Revolutionizing Veterinary Vaccines: Overcoming Cold-Chain Barriers Through Thermostable and Novel Delivery Technologies
Abstract
1. Introduction
2. Challenges in Conventional Vaccination
3. Thermostability in Vaccine Development
4. Innovations in Vaccine Delivery Systems
4.1. Nanoparticles in Vaccinations
4.2. Microneedles for Vaccine Delivery
4.3. Mucosal Routes in Vaccination (Intranasal and Aerosol)
4.4. Oral Route in Vaccination
5. Synergy of Thermostability and Delivery Platforms
6. Implications for “One Health” and “Global Health”
7. Future Outlook: Role of AI in Vaccine Innovation
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moennig, V. Introduction to Classical Swine Fever: Virus, Disease and Control Policy. Vet. Microbiol. 2000, 73, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Horzinek, M.C. Rinderpest: The Second Viral Disease Eradicated. Vet. Microbiol. 2011, 149, 295–297. [Google Scholar] [CrossRef]
- Chung, Y.H.; Church, D.; Koellhoffer, E.C.; Osota, E.; Shukla, S.; Rybicki, E.P.; Pokorski, J.K.; Steinmetz, N.F. Integrating Plant Molecular Farming and Materials Research for Next-Generation Vaccines. Nat. Rev. Mater. 2022, 7, 372–388. [Google Scholar] [CrossRef]
- Roth, J.A. Veterinary Vaccines and Their Importance to Animal Health and Public Health. Procedia Vaccinol. 2011, 5, 127–136. [Google Scholar] [CrossRef]
- Nooraei, S.; Sarkar Lotfabadi, A.; Akbarzadehmoallemkolaei, M.; Rezaei, N. Immunogenicity of Different Types of Adjuvants and Nano-Adjuvants in Veterinary Vaccines: A Comprehensive Review. Vaccines 2023, 11, 453. [Google Scholar] [CrossRef]
- Bailey, I. Edward Jenner (1749–1823): Naturalist, Scientist, Country Doctor, Benefactor to Mankind. J. Med. Biogr. 1996, 4, 63–70. [Google Scholar] [CrossRef]
- Cappellano, G.; Abreu, H.; Casale, C.; Dianzani, U.; Chiocchetti, A. Nano-Microparticle Platforms in Developing next-Generation Vaccines. Vaccines 2021, 9, 606. [Google Scholar] [CrossRef]
- McVey, S.; Shi, J. Vaccines in Veterinary Medicine: A Brief Review of History and Technology. Vet. Clin. North Am. Small Anim. Pract. 2010, 40, 381. [Google Scholar] [CrossRef] [PubMed]
- Brandau, D.T.; Jones, L.S.; Wiethoff, C.M.; Rexroad, J.; Middaugh, C.R. Thermal Stability of Vaccines. J. Pharm. Sci. 2003, 92, 218–231. [Google Scholar] [CrossRef]
- Fanelli, A.; Mantegazza, L.; Hendrickx, S.; Capua, I. Thermostable Vaccines in Veterinary Medicine: State of the Art and Opportunities to Be Seized. Vaccines 2022, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Murugan, B.; Sagadevan, S. Nano-Vaccines: Opportunities and Challenges in Biomaterial-Based Vaccine Delivery. Biomater.-Inspired Nanomed. Target. Ther. 2024, 101–116. [Google Scholar]
- Means, T.K.; Hayashi, F.; Smith, K.D.; Aderem, A.; Luster, A.D. The Toll-like Receptor 5 Stimulus Bacterial Flagellin Induces Maturation and Chemokine Production in Human Dendritic Cells. J. Immunol. 2003, 170, 5165–5175. [Google Scholar] [CrossRef] [PubMed]
- Dumpa, N.; Goel, K.; Guo, Y.; McFall, H.; Pillai, A.R.; Shukla, A.; Repka, M.A.; Murthy, S.N. Stability of Vaccines. AAPS PharmSciTech 2019, 20, 42. [Google Scholar] [CrossRef]
- Kristensen, D.; Chen, D.; Cummings, R. Vaccine Stabilization: Research, Commercialization, and Potential Impact. Vaccine 2011, 29, 7122–7124. [Google Scholar] [CrossRef] [PubMed]
- Rinderpest—WOAH—World Organisation for Animal Health. Available online: https://www.woah.org/en/disease/Rinderpest/ (accessed on 11 June 2025).
- Mshelbwala, P.P.; Weese, J.S.; Idris, J.M. Prevalence of Needlestick Injury and Its Potential Risk Among Veterinarians in Nigeria. 2016. Available online: https://onlinelibrary.wiley.com/doi/10.1155/2016/7639598 (accessed on 11 June 2025).
- Darpel, K.E.; Barber, J.; Hope, A.; Wilson, A.J.; Gubbins, S.; Henstock, M.; Frost, L.; Batten, C.; Veronesi, E.; Moffat, K.; et al. Using Shared Needles for Subcutaneous Inoculation Can Transmit Bluetongue Virus Mechanically between Ruminant Hosts. Sci. Rep. 2016, 6, 20627. [Google Scholar] [CrossRef]
- Rey, M.; Rodriguez-Lecompte, J.; Undi, M.; Joseph, T.; Morrison, J.; Yitbarek, A.; Wittenberg, K.; Tremblay, R.; Crow, G.; Ominski, K. Efficacy of Needle-Free Injection on Antibody Production against Clostridium Chauvoei in Beef Calves under Field Conditions. Can. Vet. J. 2015, 56, 405–407. [Google Scholar] [PubMed]
- Sacarrão-Birrento, L.; Harrison, L.J.S.; Pienaar, R.; Toka, F.N.; Torres-Acosta, J.F.J.; Vilela, V.L.R.; Hernández-Castellano, L.E.; Arriaga-Jordán, C.M.; Soltan, Y.A.; Ungerfeld, R.; et al. Challenges for Animal Health and Production in the Tropics and Mediterranean for the next 55 Years. Trop. Anim. Health Prod. 2024, 56, 381. [Google Scholar] [CrossRef]
- Josefsberg, J.O.; Buckland, B. Vaccine Process Technology. Biotech. Bioeng. 2012, 109, 1443–1460. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, V.; Baindara, P.; Ahmad, A. Thermostable Vaccines: An Innovative Concept in Vaccine Development. Expert. Rev. Vaccines 2022, 21, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Ghaemmaghamian, Z.; Zarghami, R.; Walker, G.; O’Reilly, E.; Ziaee, A. Stabilizing Vaccines via Drying: Quality by Design Considerations. Adv. Drug Deliv. Rev. 2022, 187, 114313. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.J.J.; Daoussi, R.; Vervaet, C.; Remon, J.-P.; De Beer, T.R.M. Freeze-Drying of Live Virus Vaccines: A Review. Vaccine 2015, 33, 5507–5519. [Google Scholar] [CrossRef]
- Thorat, B.N.; Sett, A.; Mujumdar, A.S. Drying of Vaccines and Biomolecules. Dry. Technol. 2022, 40, 461–483. [Google Scholar] [CrossRef]
- Kutumbetov, L.; Myrzakhmetova, B.; Tussipova, A.; Zhapparova, G.; Tlenchiyeva, T.; Bissenbayeva, K.; Nurabayev, S.; Kerimbayev, A. Development and Preclinical Evaluation of a Lyophilized Vaccine Against Equine Herpesvirus Type 4 (EHV-4). Vaccines 2025, 13, 604. [Google Scholar] [CrossRef] [PubMed]
- Kanojia, G.; Have, R.T.; Soema, P.C.; Frijlink, H.; Amorij, J.-P.; Kersten, G. Developments in the Formulation and Delivery of Spray Dried Vaccines. Hum. Vaccines Immunother. 2017, 13, 2364–2378. [Google Scholar] [CrossRef] [PubMed]
- LeClair, D.A.; Li, L.; Rahman, N.; Cranston, E.D.; Xing, Z.; Thompson, M.R. Stabilization of HSV-2 Viral Vaccine Candidate by Spray Drying. Int. J. Pharm. 2019, 569, 118615. [Google Scholar] [CrossRef]
- Flood, A.; Estrada, M.; McAdams, D.; Ji, Y.; Chen, D. Development of a Freeze-Dried, Heat-Stable Influenza Subunit Vaccine Formulation. PLoS ONE 2016, 11, e0164692. [Google Scholar] [CrossRef]
- Bacon, A.; Makin, J.; Sizer, P.J.; Jabbal-Gill, I.; Hinchcliffe, M.; Illum, L.; Chatfield, S.; Roberts, M. Carbohydrate Biopolymers Enhance Antibody Responses to Mucosally Delivered Vaccine Antigens. Infect. Immun. 2000, 68, 5764–5770. [Google Scholar] [CrossRef]
- Porta, C.; Kotecha, A.; Burman, A.; Jackson, T.; Ren, J.; Loureiro, S.; Jones, I.M.; Fry, E.E.; Stuart, D.I.; Charleston, B. Rational Engineering of Recombinant Picornavirus Capsids to Produce Safe, Protective Vaccine Antigen. PLoS Pathog. 2013, 9, e1003255. [Google Scholar] [CrossRef]
- Emami, F.; Vatanara, A.; Park, E.J.; Na, D.H. Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals. Pharmaceutics 2018, 10, 131. [Google Scholar] [CrossRef]
- Bezbaruah, R.; Chavda, V.P.; Nongrang, L.; Alom, S.; Deka, K.; Kalita, T.; Ali, F.; Bhattacharjee, B.; Vora, L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines 2022, 10, 1946. [Google Scholar] [CrossRef]
- Fox, H.; Knowlson, S.; Minor, P.D.; Macadam, A.J. Genetically Thermo-Stabilised, Immunogenic Poliovirus Empty Capsids; a Strategy for Non-Replicating Vaccines. PLoS Pathog. 2017, 13, e1006117. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S.; Renukaradhya, G.J. Nanoparticle-Based Vaccine Development and Evaluation against Viral Infections in Pigs. Vet. Res. 2019, 50, 90. [Google Scholar] [CrossRef] [PubMed]
- Demento, S.L.; Cui, W.; Criscione, J.M.; Stern, E.; Tulipan, J.; Kaech, S.M.; Fahmy, T.M. Role of Sustained Antigen Release from Nanoparticle Vaccines in Shaping the T Cell Memory Phenotype. Biomaterials 2012, 33, 4957–4964. [Google Scholar] [CrossRef]
- Tandrup Schmidt, S.; Foged, C.; Smith Korsholm, K.; Rades, T.; Christensen, D. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators. Pharmaceutics 2016, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-S.; Hung, Y.-C.; Lin, W.-H.; Huang, G.S. Assessment of Gold Nanoparticles as a Size-Dependent Vaccine Carrier for Enhancing the Antibody Response against Synthetic Foot-and-Mouth Disease Virus Peptide. Nanotechnology 2010, 21, 195101. [Google Scholar] [CrossRef]
- Wang, T.; Zou, M.; Jiang, H.; Ji, Z.; Gao, P.; Cheng, G. Synthesis of a Novel Kind of Carbon Nanoparticle with Large Mesopores and Macropores and Its Application as an Oral Vaccine Adjuvant. Eur. J. Pharm. Sci. 2011, 44, 653–659. [Google Scholar] [CrossRef]
- Pati, R.; Shevtsov, M.; Sonawane, A. Nanoparticle Vaccines against Infectious Diseases. Front. Immunol. 2018, 9, 2224. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.L.; Bonato, V.L.D.; Coelho-Castelo, A.A.M.; De Souza, A.O.; Santos, S.A.; Lima, K.M.; Faccioli, L.H.; Rodrigues, J.M. Immunotherapy with Plasmid DNA Encoding Mycobacterial Hsp65 in Association with Chemotherapy Is a More Rapid and Efficient Form of Treatment for Tuberculosis in Mice. Gene Ther. 2005, 12, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Gill, H.S. M2e-Immobilized Gold Nanoparticles as Influenza A Vaccine: Role of Soluble M2e and Longevity of Protection. Vaccine 2015, 33, 2307–2315. [Google Scholar] [CrossRef]
- Poon, C.; Patel, A.A. Organic and Inorganic Nanoparticle Vaccines for Prevention of Infectious Diseases. Nano Ex. 2020, 1, 012001. [Google Scholar] [CrossRef]
- Donaldson, B.; Lateef, Z.; Walker, G.F.; Young, S.L.; Ward, V.K. Virus-like Particle Vaccines: Immunology and Formulation for Clinical Translation. Expert. Rev. Vaccines 2018, 17, 833–849. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Li, X.; Xu, Z.; Du, F.; Wang, W.; Shi, R.; Gao, D. Hyaluronic Acid-Modified Mesoporous Silica-Coated Superparamagnetic Fe3O4 Nanoparticles for Targeted Drug Delivery. IJN 2019, 14, 5785–5797. [Google Scholar] [CrossRef]
- Nanoparticle-Based Vaccines. In Nanopharmaceuticals; Elsevier: Amsterdam, The Netherlands, 2020; pp. 135–150. ISBN 978-0-12-817778-5.
- Eidi, H.; Joubert, O.; Némos, C.; Grandemange, S.; Mograbi, B.; Foliguet, B.; Tournebize, J.; Maincent, P.; Le Faou, A.; Aboukhamis, I.; et al. Drug Delivery by Polymeric Nanoparticles Induces Autophagy in Macrophages. Int. J. Pharm. 2012, 422, 495–503. [Google Scholar] [CrossRef]
- Eidi, H.; Joubert, O.; Attik, G.; Duval, R.E.; Bottin, M.C.; Hamouia, A.; Maincent, P.; Rihn, B.H. Cytotoxicity Assessment of Heparin Nanoparticles in NR8383 Macrophages. Int. J. Pharm. 2010, 396, 156–165. [Google Scholar] [CrossRef]
- Petrovsky, N. Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs. Drug Saf. 2015, 38, 1059–1074. [Google Scholar] [CrossRef]
- Bhatti, R.; Shakeel, H.; Malik, K.; Qasim, M.; Khan, M.A.; Ahmed, N.; Jabeen, S. Inorganic Nanoparticles: Toxic Effects, Mechanisms of Cytotoxicity and Phytochemical Interactions. Adv. Pharm. Bull. 2021, 12, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Liu, Q.; Wang, L.; Wang, C.; Hu, L.; Jiang, Y.; Deng, Y.; Li, G.; Chen, J. Recent Advances in Multifunctional Microneedle Patches for Wound Healing and Health Monitoring. Adv. NanoBiomed Res. 2023, 3, 2200126. [Google Scholar] [CrossRef]
- Menon, I.; Bagwe, P.; Gomes, K.B.; Bajaj, L.; Gala, R.; Uddin, M.N.; D’Souza, M.J.; Zughaier, S.M. Microneedles: A New Generation Vaccine Delivery System. Micromachines 2021, 12, 435. [Google Scholar] [CrossRef]
- Sullivan, S.P.; Koutsonanos, D.G.; Del Pilar Martin, M.; Lee, J.W.; Zarnitsyn, V.; Choi, S.-O.; Murthy, N.; Compans, R.W.; Skountzou, I.; Prausnitz, M.R. Dissolving Polymer Microneedle Patches for Influenza Vaccination. Nat. Med. 2010, 16, 915–920. [Google Scholar] [CrossRef]
- Weldon, W.C.; Martin, M.P.; Zarnitsyn, V.; Wang, B.; Koutsonanos, D.; Skountzou, I.; Prausnitz, M.R.; Compans, R.W. Microneedle Vaccination with Stabilized Recombinant Influenza Virus Hemagglutinin Induces Improved Protective Immunity. Clin. Vaccine Immunol. 2011, 18, 647–654. [Google Scholar] [CrossRef]
- Hiraishi, Y.; Nandakumar, S.; Choi, S.-O.; Lee, J.W.; Kim, Y.-C.; Posey, J.E.; Sable, S.B.; Prausnitz, M.R. Bacillus Calmette-Guerin Vaccination Using a Microneedle Patch. Vaccine 2011, 29, 2626–2636. [Google Scholar] [CrossRef]
- Chen, K.; Cerutti, A. Vaccination Strategies to Promote Mucosal Antibody Responses. Immunity 2010, 33, 479–491. [Google Scholar] [CrossRef]
- Seefeld, M.L.; Templeton, E.L.; Lehtinen, J.M.; Sinclair, N.; Yadav, D.; Hartwell, B.L. Harnessing the Potential of the NALT and BALT as Targets for Immunomodulation Using Engineering Strategies to Enhance Mucosal Uptake. Front. Immunol. 2024, 15, 1419527. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Xiao, H.; Yang, X.; Cheng, T.; Yuan, L.; Xia, N. Novel Vaccine Strategies to Induce Respiratory Mucosal Immunity: Advances and Implications. MedComm 2025, 6, e70056. [Google Scholar] [CrossRef]
- Tizard, I.R. The Administration of Vaccines. Vaccines Vet. 2020, 87–104. [Google Scholar]
- Stratmann, T. Cholera Toxin Subunit B as Adjuvant––An Accelerator in Protective Immunity and a Break in Autoimmunity. Vaccines 2015, 3, 579–596. [Google Scholar] [CrossRef]
- Mishra, N.; Goyal, A.K.; Tiwari, S.; Paliwal, R.; Paliwal, S.R.; Vaidya, B.; Mangal, S.; Gupta, M.; Dube, D.; Mehta, A. Recent Advances in Mucosal Delivery of Vaccines: Role of Mucoadhesive/Biodegradable Polymeric Carriers. Expert. Opin. Ther. Pat. 2010, 20, 661–679. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.D. A Prototype Live Oral Cholera Vaccine. Nature 1971, 230, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Kwong, K.W.-Y.; Xin, Y.; Lai, N.C.-Y.; Sung, J.C.-C.; Wu, K.-C.; Hamied, Y.K.; Sze, E.T.-P.; Lam, D.M.-K. Oral Vaccines: A Better Future of Immunization. Vaccines 2023, 11, 1232. [Google Scholar] [CrossRef]
- Zhong, K.; Chen, X.; Zhang, J.; Jiang, X.; Zhang, J.; Huang, M.; Bi, S.; Ju, C.; Luo, Y. Recent Advances in Oral Vaccines for Animals. Vet. Sci. 2024, 11, 353. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, L.; Zhou, S.; Wang, Z.; Ruan, J.; Tang, L.; Jia, Z.; Cui, M.; Zhao, L.; Fu, Z.F. Recombinant Rabies Virus Expressing Dog GM-CSF Is an Efficacious Oral Rabies Vaccine for Dogs. Oncotarget 2015, 6, 38504. [Google Scholar] [CrossRef]
- Vos, A.; Freuling, C.M.; Hundt, B.; Kaiser, C.; Nemitz, S.; Neubert, A.; Nolden, T.; Teifke, J.P.; Te Kamp, V.; Ulrich, R. Oral Vaccination of Wildlife against Rabies: Differences among Host Species in Vaccine Uptake Efficiency. Vaccine 2017, 35, 3938–3944. [Google Scholar] [CrossRef]
- Du, Y.; Hu, X.; Miao, L.; Chen, J. Current Status and Development Prospects of Aquatic Vaccines. Front. Immunol. 2022, 13, 1040336. [Google Scholar] [CrossRef]
- Babai, I.; Samira, S.; Barenholz, Y.; Zakay-Rones, Z.; Kedar, E. A Novel Influenza Subunit Vaccine Composed of Liposome-Encapsulated Haemagglutinin/Neuraminidase and IL-2 or GM-CSF. I. Vaccine Characterization and Efficacy Studies in Mice. Vaccine 1999, 17, 1223–1238. [Google Scholar] [CrossRef]
- Wang, D.; Christopher, M.E.; Nagata, L.P.; Zabielski, M.A.; Li, H.; Wong, J.P.; Samuel, J. Intranasal Immunization with Liposome-Encapsulated Plasmid DNA Encoding Influenza Virus Hemagglutinin Elicits Mucosal, Cellular and Humoral Immune Responses. J. Clin. Virol. 2004, 31, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Kolluru, C.; Gomaa, Y.; Prausnitz, M.R. Development of a Thermostable Microneedle Patch for Polio Vaccination. Drug Deliv. Transl. Res. 2019, 9, 192–203. [Google Scholar] [CrossRef]
- Arya, J.M.; Dewitt, K.; Scott-Garrard, M.; Chiang, Y.-W.; Prausnitz, M.R. Rabies Vaccination in Dogs Using a Dissolving Microneedle Patch. J. Control. Release 2016, 239, 19–26. [Google Scholar] [CrossRef] [PubMed]
- El-Yuguda, A.-D.; Baba, S.S.; Ambali, A.G.; Egwu, G.O. Field Trial of a Thermostable Peste Des Petits Ruminants (PPR) Vaccine in a Semi-Arid Zone of Nigeria. World J. Vaccines 2014, 2014. [Google Scholar] [CrossRef]
- Bell, J.G.; Fotzo, T.M.; Amara, A.; Agbede, G. A Field Trial of the Heat Resistant V4 Vaccine against Newcastle Disease by Eye-Drop Inoculation in Village Poultry in Cameroon. Prev. Vet. Med. 1995, 25, 19–25. [Google Scholar] [CrossRef]
- A Spray in a Cow’s Nose Could Soon Protect It, and People, From Bird…. Available online: https://today.umd.edu/a-spray-in-a-cows-nose-could-soon-protect-it-and-people-from-bird-flu (accessed on 11 June 2025).
- Neutra, M.R.; Kozlowski, P.A. Mucosal Vaccines: The Promise and the Challenge. Nat. Rev. Immunol. 2006, 6, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Agrebi, S.; Larbi, A. Use of Artificial Intelligence in Infectious Diseases. In Artificial Intelligence in Precision Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 415–438. [Google Scholar]
- Lane, J.K.; Kelly, T.; Bird, B.; Chenais, E.; Roug, A.; Vidal, G.; Gallardo, R.; Zhou, H.; VanHoy, G.; Smith, W. A One Health Approach to Reducing Livestock Disease Prevalence in Developing Countries: Advances, Challenges, and Prospects. Annu. Rev. Anim. Biosci. 2025, 13, 277–302. [Google Scholar] [CrossRef]
- Roth, F.; Zinsstag, J.; Orkhon, D.; Chimed-Ochir, G.; Hutton, G.; Cosivi, O.; Carrin, G.; Otte, J. Human Health Benefits from Livestock Vaccination for Brucellosis: Case Study. Bull. World Health Organ. 2003, 81, 867–876. [Google Scholar]
- Bozorgi, A.; Pazour, J.; Nazzal, D. A New Inventory Model for Cold Items That Considers Costs and Emissions. Int. J. Prod. Econ. 2014, 155, 114–125. [Google Scholar] [CrossRef]
- Udainiya, S.; Tiwari, A.; Mishra, A.; Dubey, A. Chapter 37—Zoonotic Diseases of Dogs and Cats. In Introduction to Diseases, Diagnosis, and Management of Dogs and Cats; Rana, T., Ed.; Developments in Microbiology; Academic Press: Cambridge, MA, USA, 2024; pp. 559–572. ISBN 978-0-443-18548-9. [Google Scholar]
- Entrican, G.; Francis, M.J. Applications of Platform Technologies in Veterinary Vaccinology and the Benefits for One Health. Vaccine 2022, 40, 2833–2840. [Google Scholar] [CrossRef]
- Esonu, D.; Armson, B.; Babashani, M.; Alafiatayo, R.; Ekiri, A.B.; Cook, A.J.C. Epidemiology of Peste Des Petits Ruminants in Nigeria: A Review. Front. Vet. Sci. 2022, 9, 898485. [Google Scholar] [CrossRef]
- Hederman, A.P.; Ackerman, M.E. Leveraging Deep Learning to Improve Vaccine Design. Trends Immunol. 2023, 44, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Lo, Y.-H.; Chatterjee, S.; Das, A.; Wen, Z.-H.; Chakraborty, C. Deep Learning in Next-Generation Vaccine Development for Infectious Diseases. Mol. Ther. Nucleic Acids 2025, 36, 102586. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Teke, J.; Fapohunda, O.; Weerasinghe, K.; Usman, S.O.; Ige, A.O.; David-Olawade, A.C. Leveraging Artificial Intelligence in Vaccine Development: A Narrative Review. J. Microbiol. Methods 2024, 106998. [Google Scholar] [CrossRef] [PubMed]
- Garcia-del Rio, L.; Diaz-Rodriguez, P.; Pedersen, G.K.; Christensen, D.; Landin, M. Sublingual Boosting with a Novel Mucoadhesive Thermogelling Hydrogel Following Parenteral CAF01 Priming as a Strategy against Chlamydia Trachomatis. Adv. Healthc. Mater. 2022, 11, 2102508. [Google Scholar] [CrossRef]
- Abubaker Bagabir, S.; Ibrahim, N.K.; Abubaker Bagabir, H.; Hashem Ateeq, R. Covid-19 and Artificial Intelligence: Genome Sequencing, Drug Development and Vaccine Discovery. J. Infect. Public. Health 2022, 15, 289–296. [Google Scholar] [CrossRef]
- Wang, H.; Cui, W.; Guo, Y.; Du, Y.; Zhou, Y. Machine Learning Prediction of Foodborne Disease Pathogens: Algorithm Development and Validation Study. JMIR Med. Inform. 2021, 9, e24924. [Google Scholar] [CrossRef] [PubMed]
Vaccine Type/Platform | Delivery Route | Target Species/Group | Thermostability Features | Immune Response/Target Site | Advantages | Challenges/Limitations | Key Examples & | References |
---|---|---|---|---|---|---|---|---|
Nanovaccines | Oral, intranasal, injectable | Livestock, poultry, and companion animals | Thermostability varies; often enhanced via NP formulation | Systemic and mucosal (IgG, IgA, T-cells) | Enhanced antigen stability, delivery, and intrinsic adjuvant activity | Complex formulation; regulatory hurdles | Gold NP for M. tuberculosis, influenza NP vaccine | [40] |
Microneedles | Skin (intradermal) | Canines, livestock | Highly thermostable (ambient-stable for weeks) | Skin immune cells, systemic immunity | Minimal discomfort, user-friendly, and ambient-stable | Requires formulation optimization, scalability issues | Rabies DNA microneedle vaccine, BCG microneedle vaccine | [54] |
Liquid-based Intranasal Vaccines | Intranasal | Pigs, poultry, cattle | Thermostable dry powder (in some formulations) | Respiratory mucosa (IgA, T-cells) | Strong mucosal immunity, needle-free, easy field use | Precise dosing, cold chain needed for some live forms | H5N1 vaccine in cattle, influenza in pigs | [74] |
Dry Powder Intranasal Vaccines | Intranasal | Poultry, cattle | Dry, thermostable powder form | Mucosal IgA, systemic cross-protection | Non-invasive, ambient-stable, easy storage | Difficult dose uniformity, delivery technique-dependent | H5N1 spray | [67] |
Oral Vaccines (Drinking Water, Feed-Based) | Oral (drinking water, pellets, feed mix) | Poultry, small ruminants, and aquaculture species | Thermostable pellets/powders; liquids are more sensitive | GALT, Peyer’s patches (IgA) | Easy mass administration, scalable, feed-based, thermostable options | Variable uptake, degradation (especially in liquid form) | NDV vaccine via feed or water, PPR vaccine | [72] |
AI-assisted vaccine design | N/A (research phase) | All animal species | Enables the design of thermostable antigens | Optimized antigen targets, surveillance data integration | Rapid design, field diagnostics, surveillance support | Requires data, advanced infrastructure | mRNA-based vaccine | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raut, R.; Shrestha, R.; Adhikari, A.; Fatima, A.; Naeem, M. Revolutionizing Veterinary Vaccines: Overcoming Cold-Chain Barriers Through Thermostable and Novel Delivery Technologies. Appl. Microbiol. 2025, 5, 83. https://doi.org/10.3390/applmicrobiol5030083
Raut R, Shrestha R, Adhikari A, Fatima A, Naeem M. Revolutionizing Veterinary Vaccines: Overcoming Cold-Chain Barriers Through Thermostable and Novel Delivery Technologies. Applied Microbiology. 2025; 5(3):83. https://doi.org/10.3390/applmicrobiol5030083
Chicago/Turabian StyleRaut, Rabin, Roshik Shrestha, Ayush Adhikari, Arjmand Fatima, and Muhammad Naeem. 2025. "Revolutionizing Veterinary Vaccines: Overcoming Cold-Chain Barriers Through Thermostable and Novel Delivery Technologies" Applied Microbiology 5, no. 3: 83. https://doi.org/10.3390/applmicrobiol5030083
APA StyleRaut, R., Shrestha, R., Adhikari, A., Fatima, A., & Naeem, M. (2025). Revolutionizing Veterinary Vaccines: Overcoming Cold-Chain Barriers Through Thermostable and Novel Delivery Technologies. Applied Microbiology, 5(3), 83. https://doi.org/10.3390/applmicrobiol5030083