Resistome Mapping in Foodborne Pathogens: Understanding Role in the Transmission Dynamics of Resistance Genes
Abstract
:1. Introduction
2. Methodology for Literature Selection
3. Mechanisms of Antibiotic Resistance in Foodborne Pathogens
4. Resistome Mapping: Concepts and Techniques
4.1. Definition and Importance of Resistome Mapping
4.2. Techniques for Resistome Mapping
5. Resistome Mapping Studies in Food Borne Pathogens
5.1. Salmonella Enterica
5.2. Escherichia coli
5.3. Listeria monocytogenes
5.4. Campylobacter spp.
5.5. Vibrio cholerae
5.6. Clostridium perfringens
5.7. Shigella
5.8. Clostridium botulinum
5.9. Yersinia enterocolitica
6. Impact of Agricultural Practices on the Resistome
7. Challenges in Resistome Mapping
8. Future Directions to Overcome the Challenges
8.1. Integrative Approaches
8.2. Policy and Global Collaboration
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Food Safety. WHO Fact Sheets. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 6 September 2024).
- Almansour, A.M.; Alhadlaq, M.A.; Alzahrani, K.O.; Mukhtar, L.E.; Alharbi, A.L.; Alajel, S.M. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023, 11, 2127. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 10 October 2024).
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Balbin, M.M.; Hull, D.; Guest, C.; Nichols, L.; Dunn, R.; Thakur, S. Antimicrobial Resistance and Virulence Factors Profile of Salmonella spp. and Escherichia coli Isolated from Different Environments Exposed to Anthropogenic Activity. J. Glob. Antimicrob. Resist. 2020, 22, 578–583. [Google Scholar] [CrossRef]
- Rafiq, K.; Islam, M.R.; Siddiky, N.A.; Samad, M.A.; Chowdhury, S.; Hossain, K.M.M.; Rume, F.I.; Hossain, M.K.; Mahbub-E-Elahi, A.T.M.; Ali, M.Z.; et al. Antimicrobial Resistance Profile of Common Foodborne Pathogens Recovered from Livestock and Poultry in Bangladesh. Antibiotics 2022, 11, 1551. [Google Scholar] [CrossRef]
- Kim, D.W.; Cha, C.J. Antibiotic Resistome from the One-Health Perspective: Understanding and Controlling Antimicrobial Resistance Transmission. Exp. Mol. Med. 2021, 53, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; Andremont, A.; Bengtsson-Palme, J.; Brandt, K.K.; de Roda Husman, A.M.; Fagerstedt, P.; Fick, J.; Flach, C.F.; Gaze, W.H.; Kuroda, M.; et al. Critical Knowledge Gaps and Research Needs Related to the Environmental Dimensions of Antibiotic Resistance. Environ. Int. 2018, 117, 132–138. [Google Scholar] [CrossRef]
- Vezeau, N.; Kahn, L. Current Understanding and Knowledge Gaps Regarding Wildlife as Reservoirs of Antimicrobial Resistance. Am. J. Vet. Res. 2024, 85, 1–9. [Google Scholar] [CrossRef]
- Sauerborn, E.; Corredor, N.C.; Reska, T.; Perlas, A.; Vargas da Fonseca Atum, S.; Goldman, N.; Wantia, N.; Prazeres da Costa, C.; Foster-Nyarko, E.; Urban, L. Detection of Hidden Antibiotic Resistance through Real-Time Genomics. Nat. Commun. 2024, 15, 5494. [Google Scholar] [CrossRef]
- Emamalipour, M.; Seidi, K.; Zununi Vahed, S.; Jahanban-Esfahlan, A.; Jaymand, M.; Majdi, H.; Amoozgar, Z.; Chitkushev, L.T.; Javaheri, T.; Jahanban-Esfahlan, R.; et al. Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression. Front. Cell Dev. Biol. 2020, 8, 229. [Google Scholar] [CrossRef]
- Virolle, C.; Goldlust, K.; Djermoun, S.; Bigot, S.; Lesterlin, C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes 2020, 11, 1239. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Suzuki, E.; Maeda, S. Horizontal Plasmid Transfer by Transformation in Escherichia coli: Environmental Factors and Possible Mechanisms. Front. Microbiol. 2018, 9, 2365. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.N.; Penadés, J.R.; Chen, J. Genetic Transduction by Phages and Chromosomal Islands: The New and Noncanonical. PLoS Pathog. 2019, 15, e1007878. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef] [PubMed]
- Gaurav, A.; Bakht, P.; Saini, M.; Pandey, S.; Pathania, R. Role of Bacterial Efflux Pumps in Antibiotic Resistance, Virulence, and Strategies to Discover Novel Efflux Pump Inhibitors. Microbiology 2023, 169, 001333. [Google Scholar] [CrossRef]
- Jian, Z.; Zeng, L.; Xu, T.; Sun, S.; Yan, S.; Yang, L.; Huang, Y.; Jia, J.; Dou, T. Antibiotic Resistance Genes in Bacteria: Occurrence, Spread, and Control. J. Basic Microbiol. 2021, 61, 1049–1070. [Google Scholar] [CrossRef]
- Zhang, F.; Cheng, W. The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics 2022, 11, 1215. [Google Scholar] [CrossRef]
- Guitor, A.K.; Raphenya, A.R.; Klunk, J.; Kuch, M.; Alcock, B.; Surette, M.G.; McArthur, A.G.; Poinar, H.N.; Wright, G.D. Capturing the Resistome: A Targeted Capture Method to Reveal Antibiotic Resistance Determinants in Metagenomes. Antimicrob. Agents Chemother. 2020, 64, e01324-19. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention; AdvaMedDx. A Public Health Perspective on Antimicrobial Resistance Diagnostics: Meeting Summary and Opportunities to Address Challenges; CDC: Atlanta, GA, USA, 2016. Available online: https://www.cdc.gov/drugresistance/pdf/public-health-perspective-on-amr-diagnostics-508.pdf (accessed on 10 October 2024).
- Rahman, M.M.; Alam Tumpa, M.A.; Zehravi, M.; Sarker, M.T.; Yamin, M.; Islam, M.R.; Harun-Or-rashid, M.; Ahmed, M.; Ramproshad, S.; Mondal, B.; et al. An Overview of Antimicrobial Stewardship Optimization: The Use of Antibiotics in Humans and Animals to Prevent Resistance. Antibiotics 2022, 11, 667. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.L.; Lanza, V.F.; Rodríguez-Beltrán, J.; Galán, J.C.; San Millán, A.; Cantón, R.; Coque, T.M. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin. Microbiol. Rev. 2021, 34, e0005019. [Google Scholar] [CrossRef]
- Xia, Y.; Li, X.; Wu, Z.; Nie, C.; Cheng, Z.; Sun, Y.; Liu, L.; Zhang, T. Strategies and Tools in Illumina and Nanopore-Integrated Metagenomic Analysis of Microbiome Data. iMeta 2023, 2, e72. [Google Scholar] [CrossRef] [PubMed]
- Setubal, J.C. Metagenome-Assembled Genomes: Concepts, Analogies, and Challenges. Biophys. Rev. 2021, 13, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Usyk, M.; Peters, B.A.; Karthikeyan, S.; McDonald, D.; Sollecito, C.C.; Vazquez-Baeza, Y.; Shaffer, J.P.; Gellman, M.D.; Talavera, G.A.; Daviglus, M.L.; et al. Comprehensive Evaluation of Shotgun Metagenomics, Amplicon Sequencing, and Harmonization of These Platforms for Epidemiological Studies. Cell Rep. Methods 2023, 3, 100391. [Google Scholar] [CrossRef]
- Anjum, M.F.; Zankari, E.; Hasman, H. Molecular Methods for Detection of Antimicrobial Resistance. Microbiol. Spectr. 2017, 5, 33–50. [Google Scholar] [CrossRef]
- Harris, M.; Fasolino, T.; Davis, N.J.; Ivankovic, D.; Brownlee, N. Multiplex Detection of Antimicrobial Resistance Genes for Rapid Antibiotic Guidance of Urinary Tract Infections. Microbiol. Res. 2023, 14, 591–602. [Google Scholar] [CrossRef]
- de Abreu, V.A.C.; Perdigão, J.; Almeida, S. Metagenomic Approaches to Analyze Antimicrobial Resistance: An Overview. Front. Genet. 2021, 11, 575592. [Google Scholar] [CrossRef]
- Apjok, G.; Számel, M.; Christodoulou, C.; Seregi, V.; Vásárhelyi, B.M.; Stirling, T.; Eszenyi, B.; Sári, T.; Vidovics, F.; Nagrand, E.; et al. Characterization of Antibiotic Resistomes by Reprogrammed Bacteriophage-Enabled Functional Metagenomics in Clinical Strains. Nat. Microbiol. 2023, 8, 410–423. [Google Scholar] [CrossRef]
- Köser, C.U.; Ellington, M.J.; Peacock, S.J. Whole-Genome Sequencing to Control Antimicrobial Resistance. Trends Genet. 2014, 30, 401–407. [Google Scholar] [CrossRef]
- Burnard, D.; Gore, L.; Henderson, A.; Ranasinghe, A.; Bergh, H.; Cottrell, K.; Sarovich, D.S.; Price, E.P.; Paterson, D.L.; Harris, P.N.A. Comparative Genomics and Antimicrobial Resistance Profiling of Elizabethkingia Isolates Reveal Nosocomial Transmission and In Vitro Susceptibility to Fluoroquinolones, Tetracyclines, and Trimethoprim-Sulfamethoxazole. J. Clin. Microbiol. 2020, 58, e00730-20. [Google Scholar] [CrossRef]
- Pal, C.; Bengtsson-Palme, J.; Rensing, C.; Kristiansson, E.; Larsson, D.G.J. BacMet: Antibacterial Biocide and Metal Resistance Genes Database. Nucleic Acids Res. 2014, 42, D737–D743. [Google Scholar] [CrossRef]
- Emon, M.I.; Zhang, L. DeepMRG: A Multi-Label Deep Learning Classifier for Predicting Bacterial Metal Resistance Genes. bioRxiv 2023. [Google Scholar] [CrossRef]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The Comprehensive Antibiotic Resistance Database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Clark, C.G.; Langner, S.; Boyd, D.A.; Bharat, A.; McCorrister, S.J.; McArthur, A.G.; Graham, M.R.; Westmacott, G.R.; Van Domselaar, G. Detection of Antimicrobial Resistance Using Proteomics and the Comprehensive Antibiotic Resistance Database: A Case Study. Proteom. Clin. Appl. 2020, 14, e1800182. [Google Scholar] [CrossRef]
- Bonin, N.; Doster, E.; Worley, H.; Pinnell, L.J.; Bravo, J.E.; Ferm, P.; Marini, S.; Prosperi, M.; Noyes, N.; Morley, P.S.; et al. MEGARes and AMR++, v3.0: An Updated Comprehensive Database of Antimicrobial Resistance Determinants and an Improved Software Pipeline for Classification Using High-Throughput Sequencing. Nucleic Acids Res. 2023, 51, D744–D752. [Google Scholar] [CrossRef]
- Doster, E.; Lakin, S.M.; Dean, C.J.; Wolfe, C.; Young, J.G.; Boucher, C.; Belk, K.E.; Noyes, N.R.; Morley, P.S. MEGARes 2.0: A Database for Classification of Antimicrobial Drug, Biocide and Metal Resistance Determinants in Metagenomic Sequence Data. Nucleic Acids Res. 2020, 48, D561–D569. [Google Scholar] [CrossRef]
- Florensa, A.F.; Kaas, R.S.; Clausen, P.T.L.C.; Aytan-Aktug, D.; Aarestrup, F.M. ResFinder—An Open Online Resource for Identification of Antimicrobial Resistance Genes in next-Generation Sequencing Data and Prediction of Phenotypes from Genotypes. Microb. Genom. 2022, 8, 000748. [Google Scholar] [CrossRef]
- Kleinheinz, K.A.; Joensen, K.G.; Larsen, M.V. Applying the ResFinder and VirulenceFinder Web-Services for Easy Identification of Acquired Antibiotic Resistance and E. coli Virulence Genes in Bacteriophage and Prophage Nucleotide Sequences. Bacteriophage 2014, 4, e27943. [Google Scholar] [CrossRef]
- Gibson, M.K.; Forsberg, K.J.; Dantas, G. Improved Annotation of Antibiotic Resistance Determinants Reveals Microbial Resistomes Cluster by Ecology. ISME J. 2015, 9, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.; Kumari, B.; Singhal, N.; Kumar, M. BacARscan: An in Silico Resource to Discern Diversity in Antibiotic Resistance Genes. Biol. Methods Protoc. 2022, 7, bpac031. [Google Scholar] [CrossRef]
- National Database of Antibiotic Resistant Organisms (NDARO). Available online: https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/ (accessed on 7 October 2024).
- Zhang, N.; Liu, E.; Tang, A.; Ye, M.C.; Wang, K.; Jia, Q.; Huang, Z. Data-Driven Analysis of Antimicrobial Resistance in Foodborne Pathogens from Six States within the US. Int. J. Environ. Res. Public. Health 2019, 16, 1811. [Google Scholar] [CrossRef]
- Seemann, T. Abricate. Available online: https://github.com/Tseemann/Abricate (accessed on 7 October 2024).
- Davies, T.J.; Swann, J.; Sheppard, A.E.; Pickford, H.; Lipworth, S.; Abuoun, M.; Ellington, M.J.; Fowler, P.W.; Hopkins, S.; Hopkins, K.L.; et al. Discordance between Different Bioinformatic Methods for Identifying Resistance Genes from Short-Read Genomic Data, with a Focus on Escherichia coli. Microb. Genom. 2023, 9, 001151. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog Facilitate Examination of the Genomic Links among Antimicrobial Resistance, Stress Response, and Virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef] [PubMed]
- Algarni, S.; Han, J.; Gudeta, D.D.; Khajanchi, B.K.; Ricke, S.C.; Kwon, Y.M.; Rhoads, D.D.; Foley, S.L. In Silico Analyses of Diversity and Dissemination of Antimicrobial Resistance Genes and Mobile Genetics Elements, for Plasmids of Enteric Pathogens. Front. Microbiol. 2023, 13, 1095128. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Che, Y.; Dang, C.; Zhang, M.; Zhang, X.; Sun, Y.; Li, X.; Zhang, T.; Xia, Y. Nanopore-Based Long-Read Metagenomics Uncover the Resistome Intrusion by Antibiotic Resistant Bacteria from Treated Wastewater in Receiving Water Body. Water Res. 2022, 226, 119282. [Google Scholar] [CrossRef]
- Białasek, M.; Miłobędzka, A. Revealing Antimicrobial Resistance in Stormwater with MinION. Chemosphere 2020, 258, 127392. [Google Scholar] [CrossRef]
- Arango-Argoty, G.; Garner, E.; Pruden, A.; Heath, L.S.; Vikesland, P.; Zhang, L. DeepARG: A Deep Learning Approach for Predicting Antibiotic Resistance Genes from Metagenomic Data. Microbiome 2018, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Berglund, F.; Österlund, T.; Boulund, F.; Marathe, N.P.; Larsson, D.G.J.; Kristiansson, E. Identification and Reconstruction of Novel Antibiotic Resistance Genes from Metagenomes. Microbiome 2019, 7, 52. [Google Scholar] [CrossRef]
- Gillespie, J.J.; Wattam, A.R.; Cammer, S.A.; Gabbard, J.L.; Shukla, M.P.; Dalay, O.; Driscoll, T.; Hix, D.; Mane, S.P.; Mao, C.; et al. Patric: The Comprehensive Bacterial Bioinformatics Resource with a Focus on Human Pathogenic Species. Infect. Immun. 2011, 79, 4286–4298. [Google Scholar] [CrossRef]
- Antonopoulos, D.A.; Assaf, R.; Aziz, R.K.; Brettin, T.; Bun, C.; Conrad, N.; Davis, J.J.; Dietrich, E.M.; Disz, T.; Gerdes, S.; et al. PATRIC as a Unique Resource for Studying Antimicrobial Resistance. Brief. Bioinform. 2018, 20, 1094–1102. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; Garciá-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids Using Plasmidfinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Khezri, A.; Avershina, E.; Ahmad, R. Plasmid Identification and Plasmid-Mediated Antimicrobial Gene Detection in Norwegian Isolates. Microorganisms 2021, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Demirci, M.; Yığın, A.; Ekici, S. In Silico Analysis of Resistance Gene Identifiers on Plasmids of blaNDM-5 Producing Carbapenem-Resistant Escherichia coli Strains Isolated in Humans and Animals. Kocatepe Vet. J. 2021, 14, 303–308. [Google Scholar] [CrossRef]
- Inouye, M.; Dashnow, H.; Raven, L.A.; Schultz, M.B.; Pope, B.J.; Tomita, T.; Zobel, J.; Holt, K.E. SRST2: Rapid Genomic Surveillance for Public Health and Hospital Microbiology Labs. Genome Med. 2014, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Athey, T.B.T.; Teatero, S.; Li, A.; Marchand-Austin, A.; Beall, B.W.; Fittipaldia, N. Deriving Group a Streptococcus Typing Information from Short-Read Whole-Genome Sequencing Data. J. Clin. Microbiol. 2014, 52, 1871–1876. [Google Scholar] [CrossRef]
- Bharat, A.; Petkau, A.; Avery, B.P.; Chen, J.; Folster, J.; Carson, C.A.; Kearney, A.; Nadon, C.; Mabon, P.; Thiessen, J.; et al. Correlation between Phenotypic and In Silico Detection of Antimicrobial Resistance in Salmonella Enterica in Canada Using Staramr. Microorganisms 2022, 10, 292. [Google Scholar] [CrossRef]
- Safar, H.A.; Alatar, F.; Nasser, K.; Al-Ajmi, R.; Alfouzan, W.; Mustafa, A.S. The Impact of Applying Various de Novo Assembly and Correction Tools on the Identification of Genome Characterization, Drug Resistance, and Virulence Factors of Clinical Isolates Using ONT Sequencing. BMC Biotechnol. 2023, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Shaji, S.; Selvaraj, R.K.; Shanmugasundaram, R. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. Microorganisms 2023, 11, 2814. [Google Scholar] [CrossRef]
- Mkangara, M. Prevention and Control of Human Salmonella enterica Infections: An Implication in Food Safety. Int. J. Food Sci. 2023, 2023, 8899596. [Google Scholar] [CrossRef]
- Jin, Y.; Ling, J.M. CTX-M-Producing Salmonella spp. in Hong Kong: An Emerging Problem. J. Med. Microbiol. 2006, 55, 1245–1250. [Google Scholar] [CrossRef]
- Lalzampuia, H.; Dutta, T.K.; Warjri, I.; Chandra, R. Detection of Extended-Spectrum β-Lactamases (BlaCTX-M-1 and BlaTEM) in Escherichia coli, Salmonella spp., and Klebsiella pneumoniae Isolated from Poultry in North Eastern India. Vet. World 2014, 7, 1026–1031. [Google Scholar] [CrossRef]
- Husna, A.; Rahman, M.M.; Badruzzaman, A.T.M.; Sikder, M.H.; Islam, M.R.; Rahman, M.T.; Alam, J.; Ashour, H.M. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023, 11, 2937. [Google Scholar] [CrossRef] [PubMed]
- Emond-Rheault, J.G.; Hamel, J.; Jeukens, J.; Freschi, L.; Kukavica-Ibrulj, I.; Boyle, B.; Tamber, S.; Malo, D.; Franz, E.; Burnett, E.; et al. The Salmonella enterica Plasmidome as a Reservoir of Antibiotic Resistance. Microorganisms 2020, 8, 1016. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Díaz, E.A.; Vázquez-Garcidueñas, M.S.; Negrete-Paz, A.M.; Vázquez-Marrufo, G. Comparative Genomic Analysis Discloses Differential Distribution of Antibiotic Resistance Determinants between Worldwide Strains of the Emergent ST213 Genotype of Salmonella typhimurium. Antibiotics 2022, 11, 925. [Google Scholar] [CrossRef] [PubMed]
- Pławińska-czarnak, J.; Wódz, K.; Kizerwetter-świda, M.; Bogdan, J.; Kwieciński, P.; Nowak, T.; Strzałkowska, Z.; Anusz, K. Multi-Drug Resistance to Salmonella spp. when Isolated from Raw Meat Products. Antibiotics 2022, 11, 876. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, L.; Guo, Y.; Chu, J.; Wang, B.; Sui, Y.; Wei, H.; Hao, H.; Huang, L.; Cheng, G. Distribution and Genetic Characterization of Fluoroquinolone Resistance Gene Qnr among Salmonella Strains from Chicken in China. Microbiol. Spectr. 2024, 12, e0300023. [Google Scholar] [CrossRef]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef]
- Tate, H.; Ayers, S.; Nyirabahizi, E.; Li, C.; Borenstein, S.; Young, S.; Rice-Trujillo, C.; Saint Fleurant, S.; Bodeis-Jones, S.; Li, X.; et al. Prevalence of Antimicrobial Resistance in Select Bacteria From Retail Seafood—United States, 2019. Front. Microbiol. 2022, 13, 928509. [Google Scholar] [CrossRef]
- Davies, A.R.; Chisnall, T.; Akter, S.; Afrad, M.M.H.; Sadekuzzaman, M.; Badhy, S.C.; Hasan, M.Z.; Rahman, M.T.; Smith, R.P.; Card, R.M.; et al. Genomic Characterisation of Escherichia coli Isolated from Poultry at Retail through Sink Surveillance in Dhaka, Bangladesh Reveals High Levels of Multi-Drug Resistance. Front. Microbiol. 2024, 15, 1418476. [Google Scholar] [CrossRef]
- Nossair, M.A.; Abd El Baqy, F.A.; Rizk, M.S.Y.; Elaadli, H.; Mansour, A.M.; El-Aziz, A.H.A.; Alkhedaide, A.; Soliman, M.M.; Ramadan, H.; Shukry, M.; et al. Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamases and AmpC β-Lactamase-Producing Enterobacteriaceae among Human, Cattle, and Poultry. Pathogens 2022, 11, 852. [Google Scholar] [CrossRef]
- Chang, L.L.; Chang, T.M.; Chang, C.Y. Variable Gene Cassette Patterns of Class 1 Integron-Associated Drug-Resistant Escherichia coli in Taiwan. Kaohsiung J. Med. Sci. 2007, 23, 273–280. [Google Scholar] [CrossRef]
- Mondal, A.H.; Khare, K.; Saxena, P.; Debnath, P.; Mukhopadhyay, K.; Yadav, D. A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms 2024, 12, 772. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Chen, H.; Li, N.; Wang, T.; Liang, W. The Spread of Antibiotic Resistance Genes In Vivo Model. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 3348695. [Google Scholar] [CrossRef] [PubMed]
- Assar, S.; Hassanshahi, G.; Darehkordi, A.; Falahati-Pour, S.K.; Zarandi, E.R. Resistance Pattern of Escherichia coli to Levofloxacin in Iran: A Narrative Review. Iran. J. Microbiol. 2020, 12, 177. [Google Scholar]
- Mmatli, M.; Mbelle, N.M.; Osei Sekyere, J. Global Epidemiology, Genetic Environment, Risk Factors and Therapeutic Prospects of Mcr Genes: A Current and Emerging Update. Front. Cell. Infect. Microbiol. 2022, 12, 941358. [Google Scholar] [CrossRef]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria Monocytogenes—How This Pathogen Survives in Food-Production Environments? Front. Microbiol. 2022, 13, 866462. [Google Scholar] [CrossRef] [PubMed]
- Dufailu, O.A.; Yaqub, M.O.; Owusu-Kwarteng, J.; Addy, F. Prevalence and Characteristics of Listeria Species from Selected African Countries. Trop. Dis. Travel. Med. Vaccines 2021, 7, 26. [Google Scholar] [CrossRef]
- Cardenas-Alvarez, M.X.; Zeng, H.; Webb, B.T.; Mani, R.; Muñoz, M.; Bergholz, T.M. Comparative Genomics of Listeria monocytogenes Isolates from Ruminant Listeriosis Cases in the Midwest United States. Microbiol. Spectr. 2022, 10, e0157922. [Google Scholar] [CrossRef]
- Ed-Dra, A. Antimicrobial Resistance Dynamics of Listeria monocytogenes in France: Where We Are and What We Need? Lancet Reg. Health—Eur. 2024, 37, 100843. [Google Scholar] [CrossRef]
- Tóth, A.G.; Csabai, I.; Krikó, E.; Tőzsér, D.; Maróti, G.; Patai, Á.V.; Makrai, L.; Szita, G.; Solymosi, N. Antimicrobial Resistance Genes in Raw Milk for Human Consumption. Sci. Rep. 2020, 10, 7464. [Google Scholar] [CrossRef]
- Kayode, A.J.; Okoh, A.I. Assessment of Multidrug-Resistant Listeria Monocytogenes in Milk and Milk Product and One Health Perspective. PLoS ONE 2022, 17, e0270993. [Google Scholar] [CrossRef]
- Shrestha, R.D.; Agunos, A.; Gow, S.P.; Varga, C. Assessing Antimicrobial Resistance in Campylobacter jejuni and Campylobacter coli and Its Association with Antimicrobial Use in Canadian Turkey Flocks. Epidemiol. Infect. 2023, 151, e152. [Google Scholar] [CrossRef] [PubMed]
- NARMS Integrated Report: 2014 The National Antimicrobial Resistance Monitoring System: Enteric Bacteria. Available online: https://www.cdc.gov/narms/reports/annual-human-isolates-report-2014.html (accessed on 2 August 2024).
- Liu, D.; Liu, W.; Lv, Z.; Xia, J.; Li, X.; Hao, Y.; Zhou, Y.; Yao, H.; Liu, Z.; Wang, Y.; et al. Emerging Erm(B)-Mediated Macrolide Resistance Associated with Novel Multidrug Resistance Genomic Islands in Campylobacter. Antimicrob. Agents Chemother. 2019, 63, e00153-19. [Google Scholar] [CrossRef] [PubMed]
- Guirado, P.; Miró, E.; Iglesias-torrens, Y.; Navarro, F.; Campoy, S.; Alioto, T.S.; Gómez-garrido, J.; Madrid, C.; Balsalobre, C. A New Variant of the AadE-sat4-aphA-3 Gene Cluster Found in a Conjugative Plasmid from a MDR Campylobacter jejuni Isolate. Antibiotics 2022, 11, 466. [Google Scholar] [CrossRef] [PubMed]
- Premarathne, J.M.K.J.K.; Anuar, A.S.; Thung, T.Y.; Satharasinghe, D.A.; Jambari, N.N.; Abdul-Mutalib, N.A.; Yew Huat, J.T.; Basri, D.F.; Rukayadi, Y.; Nakaguchi, Y.; et al. Prevalence and Antibiotic Resistance against Tetracycline in Campylobacter jejuni and C. coli in Cattle and Beef Meat from Selangor, Malaysia. Front. Microbiol. 2017, 8, 2254. [Google Scholar] [CrossRef] [PubMed]
- De, R. Mobile Genetic Elements of Vibrio Cholerae and the Evolution of Its Antimicrobial Resistance. Front. Trop. Dis. 2021, 2, 691604. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Ceccarelli, D.; Salvia, A.M.; Sami, J.; Cappuccinelli, P.; Colombo, M.M. New Cluster of Plasmid-Located Class 1 Integrons in Vibrio cholerae O1 and a DfrA15 Cassette-Containing Integron in Vibrio parahaemolyticus Isolated in Angola. Antimicrob. Agents Chemother. 2006, 50, 2493–2499. [Google Scholar] [CrossRef]
- Schmidt, K.; Scholz, H.C.; Appelt, S.; Michel, J.; Jacob, D.; Dupke, S. Virulence and Resistance Patterns of Vibrio Cholerae Non-O1/Non-O139 Acquired in Germany and Other European Countries. Front. Microbiol. 2023, 14, 1282135. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Role Played by the Environment in the Emergence and Spread of Antimicrobial Resistance (AMR) through the Food Chain. EFSA J. 2021, 19, e06651. [Google Scholar] [CrossRef]
- Kiu, R.; Hall, L.J. An Update on the Human and Animal Enteric Pathogen Clostridium perfringens. Emerg. Microbes Infect. 2018, 7, 1–15. [Google Scholar] [CrossRef]
- Kather, E.J.; Marks, S.L.; Foley, J.E. Determination of the Prevalence of Antimicrobial Resistance Genes in Canine Clostridium perfringens Isolates. Vet. Microbiol. 2006, 113, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Beres, C.; Colobatiu, L.; Tabaran, A.; Mihaiu, R.; Mihaiu, M. Prevalence and Characterisation of Clostridium perfringens Isolates in Food-Producing Animals in Romania. Microorganisms 2023, 11, 1373. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zheng, H.; Wang, Y.; Bai, L.; Du, X.; Wu, Y.; Lu, J. Molecular Characteristics and Phylogenetic Analysis of Clostridium perfringens from Different Regions in China, from 2013 to 2021. Front. Microbiol. 2023, 14, 1195083. [Google Scholar] [CrossRef] [PubMed]
- Asad, A.; Jahan, I.; Munni, M.A.; Begum, R.; Mukta, M.A.; Saif, K.; Faruque, S.N.; Hayat, S.; Islam, Z. Multidrug-Resistant Conjugative Plasmid Carrying MphA Confers Increased Antimicrobial Resistance in Shigella. Sci. Rep. 2024, 14, 6947. [Google Scholar] [CrossRef]
- Elkenany, R.; Eltaysh, R.; Elsayed, M.; Abdel-Daim, M.; Shata, R. Characterization of Multi-Resistant Shigella Species Isolated from Raw Cow Milk and Milk Products. J. Vet. Med. Sci. 2022, 84, 890–897. [Google Scholar] [CrossRef]
- Ruiz, J. Transferable Mechanisms of Quinolone Resistance from 1998 Onward. Clin. Microbiol. Rev. 2019, 32, e00007-19. [Google Scholar] [CrossRef]
- Ma, Q.; Zhu, C.; Yao, M.; Yuan, G.; Sun, Y. Correlation between the Sulfamethoxazole-Trimethoprim Resistance of Shigella flexneri and the Sul Genes. Medicine 2021, 100, E24970. [Google Scholar] [CrossRef]
- Sadeghabadi, A.F.; Ajami, A.; Fadaei, R.; Zandieh, M.; Heidari, E.; Sadeghi, M.; Ataei, B.; Hoseini, S.G. Widespread Antibiotic Resistance of Diarrheagenic Escherichia coli and Shigella Species. J. Res. Med. Sci. 2014, 19 (Suppl. 1), S51–S55. [Google Scholar]
- Rawson, A.M.; Dempster, A.W.; Humphreys, C.M.; Minton, N.P. Pathogenicity and Virulence of Clostridium botulinum. Virulence 2023, 14, 2205251. [Google Scholar] [CrossRef]
- Roberts, M.C. Environmental Macrolide-Lincosamide-Streptogramin and Tetracycline Resistant Bacteria. Front. Microbiol. 2011, 2, 9102. [Google Scholar] [CrossRef]
- Swenson, J.M.; Thornsberry, C.; McCroskey, L.M.; Hatheway, C.L.; Dowell, V.R., Jr. Susceptibility of Clostridium botulinum to Thirteen Antimicrobial Agents. Antimicrob. Agents Chemother. 1980, 18, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Douillard, F.P.; Derman, Y.; Woudstra, C.; Selby, K.; Mäklin, T.; Dorner, M.B.; Saxén, H.; Dorner, B.G.; Korkeala, H.; Lindström, M. Genomic and Phenotypic Characterization of Clostridium botulinum Isolates from an Infant Botulism Case Suggests Adaptation Signatures to the Gut. mBio 2022, 13, e0238421. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, P.A.; Tano, E.; Jernberg, C.; Hickman, R.A.; Guy, L.; Järhult, J.D.; Wang, H. Molecular Characterization of Multidrug-Resistant Yersinia enterocolitica From Foodborne Outbreaks in Sweden. Front. Microbiol. 2021, 12, 664665. [Google Scholar] [CrossRef] [PubMed]
- Gkouletsos, T.; Patas, K.; Lambrinidis, G.; Neubauer, H.; Sprague, L.D.; Ioannidis, A.; Chatzipanagiotou, S. Antimicrobial Resistance of Yersinia enterocolitica and Presence of Plasmid PYV Virulence Genes in Human and Animal Isolates. New Microbes New Infect. 2019, 32, 100604. [Google Scholar] [CrossRef]
- Fredriksson-Ahomaa, M.; Grönthal, T.; Heljanko, V.; Johansson, V.; Rantala, M.; Heikinheimo, A.; Laukkanen-Ninios, R. Enteropathogenic Yersinia with Public Health Relevance Found in Dogs and Cats in Finland. Pathogens 2024, 13, 54. [Google Scholar] [CrossRef]
- Ray, L.C.; Payne, D.C.; Rounds, J.; Trevejo, R.T.; Wilson, E.; Burzlaff, K.; Garman, K.N.; Lathrop, S.; Rissman, T.; Wymore, K.; et al. Syndromic Gastrointestinal Panel Diagnostic Tests Have Changed Our Understanding of the Epidemiology of Yersiniosis—Foodborne Diseases Active Surveillance Network, 2010–2021. Open Forum Infect Dis 2024, 11, ofae199. [Google Scholar] [CrossRef]
- Perry, J.A.; Westman, E.L.; Wright, G.D. The Antibiotic Resistome: What’s New? Curr. Opin. Microbiol. 2014, 21, 45–50. [Google Scholar] [CrossRef]
- Khmelevtsova, L.; Azhogina, T.; Karchava, S.; Klimova, M.; Polienko, E.; Litsevich, A.; Chernyshenko, E.; Khammami, M.; Sazykin, I.; Sazykina, M. Effect of Mineral Fertilizers and Pesticides Application on Bacterial Community and Antibiotic-Resistance Genes Distribution in Agricultural Soils. Agronomy 2024, 14, 1021. [Google Scholar] [CrossRef]
- Zhang, W.G.; Wen, T.; Liu, L.Z.; Li, J.Y.; Gao, Y.; Zhu, D.; He, J.Z.; Zhu, Y.G. Agricultural Land-Use Change and Rotation System Exert Considerable Influences on the Soil Antibiotic Resistome in Lake Tai Basin. Sci. Total Environ. 2021, 771, 144848. [Google Scholar] [CrossRef]
- Durso, L.M.; Cook, K.L. Impacts of Antibiotic Use in Agriculture: What Are the Benefits and Risks? Curr. Opin. Microbiol. 2014, 19, 37–44. [Google Scholar] [CrossRef]
- Barathan, M.; Ng, S.L.; Lokanathan, Y.; Ng, M.H.; Law, J.X. Unseen Weapons: Bacterial Extracellular Vesicles and the Spread of Antibiotic Resistance in Aquatic Environments. Int. J. Mol. Sci. 2024, 25, 3080. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Yang, B.; Yu, F.; Zhang, J.; Wang, Z.; Liu, Y. Investigation of the Impact of Widely Used Pesticides on Conjugative Transfer of Multidrug Resistance Plasmids. J. Hazard. Mater. 2024, 478, 135436. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wang, Z.; Ruan, X. Antibiotic Resistome Dynamics in Agricultural River Systems: Elucidating Transmission Mechanisms and Associated Risk to Water Security. Sci. Total Environ. 2024, 951, 175580. [Google Scholar] [CrossRef] [PubMed]
- Oulas, A.; Pavloudi, C.; Polymenakou, P.; Pavlopoulos, G.A.; Papanikolaou, N.; Kotoulas, G.; Arvanitidis, C.; Iliopoulos, I. Metagenomics: Tools and Insights for Analyzing next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinform. Biol. Insights 2015, 9, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Roumpeka, D.D.; Wallace, R.J.; Escalettes, F.; Fotheringham, I.; Watson, M. A Review of Bioinformatics Tools for Bio-Prospecting from Metagenomic Sequence Data. Front. Genet. 2017, 8, 23. [Google Scholar] [CrossRef]
- Inda-Díaz, J.S.; Lund, D.; Parras-Moltó, M.; Johnning, A.; Bengtsson-Palme, J.; Kristiansson, E. Latent Antibiotic Resistance Genes Are Abundant, Diverse, and Mobile in Human, Animal, and Environmental Microbiomes. Microbiome 2023, 11, 44. [Google Scholar] [CrossRef]
- Lanza, V.F.; Baquero, F.; Martínez, J.L.; Ramos-Ruíz, R.; González-Zorn, B.; Andremont, A.; Sánchez-Valenzuela, A.; Ehrlich, S.D.; Kennedy, S.; Ruppé, E.; et al. In-Depth Resistome Analysis by Targeted Metagenomics. Microbiome 2018, 6, 11. [Google Scholar] [CrossRef]
- Van Der Helm, E.; Imamovic, L.; Ellabaan, M.M.H.; Van Schaik, W.; Koza, A.; Sommer, M.O.A. Rapid Resistome Mapping Using Nanopore Sequencing. Nucleic Acids Res. 2017, 45, e61. [Google Scholar] [CrossRef]
- Martiny, H.M.; Munk, P.; Brinch, C.; Aarestrup, F.M.; Petersen, T.N. A Curated Data Resource of 214K Metagenomes for Characterization of the Global Antimicrobial Resistome. PLoS Biol. 2022, 20, e3001792. [Google Scholar] [CrossRef]
- Lee, K.; Kim, D.W.; Cha, C.J. Overview of Bioinformatic Methods for Analysis of Antibiotic Resistome from Genome and Metagenome Data. J. Microbiol. 2021, 59, 270–280. [Google Scholar] [CrossRef]
- Liu, F.; Luo, Y.; Xu, T.; Lin, H.; Qiu, Y.; Li, B. Current Examining Methods and Mathematical Models of Horizontal Transfer of Antibiotic Resistance Genes in the Environment. Front. Microbiol. 2024, 15, 1371388. [Google Scholar] [CrossRef] [PubMed]
- Yarygin, K.S.; Kovarsky, B.A.; Bibikova, T.S.; Melnikov, D.S.; Tyakht, A.V.; Alexeev, D.G. ResistoMap-Online Visualization of Human Gut Microbiota Antibiotic Resistome. In Bioinformatics; Oxford University Press: Oxford, UK, 2017; Volume 33, pp. 2205–2206. [Google Scholar]
- Munkholm, L.; Rubin, O. The Global Governance of Antimicrobial Resistance: A Cross-Country Study of Alignment between the Global Action Plan and National Action Plans. Glob. Health 2020, 16, 109. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, M.; Lee, L.M.; Herten-Crabb, A.; Heymann, D.L.; Harper, D.R. Strengthening Global Public Health Surveillance through Data and Benefit Sharing. Emerg. Infect. Dis. 2018, 24, 1324–1330. [Google Scholar] [CrossRef]
Database/Tool | Website | Reference |
---|---|---|
Database | ||
BacMet | A database of antibacterial biocide- and metal-resistance genes. http://bacmet.biomedicine.gu.se/ (accessed on 7 October 2024) | [33,34] |
CARD (Comprehensive Antibiotic Resistance Database) | A curated database containing information on resistance genes and their mechanisms, used for the detection and annotation of AMR genes. https://card.mcmaster.ca (accessed on 7 October 2024) | [35,36] |
MEGARes | Database of ARGs used in resistome analysis of metagenomic datasets. https://megares.meglab.org (accessed on 7 October 2024) | [37,38] |
ResFinder | Curated AMR gene database with a detection tool and identifies acquired ARGs from bacterial genome data. https://cge.food.dtu.dk/services/ResFinder/ (accessed on 7 October 2024) | [39,40] |
Resfams | A collection of protein families associated with antibiotic resistance, for the functional annotation of ARGs. https://www.dantaslab.org/resfams (accessed on 7 October 2024) | [41,42] |
NDARO (National Database of Antibiotic Resistant Organisms) | A centralized database that provides researchers with access to information on AMR https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/ (accessed on 7 October 2024) | [43,44] |
Tools | ||
ABRicate | A command-line tool that screens bacterial genomes for ARGs using multiple databases (e.g., CARD, ResFinder). https://github.com/tseemann/abricate (accessed on 7 October 2024) | [45,46] |
AMRFinderPlus | Identifies AMR genes, virulence factors, and other genes from whole-genome sequences. https://github.com/ncbi/amr (accessed on 7 October 2024) | [47,48] |
ARGpore | Detects ARGs from long-read (nanopore) sequencing data. https://github.com/sustc-xylab/ARGpore2 (accessed on 7 October 2024) | [49,50] |
DeepARG | A tool that uses deep learning to predict ARGs from metagenomic data. https://bitbucket.org/gusphdproj/deeparg-ss/src/master/ (accessed on 7 October 2024) | [51,52] |
PATRIC (Pathosystems Resource Integration Center) | A bacterial bioinformatics platform comparative genomics and AMR gene detection. It is now part of the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) https://www.bv-brc.org/ (accessed on 7 October 2024) | [53,54] |
PlasmidFinder | Identifies plasmid replicons in whole-genome sequencing data and also helps to identify the detection of plasmids related to ARGs. https://cge.food.dtu.dk/services/PlasmidFinder/ (accessed on 7 October 2024) | [55,56] |
RGI (Resistance Gene Identifier) | A tool integrated with CARD to detect and annotate ARGs from genomic and metagenomic sequences. https://github.com/arpcard/rgi (accessed on 7 October 2024) | [35,57] |
SRST2 (Short Read Sequence Typing for Bacterial Pathogens) | A tool for strain typing and detecting ARGs from short-read sequence data. https://github.com/katholt/srst2 (accessed on 7 October 2024) | [58,59] |
StarAMR | A tool for identifying ARGs from assembled genome sequences. https://github.com/phac-nml/staramr (accessed on 7 October 2024) | [60,61] |
VirulenceFinder | Identifies virulence genes in bacterial genomes that may be associated with antimicrobial resistance. https://cge.food.dtu.dk/services/VirulenceFinder/ (accessed on 7 October 2024) | [5,40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaqub, M.O.; Joseph, C.E.; Jain, A.; Edison, L.K. Resistome Mapping in Foodborne Pathogens: Understanding Role in the Transmission Dynamics of Resistance Genes. Appl. Microbiol. 2024, 4, 1476-1492. https://doi.org/10.3390/applmicrobiol4040102
Yaqub MO, Joseph CE, Jain A, Edison LK. Resistome Mapping in Foodborne Pathogens: Understanding Role in the Transmission Dynamics of Resistance Genes. Applied Microbiology. 2024; 4(4):1476-1492. https://doi.org/10.3390/applmicrobiol4040102
Chicago/Turabian StyleYaqub, Muneer Oladipupo, Chinedu Eucharia Joseph, Aashika Jain, and Lekshmi K. Edison. 2024. "Resistome Mapping in Foodborne Pathogens: Understanding Role in the Transmission Dynamics of Resistance Genes" Applied Microbiology 4, no. 4: 1476-1492. https://doi.org/10.3390/applmicrobiol4040102
APA StyleYaqub, M. O., Joseph, C. E., Jain, A., & Edison, L. K. (2024). Resistome Mapping in Foodborne Pathogens: Understanding Role in the Transmission Dynamics of Resistance Genes. Applied Microbiology, 4(4), 1476-1492. https://doi.org/10.3390/applmicrobiol4040102