínez, Y. Probiotics: Symbiotic relationship with the animal host. Animals 2022, 12, 719. [Google Scholar] [CrossRef]
- Arrazuria, R.; Oyanguren, M.; Molina, E.; Mugica, M.; Gunapati, B.; Subbian, S.; Lavin, J.L.; Anguita, J.; Elguezabal, N. Dual effects of probiotic administration prior to Mycobacterium avium subsp. paratuberculosis infection are associated with immunological and microbiota shifts. Sci. Rep. 2025, 15, 23341. [Google Scholar] [CrossRef]
- Fan, P.; Nelson, C.D.; Driver, J.D.; Elzo, M.A.; Peñagaricano, F.; Jeong, K.C. Host genetics exerts lifelong effects upon hindgut microbiota and its association with bovine growth and immunity. ISME J. 2021, 15, 2306–2321. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, Y.; Cao, Y.; Li, J.; Guo, H.; Su, Y.; Tian, Y.; Wang, C.; Wang, T.; Zhang, L. Probiotic properties of Lactobacillus paracasei subsp. paracasei L1 and its growth performance-promotion in chicken by improving the intestinal microflora. Front. Physiol. 2019, 10, 937. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; You, Y.; Ren, L.; Akhtar, M.; Ji, H.; Wang, T.; Meng, N.; Fan, X.; Yang, S.; Zhou, Z.; et al. Lactobacillus gallinarum improves broiler performance by enhancing antioxidant capacity and regulating intestinal microbiota. Poult. Sci. 2025, 104, 105537. [Google Scholar] [CrossRef] [PubMed]
- Helal, F.; El-Badawi, A.; El-Naggar, S.; Shourrap, M.; Aboelazab, O.; Abu Hafsa, S. Probiotics role of Saccharomyces cerevisiae and Bacillus subtilis in improving the health status of rabbits’ gastrointestinal tract. Bull. Natl. Res. Cent. 2021, 45, 66. [Google Scholar] [CrossRef]
- Abd El-Hamid, M.I.; Ibrahim, D.; Hamed, R.I.; Nossieur, H.H.; Elbanna, M.H.; Baz, H.; Abd-Allah, E.M.; El Oksh, A.S.; Ibrahim, G.A.; Khalifa, E.; et al. Modulatory impacts of multi-strain probiotics on rabbits’ growth, nutrient transporters, tight junctions and immune system to fight against Listeria monocytogenes infection. Animals 2022, 12, 2082. [Google Scholar] [CrossRef]
- Ye, Y.; Li, Z.; Wang, P.; Zhu, B.; Zhao, M.; Huang, D.; Ye, Y.; Ding, Z.; Li, L.; Wan, G.; et al. Effects of probiotic supplements on growth performance and intestinal microbiota of partridge shank broiler chicks. PeerJ 2021, 9, e12538. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, R.; Wu, J.; Tan, Z.; Jiao, J. Dietary selection of distinct gastrointestinal microorganisms drives fiber utilization dynamics in goats. Microbiome 2025, 13, 118. [Google Scholar] [CrossRef]
- Zhao, R.; Shang, B.; Sun, L.; Lv, S.; Liu, G.; Wu, Q.; Geng, Y. Synergistic effects of probiotics with soy protein alleviate ulcerative colitis by repairing the intestinal barrier and regulating intestinal flora. J. Funct. Foods 2024, 122, 106514. [Google Scholar] [CrossRef]
- Elabbasy, M.T.; Kishawy, A.T.; Abdelaziz, W.S.; Hassan, A.A.; Nada, H.S.; Elbhnsawy, R.A.; Shosha, A.M.; Ibrahim, D.; Eldemery, F.; Atwa, S.A.; et al. Optimistic effects of dual nano-encapsulated probiotics on breeders laying performance, intestinal barrier functions, immunity and resistance against Salmonella Typhimurium challenge. Sci. Rep. 2025, 15, 27836. [Google Scholar] [CrossRef]
- Salminen, S.; von Wright, A. Safety Assessment of Probiotics in the European Union. In Lactic Acid Bacteria; CRC Press: Boca Raton, FL, USA, 2024; pp. 823–833. [Google Scholar]
- EFSA Panel on Biological Hazards (BIOHAZ); Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Girones, R.; Koutsoumanis, K.; Lindqvist, R.; Nørrung, B.; et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 7: Suitability of taxonomic units notified to EFSA until September 2017. EFSA J. 2018, 16, e05131. [Google Scholar]
- EFSA Scientific Committee; Bennekou, S.H.; Allende, A.; Bearth, A.; Casacuberta, J.; Castle, L.; Coja, T.; Crépet, A.; Halldorsson, T.I.; Hoogenboom, R.; et al. Guidance on the characterisation of microorganisms in support of the risk assessment of products used in the food chain. EFSA J. 2025, 23, e9705. [Google Scholar] [CrossRef]
- Wright, G.D. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005, 57, 1451–1470. [Google Scholar] [CrossRef] [PubMed]
- Dishaw, L.; Yost, E.; Arzuaga, X.; Luke, A.; Kraft, A.; Walker, T.; Thayer, K. A novel study evaluation strategy in the systematic review of animal toxicology studies for human health assessments of environmental chemicals. Environ. Int. 2020, 141, 105736. [Google Scholar] [CrossRef] [PubMed]
- Nazir, A.; Javed, S.; Ahmad, A.; Ahmed, S.; Zahoor, A.F. Microbiological Safety and Cosmetics. In Sustainable Cosmeceuticals: Integrating Natural and Biotechnological Innovations; Springer Nature: Cham, Switzerland, 2025; pp. 453–478. [Google Scholar]
- Vilas-Boas, A.A.; Pintado, M.; Oliveira, A.L. Natural bioactive compounds from food waste: Toxicity and safety concerns. Foods 2021, 10, 1564. [Google Scholar] [CrossRef]
- Cui, Y.; Märtlbauer, E.; Dietrich, R.; Luo, H.; Ding, S.; Zhu, K. Multifaceted toxin profile, an approach toward a better understanding of probiotic Bacillus cereus. Crit. Rev. Toxicol. 2019, 49, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Health Canada. Guidance Document: Classification of Veterinary Drugs and Livestock Feeds; Government of Canada: Ottawa, ON, Canada, 2017; Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/veterinary-drugs/legislation-guidelines/guidance-documents/guidance-document-classification-veterinary-drugs-livestock-feeds/document.html (accessed on 8 December 2025).
- Perera, W.N.U.; Ravindran, V. Role of feed additives in poultry nutrition: Historical, current and future perspectives. Anim. Feed. Sci. Technol. 2025, 326, 116371. [Google Scholar] [CrossRef]
- Health Canada. Pathway for Licensing Natural Health Products Making Modern Health Claims. Government of Canada. 6 July 2022. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/natural-non-prescription/legislation-guidelines/guidance-documents/pathway-licensing-making-modern-health-claims.html (accessed on 8 December 2025).
- Smith, A.B. The regulation of probiotics in the United States. In Lactic Acid Bacteria; CRC Press: Boca Raton, FL, USA, 2019; pp. 693–710. [Google Scholar]
- Stevens, H.C.; Nabors, L.O. Microbial Food Cultures: A Regulatory Update; IFT News & Publications: London, UK, 2009. [Google Scholar]
- Mog, S.R.; Zang, Y.J. Safety assessment of food additives: Case example with myrcene, a synthetic flavoring agent. Toxicol. Pathol. 2019, 47, 1035–1037. [Google Scholar] [CrossRef]
- All About Feed. China’s Antibiotic Plan and Its Effect on the Feed Industry. 21 November 2018. Available online: https://www.allaboutfeed.net/animal-feed/feed-additives/chinas-antibiotic-plan-and-its-effect-on-the-feed-industry/ (accessed on 8 December 2025).
- ZMUni Compliance Centre. Monthly Collection: China and International Food Regulatory Updates in March 2025. 8 April 2025. Available online: https://www.zmuni.com/en/news/monthly-collection-china-and-international-food-regulatory-12/ (accessed on 8 December 2025).
- Wang, B.; Wu, Q.; Yu, S.; Lu, Q.; Lv, X.; Zhang, M.; Kan, Y.; Wang, X.; Zhu, Y.; Wang, G.; et al. Host-derived Bacillus spp. as probiotic additives for improved growth performance in broilers. Poult. Sci. 2023, 102, 102240. [Google Scholar] [CrossRef]
- Odey, T.O.J.; Tanimowo, W.O.; Afolabi, K.O.; Jahid, I.K.; Reuben, R.C. Antimicrobial use and resistance in food animal production: Food safety and associated concerns in Sub-Saharan Africa. Int. Microbiol. 2024, 27, 1–23. [Google Scholar] [CrossRef]
- Leistikow, K.R.; Beattie, R.E.; Hristova, K.R. Probiotics beyond the farm: Benefits, costs, and considerations of using antibiotic alternatives in livestock. Front. Antibiot. 2022, 1, 1003912. [Google Scholar] [CrossRef] [PubMed]
- Van Wagenberg, C.P.A.; van Horne, P.L.M.; van Asseldonk, M.A.P.M. Cost-effectiveness analysis of using probiotics, prebiotics, or synbiotics to control Campylobacter in broilers. Poult. Sci. 2020, 99, 4077–4084. [Google Scholar] [CrossRef] [PubMed]
- Fenster, K.; Freeburg, B.; Hollard, C.; Wong, C.; Rønhave Laursen, R.; Ouwehand, A.C. The production and delivery of probiotics: A review of a practical approach. Microorganisms 2019, 7, 83. [Google Scholar] [CrossRef] [PubMed]
- Al-Shawi, S.G.; Dang, D.S.; Yousif, A.Y.; Al-Younis, Z.K.; Najm, T.A.; Matarneh, S.K. The potential use of probiotics to improve animal health, efficiency, and meat quality: A review. Agriculture 2020, 10, 452. [Google Scholar] [CrossRef]
- Arora, M.; Arora, M.; Bansal, P.; Baldi, A. Need and recommendations for universal guidelines on regulatory status and quality control/safety of probiotic products. Appl. Clin. Res. Clin. Trials Regul. Aff. 2019, 6, 231–249. [Google Scholar] [CrossRef]
- Kuo, C.C.; Clark, S.; Qin, H.; Shi, X. Development of a shelf-stable, gel-based delivery system for probiotics by encapsulation, 3D printing, and freeze-drying. LWT 2022, 157, 113075. [Google Scholar] [CrossRef]
- Ulubayram, N.; Cinar, A.Y. Microencapsulated and fresh royal jelly: Monitoring 10-HDA content, antibacterial and antifungal activity at different storage periods. Braz. Arch. Biol. Technol. 2023, 66, e23220203. [Google Scholar] [CrossRef]
- Meng, L.; Fan, G.; Xie, H.; Tye, K.D.; Xia, L.; Luo, H.; Tang, X.; Huang, T.; Lin, J.; Ma, G.; et al. Maternal–to–neonatal microbial transmission and impact of prenatal probiotics on neonatal gut development. J. Transl. Med. 2025, 23, 1–17. [Google Scholar] [CrossRef]
- Ding, S.; Ye, T.; Azad, M.A.K.; Zhu, Q.; Liu, Y.; Tan, B.; Kong, X. Effects of maternal-offspring supplementation of probiotics and synbiotics on the immunity of offspring Bama mini-pigs. Front. Immunol. 2025, 16, 1507080. [Google Scholar] [CrossRef] [PubMed]

| Probiotic Group | Ruminants (Cattle, Sheep, Goats) | Pigs | Rabbits | Poultry (Broilers/Layers) | Dominant Mechanism/Key Outcomes | References |
|---|---|---|---|---|---|---|
| Yeast (Saccharomyces cerevisiae, Candida utilis) | ↑ VFA, rumen papillae, N retention, milk protein; improved fiber digestion | ↓ post-weaning diarrhea; ↑ feed efficiency | ↑ BWG, gut stability, antioxidant enzymes | ↑ FCR, mucosal integrity, reduced heat stress | Enhances fermentation efficiency, stabilizes rumen/hindgut microbiota, supports redox balance | [9,77,82,83,114] |
| Lactic acid bacteria (LAB): LactoBacillus, Pediococcus, Bifidobacterium | ↑ VFA yield, DMI, immune indices | ↑ ADG, ↓ E. coli, improved nutrient absorption | ↑ digestibility, villus height, IgG | ↑ FCR, barrier genes (Claudin, ZO-1) | Acidification, pathogen exclusion, cytokine modulation, mucosal immunity | [13,14,89,98] |
| Spore-forming Bacillus spp. (B. subtilis, B. licheniformis, B. coagulans) | ↑ enzymatic digestion, IGF-1, rumen morphology | ↑ mucus, ↓ IL-6, improved digestibility | ↑ tight-junction proteins (occludin, claudin-1) | ↑ villus/crypt ratio, ↑ IL-10, ↓ pathogens | Enzymatic enhancement, barrier reinforcement, anti-inflammatory response | [15,77,100,101] |
| Multi-strain formulations (LAB + Yeast ± Bacillus) | ↑ ADG, IgG, SCFA production; ↓ inflammation | ↑ Firmicutes: Bacteroidetes; improved FCR | ↑ antioxidant capacity, lipid metabolism | ↑ growth, SCFA yield, immune balance | Synergistic metabolic complementarity and cross-species resilience | [81,95,96,106] |
| Maternal/embryonic supplementation | ↑ colostral IgG, lamb survival | ↑ milk yield, offspring BWG | ↑ milk yield (+10–40%), neonatal antioxidant status | ↑ fertility, hatchability; ↓ Salmonella load | Vertical microbial transfer, early-life immune programming | [90,104,115,116,117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idowu, P.A.; Mbambalala, L.; Akinmoladun, O.F.; Idowu, A.P. Gut Microbiome Modulation by Probiotics: Implications for Livestock Growth Performance and Health—Narrative Review. Appl. Microbiol. 2025, 5, 149. https://doi.org/10.3390/applmicrobiol5040149
Idowu PA, Mbambalala L, Akinmoladun OF, Idowu AP. Gut Microbiome Modulation by Probiotics: Implications for Livestock Growth Performance and Health—Narrative Review. Applied Microbiology. 2025; 5(4):149. https://doi.org/10.3390/applmicrobiol5040149
Chicago/Turabian StyleIdowu, Peter Ayodeji, Lwando Mbambalala, Oluwakamisi Festus Akinmoladun, and Adeola Patience Idowu. 2025. "Gut Microbiome Modulation by Probiotics: Implications for Livestock Growth Performance and Health—Narrative Review" Applied Microbiology 5, no. 4: 149. https://doi.org/10.3390/applmicrobiol5040149
APA StyleIdowu, P. A., Mbambalala, L., Akinmoladun, O. F., & Idowu, A. P. (2025). Gut Microbiome Modulation by Probiotics: Implications for Livestock Growth Performance and Health—Narrative Review. Applied Microbiology, 5(4), 149. https://doi.org/10.3390/applmicrobiol5040149

