Insights into Genetic and Physiological Characteristics of Clover Rhizobia in Afghanistan Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Isolation of Clover-Nodulating Rhizobia
2.3. Screening of Rhizobia Strains against Abiotic Stress
2.4. Genomic DNA Extraction
2.5. Genes Amplification and Sequencing
2.6. Symbiotic Performance
2.7. Statistical Analysis
3. Results
3.1. Isolation of Rhizobia from Clover Root Nodule
3.2. Rhizobial Tolerance for Abiotic Stresses
3.3. The 16S rRNA and nifD Genes Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lamont, E.-J.; Zoghlami, A.; Hamilton, R.S.; Bennett, S.J. Clovers (Trifolium L.). In Plant Genetic Resources of Legumes in the Mediterranean; Springer: Berlin/Heidelberg, Germany, 2001; pp. 79–98. [Google Scholar] [CrossRef]
- Kozieł, M.; Kalita, M.; Janczarek, M. Genetic Diversity of Microsymbionts Nodulating Trifolium pratense in Subpolar and Temperate Climate Regions. Sci. Rep. 2022, 12, 12144. [Google Scholar] [CrossRef] [PubMed]
- Egan, L.M.; Hofmann, R.W.; Ghamkhar, K.; Hoyos-Villegas, V. Prospects for Trifolium Improvement through Germplasm Characterisation and Pre-Breeding in New Zealand and Beyond. Front. Plant Sci. 2021, 12, 653191. [Google Scholar] [CrossRef] [PubMed]
- Çölgeçen, H.; Koca, U.; Büyükkartal, H.N. Use of Red Clover (Trifolium pratense L.) Seeds in Human Therapeutics. In Nuts and Seeds in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2020; pp. 421–427. [Google Scholar] [CrossRef]
- OCHA. Rebuilding Agriculture in Afghanistan: Livestock Needs Assessment Completed—Afghanistan | ReliefWeb. Available online: https://reliefweb.int/report/afghanistan/rebuilding-agriculture-afghanistan-livestock-needs-assessment-completed (accessed on 21 November 2023).
- FAO. FAO/WFP Crop and Food Supply Assessment Mission to Afghanistan. Available online: https://www.fao.org/3/J0156e/J0156e00.htm (accessed on 21 November 2023).
- Acosta-Jurado, S.; Fuentes-Romero, F.; Ruiz-Sainz, J.E.; Janczarek, M.; Vinardell, J.M. Rhizobial Exopolysaccharides: Genetic Regulation of Their Synthesis and Relevance in Symbiosis with Legumes. Int. J. Mol. Sci. 2021, 22, 6233. [Google Scholar] [CrossRef]
- Janczarek, M.; Rachwał, K.; Marzec, A.; Grzadziel, J.; Palusińska-Szysz, M. Signal Molecules and Cell-Surface Components Involved in Early Stages of the Legume–Rhizobium Interactions. Appl. Soil Ecol. 2015, 85, 94–113. [Google Scholar] [CrossRef]
- Soumare, A.; Diedhiou, A.G.; Thuita, M.; Hafidi, M.; Ouhdouch, Y.; Gopalakrishnan, S.; Kouisni, L. Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants 2020, 9, 1011. [Google Scholar] [CrossRef]
- Imran, A.; Hakim, S.; Tariq, M.; Nawaz, M.S.; Laraib, I.; Gulzar, U.; Hanif, M.K.; Siddique, M.J.; Hayat, M.; Fraz, A.; et al. Diazotrophs for Lowering Nitrogen Pollution Crises: Looking Deep Into the Roots. Front. Microbiol. 2021, 12, 637815. [Google Scholar] [CrossRef]
- Shah, A.; Nazari, M.; Antar, M.; Msimbira, L.A.; Naamala, J.; Lyu, D.; Rabileh, M.; Zajonc, J.; Smith, D.L. PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Front. Sustain. Food Syst. 2021, 5, 667546. [Google Scholar] [CrossRef]
- Walker, L.; Lagunas, B.; Gifford, M.L. Determinants of Host Range Specificity in Legume-Rhizobia Symbiosis. Front Microbiol 2020, 11, 585749. [Google Scholar] [CrossRef]
- Young, J.P.W.; Crossman, L.C.; Johnston, A.W.B.; Thomson, N.R.; Ghazoui, Z.F.; Hull, K.H.; Wexler, M.; Curson, A.R.J.; Todd, J.D.; Poole, P.S.; et al. The Genome of Rhizobium leguminosarum Has Recognizable Core and Accessory Components. Genome Biol. 2006, 7, R34. [Google Scholar] [CrossRef]
- Kumar, N.; Lad, G.; Giuntini, E.; Kaye, M.E.; Udomwong, P.; Jannah Shamsani, N.; Peter, W.; Young, J.; Bailly, X. Bacterial Genospecies That Are Not Ecologically Coherent: Population Genomics of Rhizobium leguminosarum. Open Biol. 2015, 5, 140133. [Google Scholar] [CrossRef]
- Chi, F.; Shen, S.H.; Cheng, H.P.; Jing, Y.X.; Yanni, Y.G.; Dazzo, F.B. Ascending Migration of Endophytic Rhizobia, from Roots to Leaves, inside Rice Plants and Assessment of Benefits to Rice Growth Physiology. Appl. Environ. Microbiol. 2005, 71, 7271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Adamczyk, B.; Suseela, V.; Yin, H. The Role of Soil Organic Nitrogen in Forest Plant Nutrition. Front. For. Glob. Chang. 2023, 6, 1244102. [Google Scholar] [CrossRef]
- Lo Cascio, M.; Morillas, L.; Ochoa-Hueso, R.; Delgado-Baquerizo, M.; Munzi, S.; Roales, J.; Spano, D.; Cruz, C.; Gallardo, A.; Manrique, E.; et al. Nitrogen Deposition Effects on Soil Properties, Microbial Abundance, and Litter Decomposition across Three Shrublands Ecosystems from the Mediterranean Basin. Front. Environ. Sci. 2021, 9, 709391. [Google Scholar] [CrossRef]
- Fahde, S.; Boughribil, S.; Sijilmassi, B.; Amri, A. Rhizobia: A Promising Source of Plant Growth-Promoting Molecules and Their Non-Legume Interactions: Examining Applications and Mechanisms. Agriculture 2023, 13, 1279. [Google Scholar] [CrossRef]
- Jaiswal, S.K.; Mohammed, M.; Ibny, F.Y.I.; Dakora, F.D. Rhizobia as a Source of Plant Growth-Promoting Molecules: Potential Applications and Possible Operational Mechanisms. Front. Sustain. Food Syst. 2021, 4, 619676. [Google Scholar] [CrossRef]
- Kebede, T.; Keneni, Y.G.; Senbeta, A.F.; Sime, G. Effect of Bioslurry and Chemical Fertilizer on the Agronomic Performances of Maize. Heliyon 2023, 9, e13000. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Li, Y.; Li, H. Yield and Quality of Alfalfa (Medicago sativa L.) in Response to Fertilizer Application in China: A Meta-Analysis. Front. Plant Sci. 2022, 13, 1051725. [Google Scholar] [CrossRef]
- Kumar, S.; Diksha; Sindhu, S.S.; Kumar, R. Biofertilizers: An Ecofriendly Technology for Nutrient Recycling and Environmental Sustainability. Curr. Res. Microb. Sci. 2022, 3, 100094. [Google Scholar] [CrossRef]
- Ajmal, M.; Ali, H.I.; Saeed, R.; Akhtar, A.; Tahir, M.; Mehboob, M.Z.; Ayub, A. Biofertilizer as an Alternative for Chemical Fertilizers. Res. Rev. J. Agric. Allied Sci. 2018, 7, 1–7. [Google Scholar]
- Goyal, R.K.; Mattoo, A.K.; Schmidt, M.A. Rhizobial–Host Interactions and Symbiotic Nitrogen Fixation in Legume Crops Toward Agriculture Sustainability. Front. Microbiol. 2021, 12, 669404. [Google Scholar] [CrossRef]
- Yang, W.; Kong, Z.; Chen, W.; Wei, G. Genetic Diversity and Symbiotic Evolution of Rhizobia from Root Nodules of Coronilla varia. Syst. Appl. Microbiol. 2013, 36, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Habibi, S.; Ayubi, A.G.; Ohkama-Ohtsu, N.; Sekimoto, H.; Yokoyama, T. Genetic Characterization of Soybean Rhizobia Isolated from Different Ecological Zones in North-Eastern Afghanistan. Microbes Environ. 2017, 32, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Djedidi, S.; Yokoyama, T.; Ohkama-Ohtsu, N.; Risal, C.P.; Abdelly, C.; Sekimoto, H. Stress Tolerance and Symbiotic and Phylogenic Features of Root Nodule Bacteria Associated with Medicago Species in Different Bioclimatic Regions of Tunisia. Microbes Environ. 2011, 26, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, T.; Ando, S.; Murakami, T.; Imai, H. Genetic Variability of the Common Nod Gene in Soybean Bradyrhizobia Isolated in Thailand and Japan. Can. J. Microbiol. 1996, 42, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Al Sherif, E.A. Melilotus indicus (L.) All., a Salt-Tolerant Wild Leguminous Herb with High Potential for Use as a Forage Crop in Salt-Affected Soils. Flora—Morphol. Distrib. Funct. Ecol. Plants 2009, 204, 737–746. [Google Scholar] [CrossRef]
- Ikeda, J. The effect of short term withdrawal of NaCl stress on nodulation of white clover. In Plant and Soil; Springer: Berlin/Heidelberg, Germany, 1994; Available online: https://www.jstor.org/stable/42939080 (accessed on 11 December 2023).
- Cekstere, G.; Karlsons, A.; Grauda, D. Salinity-Induced Responses and Resistance in Trifolium repens L. Urban For. Urban Green. 2015, 14, 225–236. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, J.-P.; Wei, S.-Q.; Zhou, Z.-Y.; Zhang, C.; Yu, Y.-X. Mechanism of Acid Tolerance in a Rhizobium Strain Isolated from Pueraria lobata (Willd.) Ohwi. Can. J. Microbiol. 2011, 57, 514–524. [Google Scholar] [CrossRef]
- Ferguson, B.J.; Lin, M.H.; Gresshoff, P.M. Regulation of Legume Nodulation by Acidic Growth Conditions. Plant Signal. Behav. 2013, 8, e23426. [Google Scholar] [CrossRef]
- Kamran, A.; Mushtaq, M.; Arif, M.; Rashid, S. Role of Biostimulants (Ascorbic Acid and Fulvic Acid) to Synergize Rhizobium Activity in Pea (Pisum sativum L. Var. Meteor). Plant Physiol. Biochem. 2023, 196, 668–682. [Google Scholar] [CrossRef]
- Hawkins, J.P.; Oresnik, I.J. The Rhizobium-Legume Symbiosis: Co-Opting Successful Stress Management. Front. Plant Sci. 2022, 12, 796045. [Google Scholar] [CrossRef]
- Morón, B.; Soria-Díaz, M.E.; Ault, J.; Verroios, G.; Noreen, S.; Rodríguez-Navarro, D.N.; Gil-Serrano, A.; Thomas-Oates, J.; Megías, M.; Sousa, C. Low PH Changes the Profile of Nodulation Factors Produced by Rhizobium Tropici CIAT899. Chem. Biol. 2005, 12, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Vershinina, Z.R.; Chubukova, O.V.; Nikonorov, Y.M.; Khakimova, L.R.; Lavina, A.M.; Karimova, L.R.; Baymiev, A.K.; Baymiev, A.K. Effect of RosR Gene Overexpression on Biofilm Formation by Rhizobium leguminosarum. Microbiology 2021, 90, 198–209. [Google Scholar] [CrossRef]
- Irshad, A.; Rehman, R.N.U.; Dubey, S.; Khan, M.A.; Yang, P.; Hu, T. Rhizobium Inoculation and Exogenous Melatonin Synergistically Increased Thermotolerance by Improving Antioxidant Defense, Photosynthetic Efficiency, and Nitro-Oxidative Homeostasis in Medicago truncatula. Front. Ecol. Evol. 2022, 10, 945695. [Google Scholar] [CrossRef]
- Tulumello, J.; Chabert, N.; Rodriguez, J.; Long, J.; Nalin, R.; Achouak, W.; Heulin, T. Rhizobium alamii Improves Water Stress Tolerance in a Non-Legume. Sci. Total Environ. 2021, 797, 148895. [Google Scholar] [CrossRef]
- Castaingts, M.; Kirolinko, C.; Rivero, C.; Artunian, J.; Mancini Villagra, U.; Blanco, F.A.; Zanetti, M.E. Identification of Conserved and New MiRNAs That Affect Nodulation and Strain Selectivity in the Phaseolus vulgaris–Rhizobium etli Symbiosis through Differential Analysis of Host Small RNAs. New Phytol. 2022, 234, 1430–1447. [Google Scholar] [CrossRef]
- Bañuelos-Vazquez, L.A.; Cazares, D.; Rodríguez, S.; Cervantes-De la Luz, L.; Sánchez-López, R.; Castellani, L.G.; Tejerizo, G.T.; Brom, S. Transfer of the Symbiotic Plasmid of Rhizobium etli CFN42 to Endophytic Bacteria Inside Nodules. Front. Microbiol. 2020, 11, 551589. [Google Scholar] [CrossRef]
- Bañuelos-Vazquez, L.A.; Torres Tejerizo, G.; Cervantes-De La Luz, L.; Girard, L.; Romero, D.; Brom, S. Conjugative Transfer between Rhizobium etli Endosymbionts inside the Root Nodule. Environ. Microbiol. 2019, 21, 3430–3441. [Google Scholar] [CrossRef]
- Hidalgo-García, A.; Tortosa, G.; Pacheco, P.J.; Gates, A.J.; Richardson, D.J.; Bedmar, E.J.; Girard, L.; Torres, M.J.; Delgado, M.J. Rhizobium etli Is Able to Emit Nitrous Oxide by Connecting Assimilatory Nitrate Reduction with Nitrite Respiration in the Bacteroids of Common Bean Nodules. J. Plant Interact. 2023, 18. [Google Scholar] [CrossRef]
- Youseif, S.H.; Abd El-Megeed, F.H.; Mohamed, A.H.; Ageez, A.; Veliz, E.; Martínez-Romero, E. Diverse Rhizobium Strains Isolated from Root Nodules of Trifolium alexandrinum in Egypt and Symbiovars. Syst. Appl. Microbiol. 2021, 44, 126156. [Google Scholar] [CrossRef]
- Shamseldin, A.; Epstein, B.; Sadowsky, M.J.; Zhang, Q. Comparative Genomic Analysis of Diverse Rhizobia and Effective Nitrogen-Fixing Clover-Nodulating Rhizobium Strains Adapted to Egyptian Dry Ecosystems. Symbiosis 2021, 84, 39–47. [Google Scholar] [CrossRef]
- Berais-Rubio, A.; Morel-Revetria, M.; Filippi, C.V.; Reyno, R.; Monza, J. Ensifer meliloti Elite Strain U143 Used as Alfalfa Inoculant in Uruguay: Characterization and Draft Genome Sequence. Microbe 2023, 1, 100008. [Google Scholar] [CrossRef]
- Barcellos, F.G.; Menna, P.; Batista, J.S.D.S.; Hungria, M. Evidence of Horizontal Transfer of Symbiotic Genes from a Bradyrhizobium japonicum Inoculant Strain to Indigenous Diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah Soil. Appl. Environ. Microbiol. 2007, 73, 2635–2643. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.F.; Wang, E.T.; Ji, Z.J.; Zhang, J.J. Recent Development and New Insight of Diversification and Symbiosis Specificity of Legume Rhizobia: Mechanism and Application. J. Appl. Microbiol. 2021, 131, 553–563. [Google Scholar] [CrossRef]
- Gordon, B.R.; Klinger, C.R.; Weese, D.J.; Lau, J.A.; Burke, P.V.; Dentinger, B.T.M.; Heath, K.D. Decoupled Genomic Elements and the Evolution of Partner Quality in Nitrogen-Fixing Rhizobia. Ecol. Evol. 2016, 6, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.S.; Krebs, G.L.; Ahmad, J.; Southwell, A.; Piltz, J.W.; Wynn, P.C. The Effect of Rhizobium Seed Inoculation on Yields and Quality of Forage and Seed of Berseem Clover (Trifolium alexandrinum L.) and Its Impact on Soil Fertility and Smallholder Farmer’s Income. J. Anim. Plant Sci. 2018, 28, 1493–1500. [Google Scholar]
- Toukabri, W.; Ferchichi, N.; Barbouchi, M.; Hlel, D.; Jadlaoui, M.; Bahri, H.; Mhamdi, R.; Cheikh M’hamed, H.; Annabi, M.; Trabelsi, D. Enhancement of Clover (Trifolium alexandrinum L.) Shade Tolerance and Nitrogen Fixation under Dense Stands-Based Cropping Systems. Agronomy 2022, 12, 2332. [Google Scholar] [CrossRef]
- Furtak, K.; Gawryjołek, K.; Gałazka, A.; Grzadziel, J. The Response of Red Clover (Trifolium pratense L.) to Separate and Mixed Inoculations with Rhizobium leguminosarum and Azospirillum brasilense in Presence of Polycyclic Aromatic Hydrocarbons. Int. J. Environ. Res. Public Health 2020, 17, 5751. [Google Scholar] [CrossRef]
- Seguin, P.; Sheaffer, C.C.; Ehlke, N.J.; Russelle, M.P.; Graham, P.H. Nitrogen Fertilization and Rhizobial Inoculation Effects on Kura Clover Growth. Agron. J. 2001, 93, 1262–1268. [Google Scholar] [CrossRef]
- Shi, S.; Wakelin, S.; Gerard, E.; Young, S.; Van Koten, C.; Caradus, J.; Griffiths, A.G.; Ballard, R.A.; O’Callaghan, M. Screening and Field Evaluation of White Clover Rhizobia for New Zealand Pastures. Crop. Pasture Sci. 2023, 74, 1258–1271. [Google Scholar] [CrossRef]
Soil Samples No | Soil Sampling Sites | Climate | Latitude and Longitude | Elevation (m) | Previous Crop | pH | EC (ms/cm) | The Number of Nodules * Obtained from Clover Plants |
---|---|---|---|---|---|---|---|---|
Trifolium resupinatum | ||||||||
1 | Nangarhar | Hot desert climate | 34°25′ N–70°27′ E | 826 | Vigna radiata L. (Mung bean) | 7.66 ± 0.02 | 0.57 ± 0.01 | 13 |
2 | Kabul | Semi-arid climate | 34°31′ N–69°11′ E | 1791 | Glycine max L. (Soybean) | 8.10 ± 0.70 | 2.29 ± 0.16 | 0 |
3 | Parwan | Cold semi-arid climate | 35°07′ N–69°14′ E | 1916 | Medicago sativa L. (Alfalfa) | 7.70 ± 0.05 | 0.61 ± 0.15 | 17 |
4 | Baghlan | Semi-arid climate | 36°08′ N–68°42′ E | 528 | Mung bean | 7.85 ± 0.05 | 1.28 ± 0.03 | 17 |
5 | Kunduz | Semi-arid climate | 36°43′ N–68°52′ E | 351 | Mung bean and Zea mays L. (Maize) | 7.65 ± 0.06 | 1.68 ± 0.01 | 10 |
6 | Bamyan | Cold arid and semi-arid | 34°49′ N–67°49′ E | 2550 | Alfalfa | 8.25 ± 0.06 | 4.10 ± 0.43 | 0 |
Soil Samples | pH | Temperature (°C) | NaCl Concentrations (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
4.5 | 6.8 | 9 | 10 | 25 °C | 28 °C | 40 °C | 45 °C | 0 | 2 | 3 | 4 | |
Nangarhar | 100.0 a | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 74.0 | 35.7 | 100.0 | 64.0 | 57.1 | 21.4 |
Parwan | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 74.4 | 21.4 | 100.0 | 92.8 | 85.7 | 57.1 |
Baghlan | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 81.2 | 12.5 | 100.0 | 93.7 | 93.7 | 56.2 |
Kunduz | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 50.0 | 28.5 | 100.0 | 100.0 | 100.0 | 50.0 |
Isolates Name | Bacterial Species | Phylogenetic Groups of 16S rRNA | Accession Number (16S rRNA) | Phylogenetic Groups of nifD | Accession Numbers (nifD) | ARA (µM/Plant) | Biomass Production (mg/Plant) |
---|---|---|---|---|---|---|---|
BC1 | Rhizobium hidalgonense | GIa | LC787679 | GIa | LC787659 | 2.2 ± 1.1 a–d | 1029.5 ± 90.5 c–i |
BC11 | Rhizobium hidalgonense | GIa | LC787678 | GIa | LC787661 | 4.4 ± 2.3 a–d | 1064.8 ± 137.7 b–i |
BC15 | Rhizobium hidalgonense | GIa | LC787681 | GIa | LC787662 | 6.7 ± 0.7 a–d | 1601.5 ± 74.3 a–c |
GC10 | Rhizobium hidalgonense | GIa | LC787688 | GIa | LC787667 | 5.5 ± 0.5 a–d | 1263.2 ± 130.3 b–h |
PC15 | Rhizobium hidalgonense | GIa | LC787685 | GIa | LC787677 | 7.1 ± 3.1 a–c | 1363.2 ± 60.2 a–g |
PC1 | Rhizobium hidalgonense | GIa | LC787687 | GIa | LC787672 | 2.1 ± 1.1 a–d | 867.8 ± 44.7 e–i |
PC5 | Rhizobium hidalgonense | GIa | LC787683 | GIa | LC787674 | 1.1 ± 0.7 b–d | 925.2 ± 58.6 e–i |
PC8 | Rhizobium hidalgonense | GIa | LC787684 | GIb | LC787675 | 8.2 ± 2.3 a | 1769.0 ± 109.0 a |
PC9 | Rhizobium hidalgonense | GIa | LC787682 | GIb | LC787676 | 6.5 ± 3.7 a | 1409.2 ± 114 a–g |
KC10 | Rhizobium leguminosarum bv. viciae | GIb | LC787695 | GIb | LC787665 | 4.9 ± 1.1 a–d | 854.7 ± 77.1 f–i |
BC7 | Rhizobium bangladeshense | GIc | LC787680 | GIa | LC787660 | 5.3 ± 2.5 a–d | 1531.5 ± 148.4 a–d |
GC12 | Rhizobium bangladeshense | GIc | LC787689 | GIa | LC787668 | 0.9 ± 0.4 cd | 761.0 ± 172.3 hi |
GC14 | Rhizobium bangladeshense | GIc | LC787690 | GIa | LC787669 | 4.2 ± 0.9 a–d | 1616.4 ± 48.9 ab |
GC27 | Rhizobium bangladeshense | GIc | LC787691 | GIa | LC787671 | 1.9 ± 0.5 a–d | 720.2 ± 79.4 hi |
GC26 | Rhizobium bangladeshense | GIc | LC787693 | GIb | LC787670 | 3.1 ± 1.1 a–d | 1104.5 ± 170.1 b–i |
GC8 | Rhizobium bangladeshense | GIc | LC787692 | GIb | LC787666 | 7.1 ± 1.2 ab | 1422.6 ± 169.1 a–f |
KC7 | Rhizobium bangladeshense | GIc | LC787694 | GIb | LC787664 | 6.2 ± 2.7 a–d | 1452.4 ± 59.5 a–e |
PC3 | Rhizobium bangladeshense | GIc | LC787686 | GIb | LC787673 | 3.5 ± 0.9 a–d | 964.5 ± 147.3 d–i |
KC3 | Ensiefer meliloti | GII | LC787696 | GIb | LC787663 | 2.2 ± 0.8 a–d | 827.1 ± 23.4 g–i |
Control | - | - | - | - | - | 0.04 ± 0.0 d | 144.0 ± 15.2 j |
p-value | ** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibi, S.; Yasuda, M.; Aryan, S.; Yokoyama, T.; Saighani, K.; Ohkama-Ohtsu, N. Insights into Genetic and Physiological Characteristics of Clover Rhizobia in Afghanistan Soils. Appl. Microbiol. 2024, 4, 112-123. https://doi.org/10.3390/applmicrobiol4010008
Habibi S, Yasuda M, Aryan S, Yokoyama T, Saighani K, Ohkama-Ohtsu N. Insights into Genetic and Physiological Characteristics of Clover Rhizobia in Afghanistan Soils. Applied Microbiology. 2024; 4(1):112-123. https://doi.org/10.3390/applmicrobiol4010008
Chicago/Turabian StyleHabibi, Safiullah, Michiko Yasuda, Shafiqullah Aryan, Tadashi Yokoyama, Kalimullah Saighani, and Naoko Ohkama-Ohtsu. 2024. "Insights into Genetic and Physiological Characteristics of Clover Rhizobia in Afghanistan Soils" Applied Microbiology 4, no. 1: 112-123. https://doi.org/10.3390/applmicrobiol4010008
APA StyleHabibi, S., Yasuda, M., Aryan, S., Yokoyama, T., Saighani, K., & Ohkama-Ohtsu, N. (2024). Insights into Genetic and Physiological Characteristics of Clover Rhizobia in Afghanistan Soils. Applied Microbiology, 4(1), 112-123. https://doi.org/10.3390/applmicrobiol4010008