Synergy Between Microbial Inoculants and Mineral Fertilization to Enhance the Yield and Nutritional Quality of Maize on the Peruvian Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Set-Up
2.2. Soil Characteristics
2.3. Experimental Design
2.4. Crop Fertilization
2.5. Microorganism Inoculation
2.6. Phytosanitary Management
2.7. Evaluated Parameters
2.8. Statistical Analysis
3. Results
3.1. Ear Characteristics and Yield
3.1.1. INIA 619
3.1.2. Dekal B-7088
3.2. Nutritional Quality
3.2.1. INIA 619
3.2.2. Dekal B-7088
3.3. Heatmaps
3.3.1. INIA 619
3.3.2. DEKAL B-7088
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rouf Shah, T.; Prasad, K.; Kumar, P. Maize—A Potential Source of Human Nutrition and Health: A Review. Cogent. Food. Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Acosta, L.; Barreda, C.; Becerra, J.; Galarreta, L.; Huaman, O.; Moreyra, J.; Romero, C.; Rospigliosi, J. Marco Orientador de Cultivos, Campaña 2024/2025; Ministro de Desarrollo Agrario y Riego: Lima, Perú, 2024.
- Perfil Productivo y Competitivo de los Principales Cultivos del Sectir. Available online: https://app.powerbi.com/view?r=eyJrIjoiYjYwYTk5MDgtM2M0MS00NDMyLTgzNDEtMjNhNjEzYWQyOTNlIiwidCI6IjdmMDg0NjI3LTdmNDAtNDg3OS04OTE3LTk0Yjg2ZmQzNWYzZiJ9 (accessed on 4 October 2024).
- Barandiarán, M. Manual Técnico Del Cultivo de Maíz Amarillo Duro, 1st ed.; Instituto Nacional de Innovación Agraria: Lima, Perú, 2020; ISBN 978-9972-44-051-9.
- Yan, X.; Chen, X.; Ma, C.; Cai, Y.; Cui, Z.; Chen, X.; Wu, L.; Zhang, F. What Are the Key Factors Affecting Maize Yield Response to and Agronomic Efficiency of Phosphorus Fertilizer in China? Field Crops Res. 2021, 270, 108221. [Google Scholar] [CrossRef]
- Samaniego, T.; Pérez, W.E.; Lastra-Paúcar, S.; Verme-Mustiga, E.; Solórzano-Acosta, R. The Fermented Liquid Biofertilizer Use Derived from Slaughterhouse Waste Improves Maize Crop Yield. Trop. Subtrop. Agroecosystems 2024, 27, 105. [Google Scholar] [CrossRef]
- Baharuddin, A.B.; Tejowulan, R.S. Improving Maize (Zea mays L.) Growth and Yield by the Application of Inorganic and Organic Fertilizers Plus. IOP Conf. Ser. Earth Environ. Sci. 2021, 712, 012027. [Google Scholar] [CrossRef]
- FAO. El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. In La Gestión de los Sistemas en Situación de Riesgo; FAO: Rome, Italy, 2011. [Google Scholar]
- Bhattacharyya, P.N.; Goswami, M.P.; Bhattacharyya, L.H. Perspective of Beneficial Microbes in Agriculture under Changing Climatic Scenario: A Review. J. Phytol. 2016, 8, 26. [Google Scholar] [CrossRef]
- Parra-Cota, F.I.; Coronel-Acosta, C.B.; Amézquita-Avilés, C.F.; Santos-Villalobos, S.D.; Escalante-Martínez, D.I. Diversidad metabólica de microorganismos edáficos asociados al cultivo de maíz en el Valle del Yaqui, Sonora. Rev. Mex. Cienc. Agríc. 2018, 9, 431–442. [Google Scholar]
- Gilbert, J.A.; Neufeld, J.D. Life in a World without Microbes. PLOS Biol. 2014, 12, e1002020. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Y.; Dou, X.; Liao, D.; Li, K.; An, C.; Li, G.; Dong, Z. Microbial Fertilizers Improve Soil Quality and Crop Yield in Coastal Saline Soils by Regulating Soil Bacterial and Fungal Community Structure. Sci. Total Environ. 2024, 949, 175127. [Google Scholar] [CrossRef]
- Todeschini, V.; AitLahmidi, N.; Mazzucco, E.; Marsano, F.; Gosetti, F.; Robotti, E.; Bona, E.; Massa, N.; Bonneau, L.; Marengo, E.; et al. Impact of Beneficial Microorganisms on Strawberry Growth, Fruit Production, Nutritional Quality, and Volatilome. Front. Plant Sci. 2018, 9, 1611. [Google Scholar] [CrossRef]
- Vassilev, N.; Malusà, E. Special Issue: Microorganisms and Plant Nutrition. Microorganisms 2021, 9, 2571. [Google Scholar] [CrossRef] [PubMed]
- Widnyana, I.K.; Javandira, C. Activities Pseudomonas Spp. and Bacillus Sp. to Stimulate Germination and Seedling Growth of Tomato Plants. Agric. Agric. Sci. Procedia 2016, 9, 419–423. [Google Scholar] [CrossRef]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq Boyce, A. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef] [PubMed]
- Tsukanova, K.A.; Chebotar, V.K.; Meyer, J.; Bibikova, T. Effect of Plant Growth-Promoting Rhizobacteria on Plant Hormone Homeostasis. South Afr. J. Bot. 2017, 113, 91–102. [Google Scholar] [CrossRef]
- Etesami, H.; Glick, B.R. Halotolerant Plant Growth–Promoting Bacteria: Prospects for Alleviating Salinity Stress in Plants. Environ. Exp. Bot. 2020, 178, 104124. [Google Scholar] [CrossRef]
- Sah, S.; Krishnani, S.; Singh, R. Pseudomonas Mediated Nutritional and Growth Promotional Activities for Sustainable Food Security. Curr. Res. Microb. Sci. 2021, 2, 100084. [Google Scholar] [CrossRef]
- de Oliveira-Paiva, C.A.; Bini, D.; de Sousa, S.M.; Ribeiro, V.P.; dos Santos, F.C.; de Paula Lana, U.G.; de Souza, F.F.; Gomes, E.A.; Marriel, I.E. Inoculation with Bacillus Megaterium CNPMS B119 and Bacillus subtilis CNPMS B2084 Improve P-Acquisition and Maize Yield in Brazil. Front. Microbiol. 2024, 15, 1426166. [Google Scholar] [CrossRef] [PubMed]
- Efthimiadou, A.; Katsenios, N.; Chanioti, S.; Giannoglou, M.; Djordjevic, N.; Katsaros, G. Effect of Foliar and Soil Application of Plant Growth Promoting Bacteria on Growth, Physiology, Yield and Seed Quality of Maize under Mediterranean Conditions. Sci. Rep. 2020, 10, 21060. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.L.; de Mesquita Alves, J.; Rocha, R.H.C.; Santos, J.Z.L.; dos Santos Barbosa, R.; da Costa, F.M.N.; de Lima, G.S.; de Freitas, L.N.; Lima, A.S.; Nogueira, A.E.P.; et al. Beneficial Microorganisms Affect Soil Microbiological Activity and Corn Yield under Deficit Irrigation. Agriculture 2023, 13, 1169. [Google Scholar] [CrossRef]
- Konieczna, W.; Turkan, S.; Warchoł, M.; Skrzypek, E.; Dąbrowska, G.B.; Mierek-Adamska, A. The Contribution of Trichoderma viride and Metallothioneins in Enhancing the Seed Quality of Avena sativa L. in Cd-Contaminated Soil. Foods 2024, 13, 2469. [Google Scholar] [CrossRef]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Woo, S.L.; Nigro, M.; Marra, R.; Lombardi, N.; Pascale, A.; Ruocco, M.; Lanzuise, S.; et al. Trichoderma Secondary Metabolites Active on Plants and Fungal Pathogens. Open Mycol. J. 2014, 8, 127–139. [Google Scholar] [CrossRef]
- Rodríguez-García, D.; Vargas-Rojas, J. Efecto de la inoculación con Trichoderma sobre el crecimiento vegetativo del tomate (Solanum lycopersicum). Agron. Costarric. 2022, 46, 47–60. [Google Scholar]
- Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef] [PubMed]
- Akladious, S.A.; Abbas, S.M. Application of Trichoderma harzianum T22 as a Biofertilizer Potential in Maize Growth. J. Plant Nutr. 2014, 37, 30–49. [Google Scholar] [CrossRef]
- NOM-021-RECNAT-2000; Norma Oficial Mexicana Que Establece Las Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Estudios, Muestreo y Análisis. 2002. Available online: https://faolex.fao.org/docs/pdf/mex50674.pdf (accessed on 8 August 2024).
- USEPA. Method 9045D. Soil and Waste pH 2004; USEPA: Washington, DC, USA, 2004. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/9045d.pdf (accessed on 14 August 2024).
- ISO 11265:1994; Soil Quality—Determination of the Specific Electrical Conductivity. ISO (International Organization for Standardization): Geneva, Switzerland, 1994. Available online: https://www.iso.org/standard/19243.html (accessed on 8 August 2024).
- Verhulst, N.; Sayre, K.; Govaerts, B. Manual de Determinación de Rendimiento; 1st ed.; Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT): Ciudad de México, México, 2012; ISBN 978-607-95844-7-4. [Google Scholar]
- AACC-Method 46-11—American Association of Cereal Chemists. In Crude Protein–Improved Kjeldahl Method, Copper Catalyst Modification; AACC: St. Paul, MN, USA, 2009.
- INACAL. Instituto Nacional de Calidad. Cereales y Leguminosas. Determinación de Cenizas; Norma Técnica Peruana, NTP 205.004:2022; INACAL: Lima, Peru, 2022. [Google Scholar]
- INACAL. Instituto Nacional de Calidad. Alimentos Balanceados Para Animales (Revisada El 2014); Norma Técnica Peruana, NTP 209.019:1976; INACAL: Lima, Peru, 2014. [Google Scholar]
- AOCS (American Oil Chemists’ Society) American Oil Chemists’ Society. Ba 6-84 Crude Fiber in Oilseed By-Products; AOCS: Champaign, IL, USA, 2017. [Google Scholar]
- Collazos, C.; Phlip, W.; Viñas, E.; Alvistur, J.; Urquieta, A.; Vásquez, J. Metodología Para Carbohidratos, Por Diferencia de Materia Seca (MS-INN); Ministerio de Salud, Instituto Nacional de Nutrición: Lima, Peru, 1993.
- Mendiburu, F. de Agricolae: Statistical Procedures for Agricultural Research 2023. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 10 August 2024).
- Paliwoda, D.; Mikiciuk, G. Use of Rhizosphere Microorganisms in Plant Production—A Review Study. J. Ecol. Eng. 2020, 21, 292–310. [Google Scholar] [CrossRef]
- dos Santos, R.M.; Diaz, P.A.E.; Lobo, L.L.B.; Rigobelo, E.C. Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. Front. Sustain. Food Syst. 2020, 4, 136. [Google Scholar] [CrossRef]
- Pereira, S.I.A.; Abreu, D.; Moreira, H.; Vega, A.; Castro, P.M.L. Plant Growth-Promoting Rhizobacteria (PGPR) Improve the Growth and Nutrient Use Efficiency in Maize (Zea mays L.) under Water Deficit Conditions. Heliyon 2020, 6, e05106. [Google Scholar] [CrossRef]
- Huasasquiche, L.; Alejandro, L.; Ccori, T.; Cántaro-Segura, H.; Samaniego, T.; Quispe, K.; Solórzano, R. Bacillus subtilis and Rhizophagus intraradices Improve Vegetative Growth, Yield, and Fruit Quality of Fragaria × Ananassa Var. San Andreas. Microorganisms 2024, 12, 1816. [Google Scholar] [CrossRef] [PubMed]
- Solórzano-Acosta, R.A.; Quispe, K.R. Assessing the Role of Field Isolated Pseudomonas and Bacillus as Growth-promoting Rizobacteria on Avocado (Persea americana) Seedlings. J. Sustain. Agric. Environ. 2024, 3, e12114. [Google Scholar] [CrossRef]
- Ning, P.; Li, S.; Yu, P.; Zhang, Y.; Li, C. Post-Silking Accumulation and Partitioning of Dry Matter, Nitrogen, Phosphorus and Potassium in Maize Varieties Differing in Leaf Longevity. Field Crops Res. 2013, 144, 19–27. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.; Zhang, Y.; Lu, X.; Du, J.; Wang, C.; Wen, W.; Guo, X.; Zhao, C. Investigating the Genetic Basis of Maize Ear Characteristics: A Comprehensive Genome-Wide Study Utilizing High-Throughput Phenotypic Measurement Method and System. Front. Plant Sci. 2023, 14, 1248446. [Google Scholar] [CrossRef] [PubMed]
- Maguiña Maza, R.M.; Francisco Perez, S.C.; Pando Cárdenas, G.L.; Sessarego Dávila, E.; Chagray Ameri, N.H.; Pujada Abad, H.N.; Airahuacho Bautista, F.E. Potencial Agronómico, Productivo, Nutricional y Económico de Cuatro Genotipos de Maíz Forrajero en el Valle de Chancay, Perú; Corporación Colombiana de Investigación Agropecuaria: Bogotá, Colombia, 2021. [Google Scholar]
- Instituto Nacional de Innovación Agraria. Híbrido Simple de Maíz Amarillo Duro. INIA 619-Megahíbrido; INIA. Estacion Experimental Agraria Vista Florida: Cliclayo, Peru, 2012. [Google Scholar]
- Prado Ruiz, A.J. Evaluación Agronómica del Cultivo de Maíz (Zea mays L.) Híbrido Dekalb 7088 con la Aplicación de Distintas Dosis de Fertilización en la Parroquia Tres de Noviembre; Escuela Superior Politécnica de Chimborazo: Riobamba, Ecuador, 2023. [Google Scholar]
- Gholami, A.; Shahsavani, S.; Nezarat, S. The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination, Seedling Growth and Yield of Maize. Pak. J. Nutr. 2008, 3, 9–14. [Google Scholar]
- Sosa-Rodrigues, B.A.; García-Vivas, Y.S. Eficiencia de uso del nitrógeno en maíz fertilizado de forma orgánica y mineral. Agron. Mesoam. 2018, 29, 207. [Google Scholar] [CrossRef]
- Ribeiro, V.P.; Gomes, E.A.; De Sousa, S.M.; De Paula Lana, U.G.; Coelho, A.M.; Marriel, I.E.; De Oliveira-Paiva, C.A. Co-Inoculation with Tropical Strains of Azospirillum and Bacillus Is More Efficient than Single Inoculation for Improving Plant Growth and Nutrient Uptake in Maize. Arch. Microbiol. 2022, 204, 143. [Google Scholar] [CrossRef] [PubMed]
- Mpanga, I.K.; Nkebiwe, P.M.; Kuhlmann, M.; Cozzolino, V.; Piccolo, A.; Geistlinger, J.; Berger, N.; Ludewig, U.; Neumann, G. The Form of N Supply Determines Plant Growth Promotion by P-Solubilizing Microorganisms in Maize. Microorganisms 2019, 7, 38. [Google Scholar] [CrossRef]
- Syamsiyah, J.; Herdiansyah, G.; Hartati, S. Use of Trichoderma as an Effort to Increase Growth and Productivity of Maize Plants. IOP Conf. Ser. Earth Environ. Sci. 2023, 1165, 012020. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Zahir, Z.A. Screening Plant Growth-Promoting Rhizobacteria for Improving Growth and Yield of Wheat. J. Appl. Microbiol. 2004, 96, 473–480. [Google Scholar] [CrossRef]
- Ochieng’, I.O.; Gitari, H.I.; Mochoge, B.; Rezaei-Chiyaneh, E.; Gweyi-Onyango, J.P. Optimizing Maize Yield, Nitrogen Efficacy and Grain Protein Content under Different N Forms and Rates. J. Soil Sci. Plant Nutr. 2021, 21, 1867–1880. [Google Scholar] [CrossRef]
- Feng, W.; Xue, W.; Zhao, Z.; Shi, Z.; Wang, W.; Bai, Y.; Wang, H.; Qiu, P.; Xue, J.; Chen, B. Nitrogen Fertilizer Application Rate Affects the Dynamic Metabolism of Nitrogen and Carbohydrates in Kernels of Waxy Maize. Front. Plant Sci. 2024, 15, 1416397. [Google Scholar] [CrossRef]
- Monostori, I.; Szira, F.; Tondelli, A.; Árendás, T.; Gierczik, K.; Cattivelli, L.; Galiba, G.; Vágújfalvi, A. Genome-Wide Association Study and Genetic Diversity Analysis on Nitrogen Use Efficiency in a Central European Winter Wheat (Triticum aestivum L.) Collection. PLoS ONE 2017, 12, e0189265. [Google Scholar] [CrossRef]
- de Aquino, J.P.; de Macedo Junior, F.B.; Antunes, J.E.; Figueiredo, M.D.; de Alcântara Neto, F.; de Araujo, A.S. Plant Growth-Promoting Endophytic Bacteria on Maize and Sorghum. Pesqui. Agropecuária Trop. 2019, 49, e56241. [Google Scholar] [CrossRef]
- Lastochkina, O.; Pusenkova, L.; Yuldashev, R.; Babaev, M.; Garipova, S.; Blagova, D.; Khairullin, R.; Aliniaeifard, S. Effects of Bacillus subtilis on Some Physiological and Biochemical Parameters of Triticum aestivum L. (Wheat) under Salinity. Plant Physiol. Biochem. 2017, 121, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Hussain, M.; Arshad, M.S.; Afzaal, M.; Munir, H.; Imran, M.; Tufail, T.; Anjum, F. Functional and Nutraceutical Properties of Maize Bran Cell Wall Non-Starch Polysaccharides. Int. J. Food Prop. 2021, 24, 233–248. [Google Scholar] [CrossRef]
- Mutungi, C.; Tungu, J.; Amri, J.; Gaspar, A.; Abass, A. Nutritional Benefits of Improved Post-Harvest Handling Practices for Maize and Common Beans in Northern Tanzania: A Quantitative Farm-Level Assessment. J. Stored Prod. Res. 2022, 95, 101918. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Skrumsager Moller, I.; White, P. Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press: Amsterdam, The Netherlands, 2012; pp. 135–189. ISBN 978-0-12-384905-2. [Google Scholar]
- Havlin, J.L. Soil: Fertility and Nutrient Management. In Landscape and Land Capacity; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-0-429-44555-2. [Google Scholar]
- Ndukwe, O.K.; Edeoga, H.O.; Omosun, G. Varietal Differences in Some Nutritional Composition of Ten Maize (Zea mays L.) Varieties Grown in Nigeria. Int. J. Acad. Res. Reflect. 2015, 3, 1–11. [Google Scholar]
- Nirmala Prasadi, V.P.; Joye, I.J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
- Khosravi, A.; Zarei, M.; Ronaghi, A. Effect of PGPR, Phosphate Sources and Vermicompost on Growth and Nutrients Uptake by Lettuce in a Calcareous Soil. J. Plant Nutr. 2018, 41, 80–89. [Google Scholar] [CrossRef]
- Li, Q.; Ren, Y.; Fu, H.; Li, Z.; Kong, F.; Yuan, J. Cultivar Differences in Carbon and Nitrogen Accumulation, Balance, and Grain Yield in Maize. Front. Plant Sci. 2022, 13, 992041. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Ying, H.; Guo, X.; Zhuang, M.; Cui, Z.; Zhang, F. Substitution of Mineral Fertilizer with Organic Fertilizer in Maize Systems: A Meta-Analysis of Reduced Nitrogen and Carbon Emissions. Agronomy 2020, 10, 1149. [Google Scholar] [CrossRef]
- Cvijanović, V.; Cvijanović, G.; Rajičić, V.; Marinković, J.; Đukić, V.; Bajagić, M.; Đurić, N. Influence of Different Methods of Application of Effective Microorganisms in Nutrition of Wheat on Weight by 1000 Grains, Yield, and Content of Crude Wheat Proteins (TRITICUM SP). Cereal Res. Commun. 2022, 50, 1259–1268. [Google Scholar] [CrossRef]
- Fathollahi, Z.; Gharavi, K.B.; Gasemi, A. Effects of Combined Use of Bio-Fertilizers and Chemical Fertilizers at Different Stages on Physiological and Morphological Characters of Navy Bean. Indian J. Fundam. Appl. Life Sci. 2014, 4, 423–427. [Google Scholar]
Treatment | Main Plot Microorganisms | Subplot Fertilization (%) |
---|---|---|
1 | Without inoculation (M0) | 0 (0−0−0) * |
2 | 50 (120−60−70) * | |
3 | 75 (180−90−105) * | |
4 | 100 (240−120−140) * | |
5 | Bacillus subtilis (B) | 0 |
6 | 50 | |
7 | 75 | |
8 | 100 | |
9 | Trichoderma viride (T) | 0 |
10 | 50 | |
11 | 75 | |
12 | 100 | |
13 | Pseudomonas putida (P) | 0 |
14 | 50 | |
15 | 75 | |
16 | 100 |
Factor | EL | ED | RE | GR | EW | GW | CW |
---|---|---|---|---|---|---|---|
(cm) | (cm) | (g) | (g) | (g) | |||
Factor 1. Microorganisms | |||||||
M0 | 15.5 ± 1.3 | 4.01 ± 0.15 | 13.7 ± 0.4 | 29.2 ± 2.6 | 158 ± 21 b | 135 ± 17 b | 23.6± 4.1 |
B | 15.5 ± 0.9 | 4.04 ± 0.07 | 13.8 ± 0.4 | 29.3 ± 2.3 | 185 ± 18 a | 160 ± 17 a | 25.5± 2.2 |
T | 15.7 ± 1.2 | 4.02 ± 0.10 | 13.8 ± 0.5 | 29.2 ± 2.7 | 178 ± 18 a | 152 ± 16 a | 25.7 ± 3 |
P | 15.6 ± 0.9 | 4.08 ± 0.14 | 13.9 ± 0.3 | 29.6 ± 2.7 | 186 ± 18 a | 159 ± 15 a | 26.7 ± 4.4 |
(%) | Factor 2. Fertilization Dose | ||||||
0 | 15 ± 1 | 4.04 ± 0.15 | 13.9 ± 0.3 | 27.3± 2.1 b | 161 ± 20 b | 137 ± 18 b | 24.1± 3.5 |
50 | 16 ± 1 | 4.05 ± 0.11 | 13.9 ± 0.2 | 30.3 ± 2.5 a | 182 ± 20 a | 156 ± 17 a | 26.3± 2.6 |
75 | 15.8 ± 0.7 | 4.04 ± 0.09 | 13.7 ± 0.4 | 29.9 ± 1.9 a | 180 ± 18 a | 154 ± 15 a | 24.3± 3.3 |
100 | 15.1 ± 0.9 | 4.01 ± 0.14 | 13.7 ± 0.5 | 29.8 ± 2.5 a | 186 ± 20 a | 159 ± 18 a | 26.7± 4.4 |
Interaction (p-value) | 0.95 | 0.61 | 0.51 | 0.86 | 0.88 | 0.92 | 0.66 |
Factor | EL | ED | RE | GR | EW | GW | CW |
---|---|---|---|---|---|---|---|
(cm) | (cm) | (g) | (g) | (g) | |||
Factor 1. Microorganisms | |||||||
M0 | 13.7 ± 0.7 | 4.39 ± 0.10 | 16.6 ± 0.5 | 31.8 ± 2.8 | 181 ± 15 | 164 ± 13.3 | 15.3 ± 2 |
B | 13.7 ± 0.8 | 4.44 ± 0.11 | 16.8 ± 0.7 | 33.1 ± 1.8 | 191 ± 18 | 175 ± 16.4 | 16.4 ± 3.8 |
T | 13.3 ± 0.6 | 4.42 ± 0.13 | 16.7 ± 0.4 | 32.6 ± 1.2 | 188 ± 18 | 172 ± 16.3 | 16.2 ± 3.6 |
P | 13.2 ± 0.6 | 4.39 ± 0.12 | 16.7 ± 0.7 | 32.5 ± 1.3 | 187 ± 19 | 169 ± 10.3 | 16.1 ± 1.9 |
(%) | Factor 2. Fertilization dose | ||||||
0 | 13.2 ± 0.4 b | 4.35 ± 0.11 b | 16.4 ± 0.4 | 31.7 ± 1.3 | 176 ± 12 b | 162 ± 11 c | 14.7 ± 1.6 |
50 | 13.4 ± 0.7 b | 4.41 ± 0.11 ab | 16.7 ± 0.6 | 32.8 ± 2.4 | 184 ± 14 ab | 168 ± 13 bc | 16.9 ± 3.6 |
75 | 13.5 ± 0.7 ab | 4.43 ± 0.10 a | 16.9 ± 0.6 | 32.1 ± 1.7 | 190 ± 15 a | 173 ± 14 ab | 16.2 ± 3.8 |
100 | 14 ± 1 a | 4.44 ± 0.11 a | 17.0 ± 0.5 | 33.4 ± 1.7 | 194 ± 17 a | 178 ± 16 a | 16.2 ± 1.8 |
Interaction (p-value) | 0.55 | 0.39 | 0.22 | 0.95 | 0.83 | 0.66 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Montañez, R.; Calero-Rios, E.; Quispe, K.; Huasasquiche, L.; Lastra, S.; La Torre, B.; Solórzano, R. Synergy Between Microbial Inoculants and Mineral Fertilization to Enhance the Yield and Nutritional Quality of Maize on the Peruvian Coast. Appl. Microbiol. 2024, 4, 1757-1775. https://doi.org/10.3390/applmicrobiol4040118
López-Montañez R, Calero-Rios E, Quispe K, Huasasquiche L, Lastra S, La Torre B, Solórzano R. Synergy Between Microbial Inoculants and Mineral Fertilization to Enhance the Yield and Nutritional Quality of Maize on the Peruvian Coast. Applied Microbiology. 2024; 4(4):1757-1775. https://doi.org/10.3390/applmicrobiol4040118
Chicago/Turabian StyleLópez-Montañez, Ruth, Emilee Calero-Rios, Kenyi Quispe, Lucero Huasasquiche, Sphyros Lastra, Braulio La Torre, and Richard Solórzano. 2024. "Synergy Between Microbial Inoculants and Mineral Fertilization to Enhance the Yield and Nutritional Quality of Maize on the Peruvian Coast" Applied Microbiology 4, no. 4: 1757-1775. https://doi.org/10.3390/applmicrobiol4040118
APA StyleLópez-Montañez, R., Calero-Rios, E., Quispe, K., Huasasquiche, L., Lastra, S., La Torre, B., & Solórzano, R. (2024). Synergy Between Microbial Inoculants and Mineral Fertilization to Enhance the Yield and Nutritional Quality of Maize on the Peruvian Coast. Applied Microbiology, 4(4), 1757-1775. https://doi.org/10.3390/applmicrobiol4040118