BLIS Fingerprinting as a Tool to Investigate the Distribution and Significance of Bacteriocin Production and Immunity in Streptococcus pyogenes and Streptococcus salivarius
Abstract
1. Principal Objectives
- Provide a contemporary overview of the expression of Class I and Class III bacteriocin loci in S. pyogenes and S. salivarius, with an emphasis on the distribution and potential roles of the expressed products of the Class I (viz., lantibiotic) structural and immunity genes.
- Showcase original findings from the now “classical” agar culture-based streptococcal bacteriocin fingerprinting method, focusing on its contributions to the discovery of novel bacteriocins and its role in understanding microbial competition and niche adaptation.
- Application of the fingerprinting methodology in combination with PCR to evaluate the distribution of bacteriocin-like inhibitory substance (BLIS) production and/or the expression of specific BLIS immunity in an extensive collection of reference strains of S. pyogenes representing more than 100 different M-protein or emm types.
- Discuss some of the broader implications of lantibiotic systems for bacterial survival and virulence, as well as for human health and therapeutic innovation. Discussion points include the following:
- The widespread expression of salivaricin A immunity determinants in S. pyogenes, whereas functional salivaricin A production appears essentially limited to serotype M-type 4 strains.
- The putative absence of salivaricin B production in S. pyogenes.
- The apparently universal sensitivity of S. pyogenes to the salivaricin A/salivaricin B-producing probiotic strain S. salivarius BLIS K12.
2. Introduction
- How do bacteriocins and their associated immunity loci influence microbial survival and behavior?
- What roles do these peptides play in shaping host–microbe interactions?
- Can insights from these antimicrobial systems inspire new therapeutic strategies?
- S. pyogenes is a formidable pathogen, responsible for diseases ranging from pharyngitis to severe invasive infections, some with chronic or lethal sequelae. It is an adept colonizer and an uncompromising exploiter of diverse host niches [9].
3. The Bacteriocin Fingerprinting Scheme: Its Role in Discovering Lantibiotics and Other Bacteriocins in S. pyogenes and S. salivarius
- Enhanced Detection: blood supplementation of the basal nutrient agar medium and incubation at a reduced temperature (32 °C) in a 5% CO2 in-air atmosphere improved bacteriocin detection.
- Physicochemical Properties: the bacteriocins exhibited diverse properties distinct from those attributable to hydrogen peroxide or pH-based inhibitory effects.
- Solid-phase Assays: some bacteriocins were not produced in liquid media, emphasizing the requirement for solid-phase assays for optimal detection.
3.1. Key Contributions of the Bacteriocin Fingerprinting Methodology
- Discovery of Novel Lantibiotics and Non-lantibiotic Bacteriocins: further exploration of these discoveries is discussed below.
- Revealing Immunity Profiles: the fingerprinting method revealed that many strains exhibit immunity to specific bacteriocins, even in the absence of their production of the corresponding bioactive bacteriocin. This was particularly evident in S. pyogenes, where immunity to salivaricin A is widespread despite its production being essentially limited to serotype M4 [31]. These findings suggest that immunity determinants might serve functions beyond the conferring of specific bacteriocin resistance, potentially also aiding S. pyogenes survival against host-derived cationic antimicrobial peptides. Notably, the widespread immunity to salivaricin A in S. pyogenes results in bacteriostasis rather than bacteriocidal effects, making it less likely in situ for S. salivarius that produce only salivaricin A to outcompete these salivaricin A-immune S. pyogenes. S. salivarius strains such as BLIS K12, which produce other bacteriocins (e.g., salivaricin B), on the other hand, appear better equipped to successfully compete with these S. pyogenes.
- Detection of Orphan Patterns: the fingerprinting method has identified a number of unique P-type and S-type patterns indicating the expression of uncharacterized bacteriocin loci and subsequently stimulating ongoing research into the diversity of antimicrobial peptides within the streptococci and other Gram-positive bacteria.
- Preliminary Profiling of Ecological Impact: the method provides insights into how bacteriocins might influence inter-bacterial dynamics, particularly in specific niches like the oral cavity and pharynx, by assessing both inhibitory activity and susceptibility to bacteriocins.
- Evolutionary Insights: the method contributes to understanding the evolutionary pressures shaping bacteriocin loci, especially in relationship to the benefits of decoupling bacteriocin production and immunity expression.
- A Screening Tool for Therapeutic Applications: the fingerprinting approach is an invaluable tool for selecting strains with potential probiotic and therapeutic applications, as exemplified by S. salivarius strains BLIS K12 and BLIS M18, which are both now widely used for oral health and other clinical purposes [32].
3.2. Future Directions and Ongoing Relevance
4. Bacteriocins in Streptococcus pyogenes
4.1. SA-FF22
4.2. Salivaricin A
4.3. Streptin
4.4. Streptococcin A-M57
- SA-M57 alpha: >100,000 Da.
- SA-M57 beta: ~33,000 Da.
4.5. Distribution of Currently Characterized and Putative BLIS Activities in S. pyogenes
4.6. Broader Significance of Bacteriocin Loci in S. pyogenes
5. Bacteriocins in Streptococcus salivarius
5.1. Salivaricin A and Its Variants
- Ecological Competence—SalA enhances the ability of S. salivarius to colonize the oral cavity by suppressing the proliferation of competing microbial species.
- Competitive Advantage—By inhibiting S. pyogenes, SalA-producing S. salivarius strains promote their own persistence and limit pathogen colonization. Despite their antimicrobial properties, SalA-producing S. salivarius strains coexist harmlessly with their human hosts, supporting their probiotic potential.
5.2. Salivaricin B
5.3. Salivaricin 9
5.4. Salivaricin G32
5.5. Salivaricin E
5.6. Salivaricin M
5.7. P-Type 226 Bacteriocins
5.8. Sal MPS
5.9. Unresolved P-Type Patterns
5.10. Future Prospects in Therapeutic Applications
6. The Broader Significance of Streptococcal Bacteriocins
6.1. For the Bacteria
Ecological Roles
- Pathogen (S. pyogenes): Lantibiotics like SA-FF22 enhance S. pyogenes’ ability to gain entry and then dominate competitive niches. Immunity loci further assist in evading innate host defenses, strengthening its capacity to increase numbers.
- Commensal (S. salivarius): in contrast, S. salivarius uses bacteriocins primarily to protect its niche, promoting its role as a beneficial oral commensal.
6.2. For the Human Host
6.2.1. Pathogenic Potential in S. pyogenes
6.2.2. Natural Defense by S. salivarius
6.2.3. Translational Potential in Therapeutics
7. Future Directions
7.1. Unresolved Questions
- Functions of Newly Detected P-Type Patterns
- 2.
- Persistence of Immunity Loci Without Active Bacteriocin Production in S. pyogenes
7.2. Research Opportunities
- Advancing Discovery Through Genomics, Proteomics, and Machine Learning
- 2.
- Translating Lantibiotic Knowledge into Therapeutics
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tagg, J.E.; Mushin, R. Epidemiology of Pseudomonas aeruginosa infection in hospitals: 1. Pyocine typing of Ps. aeruginosa. Med. J. Aust. 1971, 1, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Tagg, J.R.; Mushin, R. Pyocin sensitivity testing as a means of typing Pseudomonas aeruginosa. J. Med. Microbiol. 1973, 6, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Tagg, J.R.; Bannister, L.V. “Fingerprinting” β-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J. Med. Microbiol. 1979, 12, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Tagg, J.R. Streptococcal Bacteriocin-Like Inhibitory Substances: Some Personal Insights into the Bacteriocin-Like Activities Produced by Streptococci Good and Bad. Probiot. Antimicrob. Proteins 2009, 1, 60–66. [Google Scholar] [CrossRef]
- Wescombe, P.A.; Heng, N.C.; Burton, J.P.; Chilcott, C.N.; Tagg, J.R. Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol. 2009, 4, 819–835. [Google Scholar] [CrossRef]
- Barbour, A.; Wescombe, P.; Smith, L. Evolution of Lantibiotic Salivaricins: New Weapons to Fight Infectious Diseases. Trends Microbiol. 2020, 28, 578–593. [Google Scholar] [CrossRef]
- Tagg, J.R.; Wannamaker, L.W. Streptococcin A-FF22: Nisin-like antibiotic substance produced by a group A streptococcus. Antimicrob. Agents Chemother. 1978, 14, 31–39. [Google Scholar] [CrossRef]
- Tagg, J.R.; Harold, L.K.; Hale, J.D.F.; Wescombe, P.A.; Burton, J.P. Streptococcus: A Brief Update on the Current Taxonomic Status of the Genus. In Lactic Acid Bacteria; CRC Press: Boca Raton, FL, USA, 2024; pp. 56–83. [Google Scholar]
- Brouwer, S.; Rivera-Hernandez, T.; Curren, B.F.; Harbison-Price, N.; De Oliveira, D.M.P.; Jespersen, M.G.; Davies, M.R.; Walker, M.J. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat. Rev. Microbiol. 2023, 21, 431–447. [Google Scholar] [CrossRef]
- Abranches, J.; Zeng, L.; Kajfasz, J.K.; Palmer, S.R.; Chakraborty, B.; Wen, Z.T.; Richards, V.P.; Brady, L.J.; Lemos, J.A. Biology of Oral Streptococci. Microbiol. Spectr. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Baty, J.J.; Stoner, S.N.; Scoffield, J.A. Oral Commensal Streptococci: Gatekeepers of the Oral Cavity. J. Bacteriol. 2022, 204, e0025722. [Google Scholar] [CrossRef]
- Hyink, O.; Wescombe, P.A.; Upton, M.; Ragland, N.; Burton, J.P.; Tagg, J.R. Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivanus K12. Appl. Environ. Microbiol. 2007, 73, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Heng, N.C.K.; Wescombe, P.A.; Burton, J.P.; Jack, R.W.; Tagg, J.R. The Diversity of Bacteriocins in Gram-Positive Bacteria. In Bacteriocins; Springer: Berlin/Heidelberg, Germany, 2007; pp. 45–92. [Google Scholar] [CrossRef]
- Tagg, J.R. Prevention of streptococcal pharyngitis by anti-Streptococcus pyogenes bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Indian J. Med. Res. 2004, 119, 13. [Google Scholar]
- Jack, R.; Benz, R.; Tagg, J.; Sahl, H. The mode of action of SA-FF22, a lantibiotic isolated from Streptococcus pyogenes strain FF22. Eur. J. Biochem. 1994, 219, 699–705. [Google Scholar] [CrossRef]
- Wirawan, R.E.; Klesse, N.A.; Jack, R.W.; Tagg, J.R. Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl. Environ. Microbiol. 2006, 72, 1148–1156. [Google Scholar] [CrossRef]
- Heng, N.C.K.; Ragland, N.L.; Swe, P.M.; Baird, H.J.; Inglis, M.A.; Tagg, J.R.; Jack, R.W. Dysgalacticin: A novel, plasmid-encoded antimicrobial protein (bacteriocin) produced by Streptococcus dysgalactiae subsp. equisimilis. Microbiology 2006, 152, 1991–2001. [Google Scholar] [CrossRef]
- Wescombe, P.A.; Tagg, J.R. Purification and characterization of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl. Environ. Microbiol. 2003, 69, 2737–2747. [Google Scholar] [CrossRef]
- Heng, N.C.; Swe, P.M.; Ting, Y.T.; Dufour, M.; Baird, H.J.; Ragland, N.L.; Burtenshaw, G.A.; Jack, R.W.; Tagg, J.R. The large antimicrobial proteins (bacteriocins) of streptococci. Int. Congr. Ser. 2006, 1289, 351–354. [Google Scholar] [CrossRef]
- Heng, N.C.; Burtenshaw, G.A.; Jack, R.W.; Tagg, J.R. Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes. Plasmid 2004, 52, 225–229. [Google Scholar] [CrossRef]
- Simpson, W.J.; Tagg, J.R. M-type 57 group A streptococcus bacteriocin. Can. J. Microbiol. 1983, 29, 1445–1451. [Google Scholar] [CrossRef]
- Hynes, W.L.; Tagg, J.R. Production of broad-spectrum bacteriocin-like activity by group A streptococci of particular M-types. Zentralbl. Bakteriol. Mikrobiol. Hyg. Ser. A Med. Microbiol. Infect. Dis. Virol. Parasitol. 1985, 259, 155–164. [Google Scholar] [CrossRef]
- Tagg, J.R.; Skjold, S.A. A bacteriocin produced by certain M-type 49 Streptococcus pyogenes strains when incubated anaerobically. J. Hyg. 1984, 93, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.C.; Sahl, H.G.; Carne, A.; Tagg, J.R. Lantibiotic-mediated anti-lactobacillus activity of a vaginal Staphylococcus aureus isolate. FEMS Microbiol. Lett. 1992, 93, 97–102. [Google Scholar] [CrossRef]
- Navaratna, M.A.D.B.; Sahl, H.G.; Tagg, J.R. Two-component anti-Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. Appl. Environ. Microbiol. 1998, 64, 4803–4808. [Google Scholar] [CrossRef]
- James, S.M.; Tagg, J.R. A Search Within the Genera Streptococcus, Enterococcus and Lactobacillus for Organisms Inhibitory to Mutans Streptococci. Microb. Ecol. Health Dis. 1988, 1, 153–162. [Google Scholar] [CrossRef]
- Tompkins, G.; Tagg, J. Incidence and characterization of anti-microbial effects produced by Actinomyces viscosus and Actinomyces naeslundii. J. Dent. Res. 1986, 65, 109–112. [Google Scholar] [CrossRef]
- Tagg, J.R.; Dajani, A.S.; Wannamaker, L.W. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 1976, 40, 722–756. [Google Scholar] [CrossRef]
- Jack, R.W.; Tagg, J.R.; Ray, B. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 1995, 59, 171–200. [Google Scholar] [CrossRef]
- Upton, M.; Cotter, P.; Tagg, J. Antimicrobial peptides as therapeutic agents. Int. J. Microbiol. 2012, 2012, 326503. [Google Scholar] [CrossRef]
- Ragland, N.; Tagg, J. Applications of bacteriocin-like inhibitory substance (BLIS) typing in a longitudinal study of the oral carriage of ß-haemolytic streptococci by a group of Dunedin school children. Zentralbl. Bakteriol. 1990, 274, 100–108. [Google Scholar] [CrossRef]
- Tagg, J.R.; Harold, L.K.; Jain, R.; Hale, J.D.F. Beneficial modulation of human health in the oral cavity and beyond using bacteriocin-like inhibitory substance-producing streptococcal probiotics. Front. Microbiol. 2023, 14, 1161155. [Google Scholar] [CrossRef]
- Van Heel, A.J.; De Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef]
- Akhter, S.; Miller, J.H. BPAGS: A web application for bacteriocin prediction via feature evaluation using alternating decision tree, genetic algorithm, and linear support vector classifier. Front. Bioinform. 2024, 3, 1284705. [Google Scholar] [CrossRef]
- Jack, R.W.; Carne, A.; Metzger, J.; Stefanović, S.; Sahl, H.; Jung, G.; Tagg, J. Elucidation of the structure of SA-FF22, a lanthionine-containing antibacterial peptide produced by Streptococcus pyogenes strain FF22. Eur. J. Biochem. 1994, 220, 455–462. [Google Scholar] [CrossRef]
- Tagg, J.R. Production of bacteriocin-like inhibitors by group A streptococci of nephritogenic M types. J. Clin. Microbiol. 1984, 19, 884–887. [Google Scholar] [CrossRef]
- Simpson, W.J.; Tagg, J.R. Survey of the plasmid content of group A streptococci. FEMS Microbiol. Lett. 1984, 23, 195–199. [Google Scholar] [CrossRef]
- Johnson, D.W.; Tagg, J.R.; Wannamaker, L.W. Production of a bacteriocine-like substance by group-A streptococci of M-type 4 and T-pattern 4. J. Med. Microbiol. 1979, 12, 413–427. [Google Scholar] [CrossRef]
- Simpson, W.J.; Ragland, N.L.; Ronson, C.W.; Tagg, J.R. A lantibiotic gene family widely distributed in Streptococcus salivarius and Streptococcus pyogenes. Dev. Biol. Stand. 1995, 85, 639–643. [Google Scholar]
- Tagg, J.R.; Vugler, L.G. An inhibitor typing scheme for Streptococcus uberis. J. Dairy Res. 1986, 53, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Heng, N.C.K.; Burtenshaw, G.A.; Jack, R.W.; Tagg, J.R. Ubericin A, a class IIa bacteriocin produced by Streptococcus uberis. Appl. Environ. Microbiol. 2007, 73, 7763–7766. [Google Scholar] [CrossRef] [PubMed]
- Wirawan, R.E.; Swanson, K.M.; Kleffmann, T.; Jack, R.W.; Tagg, J.R. Uberolysin: A novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology 2007, 153, 1619–1630. [Google Scholar] [CrossRef]
- Tagg, J.R.; Dajani, A.S.; Wannamaker, L.W. Bacteriocin of a Group B Streptococcus: Partial Purification and Characterization. Antimicrob. Agents Chemother. 1975, 7, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Dempster, R.P.; Tagg, J.R. The production of bacteriocin-link substances by the oral bacterium Streptococcus salivarius. Arch. Oral Biol. 1982, 27, 151–157. [Google Scholar] [CrossRef]
- Ross, K.F.; Ronson, C.W.; Tagg, J.R. Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl. Environ. Microbiol. 1993, 59, 2014–2021. [Google Scholar] [CrossRef]
- Wescombe, P.A.; Dyet, K.H.; Dierksen, K.P.; Power, D.A.; Jack, R.W.; Burton, J.P.; Inglis, M.A.; Wescombe, A.L.; Tagg, J.R. Salivaricin G32, a Homolog of the Prototype Streptococcus pyogenes Nisin-Like Lantibiotic SA-FF22, Produced by the Commensal Species Streptococcus salivarius. Int. J. Microbiol. 2012, 2012, 738503. [Google Scholar] [CrossRef]
- Walker, G.V.; Heng, N.C.K.; Carne, A.; Tagg, J.R.; Wescombe, P.A. Salivaricin E and abundant dextranase activity may contribute to the anti-cariogenic potential of the probiotic candidate Streptococcus salivarius JH. Microbiology 2016, 162, 476–486. [Google Scholar] [CrossRef]
- Wescombe, P.A.; Upton, M.; Renault, P.; Wirawan, R.E.; Power, D.; Burton, J.P.; Chilcott, C.N.; Tagg, J.R. Salivaricin 9, a new lantibiotic produced by Streptococcus salivarius. Microbiology 2011, 157, 1290–1299. [Google Scholar] [CrossRef]
- Heng, N.C.K.; Haji-Ishak, N.S.; Kalyan, A.; Wong, A.Y.C.; Lovrić, M.; Bridson, J.M.; Artamonova, J.; Stanton, J.-A.L.; Wescombe, P.A.; Burton, J.P.; et al. Genome sequence of the bacteriocin-producing oral probiotic streptococcus salivarius strain M18. J. Bacteriol. 2011, 193, 6402–6403. [Google Scholar] [CrossRef]
- Tagg, J.R.; Russell, C. Bacteriocin production by Streptococcus salivarius strain P. Can. J. Microbiol. 1981, 27, 918–923. [Google Scholar] [CrossRef]
- Crooks, M.; James, S.M.; Tagg, J.R. Relationship of bacteriocin-like inhibitor production to the pigmentation and hemolytic activity of mutans streptococci. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 1987, 263, 541–547. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Simmonds, R.S.; Carne, A.; Tagg, J.R. Streptococcus mutans strain N produces a novel low molecular mass non-lantibiotic bacteriocin. FEMS Microbiol. Lett. 2000, 183, 165–169. [Google Scholar] [CrossRef]
- Hale, J.D.F.; Balakrishnan, B.; Tagg, J.R. Genetic basis for mutacin N and of its relationship to mutacin I. Indian J. Med. Res. 2004, 119, 247–251. [Google Scholar] [PubMed]
- Hale, J.D.F.; Ting, Y.T.; Jack, R.W.; Tagg, J.R.; Heng, N.C.K. Bacteriocin (Mutacin) Production by Streptococcus mutans Genome Sequence Reference Strain UA159: Elucidation of the Antimicrobial Repertoire by Genetic Dissection. Appl. Environ. Microbiol. 2005, 71, 7613–7617. [Google Scholar] [CrossRef]
- Robson, C.L.; Wescombe, P.A.; Klesse, N.A.; Tagg, J.R. Isolation and partial characterization of the Streptococcus mutans type AII lantibiotic mutacin K8. Microbiology 2007, 153, 1631–1641. [Google Scholar] [CrossRef]
- Hyink, O.; Balakrishnan, M.; Tagg, J.R. Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol. Lett. 2005, 252, 235–241. [Google Scholar] [CrossRef]
- Heng, N.C.K.; Tagg, J.R.; Tompkins, G.R. Competence-Dependent Bacteriocin Production by Streptococcus gordonii DL1 (Challis). J. Bacteriol. 2007, 189, 1468–1472. [Google Scholar] [CrossRef]
- Simmonds, R.S.; Naidoo, J.; Jones, C.L.; Tagg, J.R. The Streptococcal Bacteriocin-like Inhibitory Substance, Zoocin A, Reduces the Proportion of Streptococcus mutans in an Artificial Plaque. Microb. Ecol. Health Dis. 1995, 8, 281–292. [Google Scholar] [CrossRef]
- Simmonds, R.S.; Simpson, W.J.; Tagg, J.R. Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 1997, 189, 255–261. [Google Scholar] [CrossRef]
- Tagg, J.R.; Van De Rijn, I. Inverse correlation in nutritionally variant streptococci between the production of bacteriolytic activity and sensitivity to a Streptococcus pyogenes bacteriocinlike inhibitory substance. J. Clin. Microbiol. 1991, 29, 848–849. [Google Scholar] [CrossRef]
- Skilton, C.J.; Tagg, J.R. Production by Streptococcus sanguis of Bacteriocin-like Inhibitory Substances (BLIS) with Activity Against Streptococcus rattus. Microb. Ecol. Health Dis. 1992, 5, 219–226. [Google Scholar] [CrossRef]
- Schofield, C.R.; Tagg, J.R. Bacteriocin-like activity of group B and group C streptococci of human and of animal origin. J. Hyg. 1983, 90, 7–18. [Google Scholar] [CrossRef]
- Tagg, J.R. An inhibitor typing scheme applicable to Lancefield group E streptococci. Can. J. Microbiol. 1985, 31, 1056–1057. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.K.; Tagg, J.R.; Hynes, W.L. Bacteriocin-like inhibitors of group A streptococci produced by group F and group G streptococci. Proc. Univ. Otago Med. Sch. 1981, 59, 105–106. [Google Scholar]
- Tagg, J.R.; Wong, H.K. Inhibitor production by group-G streptococci of human and of animal origin. J. Med. Microbiol. 1983, 16, 409–415. [Google Scholar] [CrossRef]
- Swe, P.M.; Cook, G.M.; Tagg, J.R.; Jack, R.W. Mode of action of dysgalacticin: A large heat-labile bacteriocin. J. Antimicrob. Chemother. 2009, 63, 679–686. [Google Scholar] [CrossRef]
- Tagg, J.R.; Read, R.S.D.; McGiven, A.R. Bacteriocine production by group a streptococci. Pathology 1971, 3, 277–278. [Google Scholar] [CrossRef]
- Tagg, J.R.; Read, R.S.; McGiven, A.R. Bacteriocin of a group A streptococcus: Partial purification and properties. Antimicrob. Agents Chemother. 1973, 4, 214–221. [Google Scholar] [CrossRef]
- Tagg, J.R.; Dajani, A.S.; Wannamaker, L.W.; Gray, E.D. Group A streptococcal bacteriocin: Production, purification, and mode of action. J. Exp. Med. 1973, 138, 1168–1183. [Google Scholar] [CrossRef]
- Tagg, J.R.; Skjold, S.; Wannamaker, L.W. Transduction of bacteriocin determinants in group A streptococci. J. Exp. Med. 1976, 143, 1540–1544. [Google Scholar] [CrossRef]
- Hryniewicz, W.; Tagg, J.R. Bacteriocin Production by Group A Streptococcal L-Forms. Antimicrob. Agents Chemother. 1976, 10, 912–914. [Google Scholar] [CrossRef]
- Tagg, J.R.; Wannamaker, L.W. Genetic basis of streptococcin A-FF22 production. Antimicrob. Agents Chemother. 1976, 10, 299–306. [Google Scholar] [CrossRef]
- Phelps, H.A.; Neely, M.N. SalY of the Streptococcus pyogenes Lantibiotic Locus Is Required for Full Virulence and Intracellular Survival in Macrophages. Infect. Immun. 2007, 75, 4541–4551. [Google Scholar] [CrossRef] [PubMed]
- Tagg, J.; Johnson, D.; Kaplan, E.; Inglis, M.; Wescombe, P. The Harboring of Lantibiotic Loci and its Possible Implications for Streptococcus pyogenes. In Proceedings of the 17th Lancefield International Symposium, Porto Heli, Greece, 22–26 June 2008. [Google Scholar]
- Tagg, J.; Burton, J.; Wescombe, P. Application of bacterial pathogens in replacement therapy. In Patho-Biotechnology, 1st ed.; Hill, C., Sleator, R., Eds.; Landes Bioscience: Austin, TX, USA, 2008; pp. 1–14. [Google Scholar]
- Namprachan-Frantz, P.; Rowe, H.M.; Runft, D.L.; Neely, M.N. Transcriptional analysis of the Streptococcus pyogenes salivaricin locus. J. Bacteriol. 2014, 196, 604–613. [Google Scholar] [CrossRef]
- Wescombe, P.A.; Upton, M.; Dierksen, K.P.; Ragland, N.L.; Sivabalan, S.; Wirawan, R.E.; Inglis, M.A.; Moore, C.J.; Walker, G.V.; Chilcott, C.N.; et al. Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl. Environ. Microbiol. 2006, 72, 1459–1466. [Google Scholar] [CrossRef]
- Upton, M.; Tagg, J.R.; Wescombe, P.; Jenkinson, H.F. Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J. Bacteriol. 2001, 183, 3931–3938. [Google Scholar] [CrossRef]
- Dierksen, K.P.; Moore, C.J.; Inglis, M.; Wescombe, P.A.; Tagg, J.R. The effect of ingestion of milk supplemented with salivaricin A-producing Streptococcus salivarius on the bacteriocin-like inhibitory activity of streptococcal populations on the tongue. FEMS Microbiol. Ecol. 2007, 59, 584–591. [Google Scholar] [CrossRef]
- Vogel, V.; Spellerberg, B. Bacteriocin Production by Beta-Hemolytic Streptococci. Pathogens 2021, 10, 867. [Google Scholar] [CrossRef]
- Di Pierro, F.; Colombo, M.; Zanvit, A.; Risso, P.; Rottoli, A.S. Use of Streptococcus salivarius K12 in the prevention of streptococcal and viral pharyngotonsillitis in children. Drug Healthc. Patient Saf. 2014, 6, 15–20. [Google Scholar] [CrossRef]
- Di Pierro, F.; Adami, T.; Rapacioli, G.; Giardini, N.; Streitberger, C. Clinical evaluation of the oral probiotic Streptococcus salivarius K12 in the prevention of recurrent pharyngitis and/or tonsillitis caused by Streptococcus pyogenes in adults. Expert Opin. Biol. Ther. 2013, 13, 339–343. [Google Scholar] [CrossRef]
- Upton, M.; Tagg, J.R.; Jenkinson, H.F. Structure and analysis of the salivaricin A gene cluster in Streptococcus salivarius and Streptococcus pyogenes strains. In Proceedings of the XIV Lancefield International Symposium on Streptococci and Streptococcal Diseases, Auckland, New Zealand, 11–15 October 1999; pp. 349–352. [Google Scholar]
- Geng, M.; Austin, F.; Shin, R.; Smith, L. Covalent Structure and Bioactivity of the Type AII Lantibiotic Salivaricin A2. Appl. Environ. Microbiol. 2018, 84, e02528-17. [Google Scholar] [CrossRef]
- Barbour, A.; Tagg, J.; Abou-Zied, O.K.; Philip, K. New insights into the mode of action of the lantibiotic salivaricin B. Sci. Rep. 2016, 6, 31749. [Google Scholar] [CrossRef]
- Barbour, A.; Philip, K.; Muniandy, S. Enhanced production, purification, characterization and mechanism of action of salivaricin 9 lantibiotic produced by Streptococcus salivarius NU10. PLoS ONE 2013, 8, e77751. [Google Scholar] [CrossRef] [PubMed]
- Dierksen, K.; Tagg, J. The influence of indigenous bacteriocin-producing Streptococcus salivarius on the acquisition of Streptococcus pyogenes by primary school children in Dunedin, New Zealand. In Proceedings of the XIV Lancefield International Symposium on Streptococci and Streptococcal Diseases, Auckland, New Zealand, 11–15 October 1999; pp. 81–85. [Google Scholar]
- Wescombe, P.A.; Heng, N.C.K.; Burton, J.P.; Tagg, J.R. Something old and something new: An update on the amazing repertoire of bacteriocins produced by Streptococcus salivarius. Probiotics Antimicrob. Proteins 2010, 2, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Medema, M.H.; de Rond, T.; Moore, B.S. Mining genomes to illuminate the specialized chemistry of life. Nat. Rev. Genet. 2021, 22, 553–571. [Google Scholar] [CrossRef] [PubMed]
- Veltri, D.; Kamath, U.; Shehu, A. Deep learning improves antimicrobial peptide recognition. Bioinformatics 2018, 34, 2740–2747. [Google Scholar] [CrossRef]
- Wang, G.; Zietz, C.M.; Mudgapalli, A.; Wang, S.; Wang, Z. The evolution of the antimicrobial peptide database over 18 years: Milestones and new features. Protein Sci. 2022, 31, 92–106. [Google Scholar] [CrossRef]
- Aguilera-Puga, M.D.C.; Plisson, F. Structure-aware machine learning strategies for antimicrobial peptide discovery. Sci. Rep. 2024, 14, 11995. [Google Scholar] [CrossRef]
- Dischinger, J.; Basi Chipalu, S.; Bierbaum, G. Lantibiotics: Promising candidates for future applications in health care. Int. J. Med. Microbiol. 2014, 304, 51–62. [Google Scholar] [CrossRef]
- Field, D.; Cotter, P.D.; Hill, C.; Ross, R.P. Bioengineering Lantibiotics for Therapeutic Success. Front. Microbiol. 2015, 6, 1363. [Google Scholar] [CrossRef]
- Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol. 2014, 5, 241. [Google Scholar] [CrossRef]
- Bellotti, D.; Remelli, M. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Molecules 2022, 27, 4584. [Google Scholar] [CrossRef]
- Sugrue, I.; Ross, R.P.; Hill, C. Bacteriocin diversity, function, discovery and application as antimicrobials. Nat. Rev. Microbiol. 2024, 22, 556–571. [Google Scholar] [CrossRef] [PubMed]
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; et al. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2013, 30, 108–160. [Google Scholar] [CrossRef] [PubMed]
- Chikindas, M.L.; Weeks, R.; Drider, D.; Chistyakov, V.A.; Dicks, L.M. Functions and emerging applications of bacteriocins. Curr. Opin. Biotechnol. 2018, 49, 23–28. [Google Scholar] [CrossRef] [PubMed]
Code * | Strain Identity | Bacteriocin Product | Mass (kDa) | Ref | |
---|---|---|---|---|---|
Name | Type | ||||
Standard producer strains | |||||
P1 | S. pyogenes M4 | Salivaricin A1 | Class I type AII lantibiotic | 2.327 | [14] |
P2 | S. pyogenes FF22 | SA-FF22 | Class I type AII lantibiotic | 2.794 | [15] |
P3 | S. agalactiae 74-628 | Nisin U2 | Class I type AI lantibiotic | 3.029 | [16] |
P4 | S. dysgalactiae W2580 | Dysgalacticin | Class III type b nonlytic protein | 21.5 | [17] |
P5 | S. pyogenes M28689 | Streptin | Class I type AI lantibiotic | 2.424 | [18] |
P6 | S. constellatus subsp. constellatus T29 | Stellalysin | Class III type a lytic protein | 29.0 | [19] |
P7 | S. pyogenes 71-724 | SA-M57 | Class III type b nonlytic protein | 17.0 | [20,21] |
P8 | Enterococcus faecalis T-142 | BLIS activity not characterized | |||
P9 | S. pyogenes 71-722 | BLIS activity not characterized | |||
Standard indicator strains | |||||
I1 | Micrococcus luteus T-18 | BLIS negative | |||
I2 | S. pyogenes FF22 | Same as P2 | |||
I3 | S. constellatus subsp. constellatus T29 | Same as P6 | |||
I4 | Streptococcus uberis ATTC 27958 | Nisin U | Class I type AI lantibiotic | 3.029 | [16] |
I5 | S. pyogenes M4 | Same as P1 | |||
I6 | Lactococcus lactis T-21 | BLIS activity not characterized | |||
I7 | S. pyogenes 71-698 | Dysgalacticin | Class III type b nonlytic protein | 21.5 | |
I8 | S. pyogenes W-1 | Streptin | Class I type AI lantibiotic | 2.424 | |
I9 | S. dysgalactiae subsp. equisimilis T-148 | BLIS activity not characterized |
Source | Lantibiotic | Other BLIS Activity | Comments |
---|---|---|---|
S. pyogenes | SA-FF22 | Demonstrated to be nisin-like [7]. Structure [35] and mode of action [15] established. | |
SA-M49 | Closely similar to SA-FF22 [23]. Produced by 11/32 tested serotype M49 and 4 of 8 serotype M52 isolates [36]. | ||
Streptococcin A-M57 | Produced by all of 35 tested serotype M57 strains [21]. 2.2 MDa plasmid-encoded [37]. | ||
Salivaricin A | Originally named “the inhibitor” [38]. Produced by all of the 12 tested serotype M4 T4 strains [3]. A total of 63/65 S. pyogenes hybridized with a SalA1 structural gene probe [39]. Serotype M4T4 strains of S. pyogenes persisted in a carriage state longer than other S. pyogenes [31]. | ||
Streptin | P-type 777 activity produced by (a) 35/350 tested S. pyogenes [22] and (b) 10/73 M-prototype S. pyogenes [36]. Established to be a type A1 lantibiotic [18]. | ||
S. uberis | Demonstration of 9 different P-types in 15 strains [40]. | ||
Nisin U | A nisin variant [16]. | ||
Ubericin A | Class IIa bacteriocin [41]. | ||
Uberolysin | Cyclic bacteriocin [42]. | ||
S. agalactiae | Streptocin B1 | A 10,000 Da peptide [43]. | |
S. salivarius | “Inhibitors” | Original study describing 6 heterologous “inhibitors” [44]. | |
Salivaricin A1 | Isolated from strain 20P3 [45]. | ||
Salivaricin A2 | Isolated from strain K12 [12]. | ||
Salivaricin G32 | Homolog of SA-FF22 [46]. | ||
Salivaricin E | Active against S. mutans [47] | ||
Salivaricin 9 | The prototype producer (strain 9) was one of six inhibitory strains identified by Dempster and Tagg [44,48]. | ||
Salivaricin M | Active against S. mutans [49]. | ||
Streptococcin sal-P | Later established to be a homolog of salivaricin B [50]. | ||
Salivaricin B | Isolated from strain K12 and megaplasmid encoded [12]. | ||
Salivaricin SN | Zoocin-like muralytic enzyme [14]. | ||
Salivaricin MPS | Production enhanced in saliva and in an anaerobic atmosphere [44]. | ||
Mutans streptococci | P-type differentiation of reference mutans streptococci [51]. | ||
S. mutans | Mutacin N | A novel group I mutacin [52]. Genetic basis established [53]. | |
Mutacin IV and mutacin V | Products of reference strain UA159 [54]. | ||
Mutacin K8 | Type A11 lantibiotic [55]. | ||
S. rattus | BHT-A | BHT-B | BHT-A is a variant of the two-component lantibiotic, Smb. BHT-B is a non-modified 5195 Da peptide similar to the tryptophan-rich Staphylococcus aureus bacteriocin, aureocin A53 [56]. |
S. gordonii | Streptocins STH1 and STH2 | Competence-dependent bacteriocins [57]. | |
S. zooepidemicus | Zoocin A | Lysostaphin-like BLIS having extensive bacteriolytic activity against mutans streptococci [26,58,59]. | |
Nutritionally variant streptococci | Bacteriolysin activity | A total of 5/5 S. adjacens bacteriolytic for M. luteus [60]. | |
S. sanguinis | Sanguinicin K11 | Produced by sucrose/bacitracin-tolerant S. sanguinis. Has activity against S. rattus [61]. | |
Group B and Group C streptococci | BLIS fingerprinting demonstrated 6/120 group B and 9/50 group C were BLIS producers [62]. | ||
Group E streptococci | A total of 5 different P-types detected in 12 isolates [63]. | ||
Group F streptococcus | Streptococcin F-29 (stellalysin) | Heat-labile anti-S. pyogenes activity [64]. Similar to zoocin A [19]. | |
Group G streptococcus, viz., S. dysgalactiae | Streptococcin G-2580 and Dysgalacticin | A total of 12/30 strains from humans produced this P-type 226 activity [65]. Large heat-labile non-bacteriolytic bacteriocin [7,66]. |
Emm/M Type | P-Type | Salivaricin A | Streptin | SA-FF22 | Emm/M Type | P-Type | Salivaricin A | Streptin | SA-FF22 |
---|---|---|---|---|---|---|---|---|---|
M1 | 004 | Yes | Yes | No | M67 | 004 | Yes | Yes | No |
M2 | 204 | Yes | Yes | No | M68 | 324 | Yes | Yes | No |
M3 | 324 | Yes | Yes | No | M69 | 324 | Yes | No | No |
M4 | 657 | Yes + | Yes | No | M70 | 326 | Yes | No | No |
M5 | 000 | Yes | No | No | M71 | 777 | Yes | Yes + | No |
M6 | 000 | Yes | No | No | M72 | 000 | Yes | No | No |
M8 | 324 | Yes | Yes | No | M73 | 324 | No | Yes | No |
M9 | 324 | Yes | Yes | No | M74 | 226 | Yes | No | No |
M11 | 774 | No | Yes + | No | M75 | 204 | Yes | Yes | No |
M12 | 774 | Yes | Yes + | No | M76 | 777 | Yes | Yes + | No |
M13 | 004 | Yes | Yes | No | M77 | 324 | Yes | No | Yes |
M14 | 204 | Yes | No | No | M78 | 004 | Yes | No | No |
M15 | 234 | Yes | Yes | No | M79 | 324 | Yes | Yes | No |
M17 | 000 | Yes | No | No | M80 | 004 | Yes | No | No |
M18 | 000 | Yes | No | No | M81 | 000 | IM | Yes | No |
M19 | 000 | Yes | Yes | No | emm82 | 324 | Yes | Yes | No |
M22 | 000 | Yes | No | No | emm83 | 577 | Yes | No | Yes + |
M23 | 004 | Yes | Yes | No | emm84 | 674 | Yes | Yes | No |
M24 | 000 | Yes | Yes | No | emm85 | 204 | Yes | Yes | No |
M25 | 774 | Yes | Yes + | No | emm86 | 657 | Yes + | No | No |
M26 | 004 | Yes | Yes | No | emm87 | 000 | Yes | Yes | No |
M27 | 774 | Yes | Yes + | No | emm88 | 000 | Yes | No | Yes + |
M28 | 776 | Yes | Yes | No | emm89 | 004 | Yes | Yes | No |
M29 | 004 | Yes | Yes | No | emm90 | 000 | Yes | Yes | No |
M30 | 000 | Yes | Yes | No | emm91 | 000 | Yes | No | No |
M31 | 324 | Yes | Yes | No | emm92 | 000 | Yes | Yes | No |
M32 | 000 | Yes | No | No | emm93 | 000 | No | No | No |
M33 | 324 | Yes | No | No | emm94 | 324 | Yes | Yes | No |
M34 | 000 | Yes | Yes | No | emm95 | 000 | Yes | No | No |
M36 | 004 | Yes | No | No | emm96 | 304 | Yes | Yes | No |
M37 | 000 | No | No | No | emm97 | 777 | Yes | No | Yes + |
M38 | 010 | Yes | No | No | emm98 | 324 | Yes | No | No |
M39 | 000 | Yes | Yes | No | emm99 | 654 | Yes + | No | No |
M40 | 000 | Yes | No | No | emm100 | 454 | Yes | No | No |
M41 | 004 | Yes | No | No | emm101 | 004 | Yes | No | No |
M42 | 004 | Yes | Yes | No | emm102 | 004 | Yes | Yes | Yes |
M43 | 000 | Yes | No | No | emm103 | 000 | Yes | Yes | No |
M44 | 204 | Yes | Yes | No | emm104 | 000 | Yes | No | No |
M46 | - | Yes | Yes | No | emm105 | 000 | Yes | Yes | Yes |
M47 | 204 | Yes | No | No | emm106 | 000 | No | Yes | No |
M48 | 324 | IM | Yes | No | emm107 | 224 | Yes | Yes | No |
M49 | 324 | IM | Yes | No | emm108 | 204 | Yes | No | No |
M50 | 000 | Yes | Yes | No | emm109 | 324 | Yes | Yes | Yes |
M51 | 004 | Yes | No | No | emm110 | 726 | Yes | No | No |
M52 | 000 | Yes | No | No | emm111 | 726 | Yes | No | No |
M53 | 004 | Yes | No | No | emm112 | 726 | Yes | No | No |
M54 | 004 | Yes | Yes | No | emm113 | 577 | Yes | Yes | Yes + |
M55 | 004 | Yes | Yes | No | emm114 | 226 | Yes | Yes | No |
M56 | 004 | Yes | No | No | emm115 | 204 | Yes | No | No |
M57 | 614 | Yes | Yes | Yes | emm116 | 204 | No | No | No |
M58 | 324 | No | Yes | Yes | emm117 | 000 | Yes | No | No |
M59 | 324 | Yes | No | No | emm118 | 226 | Yes | Yes | No |
M60 | 777 | Yes | Yes + | No | emm119 | 000 | Yes | No | No |
M61 | 234 | Yes | Yes | No | emm120 | 204 | Yes | No | No |
M62 | 324 | Yes | Yes | No | emm121 | 004 | Yes | No | No |
M63 | 324 | Yes | Yes | No | emm122 | 626 | Yes | Yes | No |
M64 | 000 | Yes | Yes | No | emm123 | 600 | Yes | Yes | No |
M65 | 324 | Yes | No | No | emm124 | 204 | No | Yes | No |
M66 | 774 | Yes | Yes + | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagg, J.R.; Hale, J.D.F.; Harold, L.K. BLIS Fingerprinting as a Tool to Investigate the Distribution and Significance of Bacteriocin Production and Immunity in Streptococcus pyogenes and Streptococcus salivarius. Appl. Microbiol. 2025, 5, 49. https://doi.org/10.3390/applmicrobiol5020049
Tagg JR, Hale JDF, Harold LK. BLIS Fingerprinting as a Tool to Investigate the Distribution and Significance of Bacteriocin Production and Immunity in Streptococcus pyogenes and Streptococcus salivarius. Applied Microbiology. 2025; 5(2):49. https://doi.org/10.3390/applmicrobiol5020049
Chicago/Turabian StyleTagg, John R., John D. F. Hale, and Liam K. Harold. 2025. "BLIS Fingerprinting as a Tool to Investigate the Distribution and Significance of Bacteriocin Production and Immunity in Streptococcus pyogenes and Streptococcus salivarius" Applied Microbiology 5, no. 2: 49. https://doi.org/10.3390/applmicrobiol5020049
APA StyleTagg, J. R., Hale, J. D. F., & Harold, L. K. (2025). BLIS Fingerprinting as a Tool to Investigate the Distribution and Significance of Bacteriocin Production and Immunity in Streptococcus pyogenes and Streptococcus salivarius. Applied Microbiology, 5(2), 49. https://doi.org/10.3390/applmicrobiol5020049