Potential of Lactic Acid Bacteria and Bacillus spp. in a Bio-Detoxification Strategy for Mycotoxin Contaminated Wheat Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Chemicals
2.2. Isolation and Identification of Lactic Acid Bacteria and Bacillus spp. Strains from Mycotoxin Contaminated Grains
2.3. Microorganisms Used in This Study
2.4. Antifungal Screening against Fusarium graminearum DSM 1095 and DSM 4527
2.5. Screening for Zearalenone and Deoxynivalenol Reduction
2.5.1. Screening Method
2.5.2. Determination of Zearalenone Detoxification Mechanisms
3. Results
3.1. Microbiota of Mycotoxin Contaminated Wheat Grains
3.2. Inhibition of Growth of Fusarium graminearum DSM 1095 and DSM 4527 by Lactic Acid Bacteria and Bacillus spp.
3.3. Reduction of Zearalenone and Deoxynivalenol by Strains of Lactic Acid Bacteria and Bacillus spp.
3.4. Mechanism of Zearalenone Detoxification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fazekas, B.; Tar, A.K.; Zomborszky-Kovács, M. Ochratoxin A Contamination of Cereal Grains and Coffee in Hungary in the Year 2001. Acta Vet. Hung. 2002, 50, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Serrano, A.B.; Font, G.; Ruiz, M.J.; Ferrer, E. Co-Occurrence and Risk Assessment of Mycotoxins in Food and Diet from Mediterranean Area. Food Chem. 2012, 135, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.-C.; Madec, S.; Coton, E.; Hymery, N. Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their In Vitro Combined Toxicological Effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- Liew, W.-P.-P.; Mohd-Redzwan, S. Mycotoxin: Its Impact on Gut Health and Microbiota. Front. Cell Infect. Microbiol. 2018, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef]
- Freire, L.; Sant’Ana, A.S. Modified Mycotoxins: An Updated Review on Their Formation, Detection, Occurrence, and Toxic Effects. Food Chem. Toxicol. 2018, 111, 189–205. [Google Scholar] [CrossRef]
- van der Lee, T.; Zhang, H.; van Diepeningen, A.; Waalwijk, C. Biogeography of Fusarium graminearum Species Complex and Chemotypes: A Review. Food Addit. Contam. Part A 2015, 32, 453–460. [Google Scholar] [CrossRef]
- Aniolowska, M.; Steininger, M. Determination of Trichothecenes and Zearalenone in Different Corn (Zea mays) Cultivars for Human Consumption in Poland. J. Food Compos. Anal. 2014, 33, 14–19. [Google Scholar] [CrossRef]
- Pestka, J.J. Deoxynivalenol: Toxicity, Mechanisms and Animal Health Risks. Anim. Feed. Sci. Technol. 2007, 137, 283–298. [Google Scholar] [CrossRef]
- Aiko, V.; Mehta, A. Occurrence, Detection and Detoxification of Mycotoxins. J. Biosci. 2015, 40, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Rempe, I.; Kersten, S.; Valenta, H.; Dänicke, S. Hydrothermal Treatment of Naturally Contaminated Maize in the Presence of Sodium Metabisulfite, Methylamine and Calcium Hydroxide; Effects on the Concentration of Zearalenone and Deoxynivalenol. Mycotoxin Res. 2013, 29, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ji, J.; Wu, H.; Pi, F.; Blazenovic, I.; Zhang, Y.; Sun, X. Untargeted GC-TOFMS-Based Cellular Metabolism Analysis to Evaluate Ozone Degradation Effect of Deoxynivalenol. Toxicon 2019, 168, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Mitsumatsu, M.; Shimada, N. Reduction of Feed-Contaminating Mycotoxins by Ultraviolet Irradiation: An In Vitro Study. Food Addit. Contam. 2008, 25, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Savi, G.D.; Cardoso, W.A.; Furtado, B.G.; Bortolotto, T.; Zanoni, E.T.; Scussel, R.; Rezende, L.F.; Machado-de-Avila, R.A.; Montedo, O.R.K.; Angioletto, E. Antifungal Activities against Toxigenic Fusarium Species and Deoxynivalenol Adsorption Capacity of Ion-Exchanged Zeolites. J. Environ. Sci. Health Part B 2018, 53, 184–190. [Google Scholar] [CrossRef]
- Schöneberg, A.; Musa, T.; Voegele, R.T.; Vogelgsang, S. The Potential of Antagonistic Fungi for Control of Fusarium graminearum and Fusarium crookwellense Varies Depending on the Experimental Approach. J. Appl. Microbiol. 2015, 18, 1165–1179. [Google Scholar] [CrossRef]
- Sellamani, M.; Kalagatur, N.K.; Siddaiah, C.; Mudili, V.; Krishna, K.; Natarajan, G.; Rao Putcha, V.L. Antifungal and Zearalenone Inhibitory Activity of Pediococcus pentosaceus Isolated from Dairy Products on Fusarium graminearum. Front. Microbiol. 2016, 7, 890. [Google Scholar] [CrossRef]
- Byrne, M.B.; Thapa, G.; Doohan, F.M.; Burke, J.I. Lactic Acid Bacteria as Potential Biocontrol Agents for Fusarium Head Blight Disease of Spring Barley. Front. Microbiol. 2022, 13, 912632. [Google Scholar] [CrossRef]
- Zebboudj, N.; Yezli, W.; Hamini-Kadar, N.; Kihal, M. Antifungal Activity of Lactic Acid Bacteria against Fusarium Species Responsible for Tomato Crown and Root Rots. Environ. Exp. Biol. 2020, 18, 7–13. [Google Scholar] [CrossRef]
- Jimenez-Quiros, C.; Okechukwu, E.C.; Hong, Y.; Baysal, Ö.; Tör, M. Comparison of Antifungal Activity of Bacillus Strains against Fusarium graminearum In Vitro and in Planta. Plants 2022, 11, 1999. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Martínez-Hidalgo, P.; Ice, T.A.; Maymon, M.; Humm, E.A.; Nejat, N.; Sanders, E.R.; Kaplan, D.; Hirsch, A.M. Antifungal Activity of Bacillus Species against Fusarium and Analysis of the Potential Mechanisms Used in Biocontrol. Front. Microbiol. 2018, 9, 2363. [Google Scholar] [CrossRef] [PubMed]
- Mardanova, A.M.; Hadieva, G.F.; Lutfullin, M.T.; Khilyas, I.V.; Minnullina, L.F.; Gilyazeva, A.G.; Bogomolnaya, L.M.; Sharipova, M.R. Bacillus subtilis Strains with Antifungal Activity against the Phytopathogenic Fungi. Agric. Sci. 2017, 8, 1–20. [Google Scholar] [CrossRef]
- Magnusson, J.; Ström, K.; Roos, S.; Sjögren, J.; Schnürer, J. Broad and Complex Antifungal Activity among Environmental Isolates of Lactic Acid Bacteria. FEMS Microbiol. Lett. 2003, 219, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, J.; Schnürer, J. Lactobacillus coryniformis subsp. coryniformis Strain Si3 Produces a Broad-Spectrum Proteinaceous Antifungal Compound. Appl. Environ. Microbiol. 2001, 67, 1–5. [Google Scholar] [CrossRef]
- Lavermicocca, P.; Valerio, F.; Evidente, A.; Lazzaroni, S.; Corsetti, A.; Gobbetti, M. Purification and Characterization of Novel Antifungal Compounds from the Sourdough Lactobacillus plantarum Strain 21B. Appl. Environ. Microbiol. 2000, 66, 4084–4090. [Google Scholar] [CrossRef]
- Leyva Salas, M.; Mounier, J.; Maillard, M.-B.; Valence, F.; Coton, E.; Thierry, A. Identification and Quantification of Natural Compounds Produced by Antifungal Bioprotective Cultures in Dairy Products. Food Chem. 2019, 301, 125260. [Google Scholar] [CrossRef]
- Vimont, A.; Fernandez, B.; Ahmed, G.; Fortin, H.-P.; Fliss, I. Quantitative Antifungal Activity of Reuterin against Food Isolates of Yeasts and Moulds and Its Potential Application in Yogurt. Int. J. Food Microbiol. 2019, 289, 182–188. [Google Scholar] [CrossRef]
- Pilote-Fortin, H.; Ben Said, L.; Cashman-Kadri, S.; St-Gelais, D.; Fliss, I. Stability, Bioavailability and Antifungal Activity of Reuterin during Manufacturing and Storage of Stirred Yoghurt. Int. Dairy. J. 2021, 121, 1–9. [Google Scholar] [CrossRef]
- Martin, H.; Maris, P. Synergism between Hydrogen Peroxide and Seventeen Acids against Five Agri-Food-Borne Fungi and One Yeast Strain. J. Appl. Microbiol. 2012, 113, 1451–1460. [Google Scholar] [CrossRef]
- Le Lay, C.; Coton, E.; Le Blay, G.; Chobert, J.-M.; Haertlé, T.; Choiset, Y.; Nguyen Van Long, N.; Meslet-Cladière, L.; Mounier, J. Identification and Quantification of Antifungal Compounds Produced by Lactic Acid Bacteria and Propionibacteria. Int. J. Food Microbiol. 2016, 239, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Muhialdin, B.J.; Algboory, H.L.; Kadum, H.; Mohammed, N.K.; Saari, N.; Hassan, Z.; Meor Hussin, A.S. Antifungal Activity Determination for the Peptides Generated by Lactobacillus plantarum TE10 against Aspergillus flavus in Maize Seeds. Food Control 2020, 109, 106898. [Google Scholar] [CrossRef]
- Arulrajah, B.; Muhialdin, B.J.; Qoms, M.S.; Zarei, M.; Meor Hussin, A.S.; Hasan, H.; Saari, N. Production of Cationic Antifungal Peptides from Kenaf Seed Protein as Natural Bio Preservatives to Prolong the Shelf-Life of Tomato Puree. Int. J. Food Microbiol. 2021, 359, 109418. [Google Scholar] [CrossRef] [PubMed]
- Ryan, L.A.M.; Zannini, E.; Dal Bello, F.; Pawlowska, A.; Koehler, P.; Arendt, E.K. Lactobacillus amylovorus DSM 19280 as a Novel Food-Grade Antifungal Agent for Bakery Products. Int. J. Food Microbiol. 2011, 146, 276–283. [Google Scholar] [CrossRef]
- Ström, K.; Sjögren, J.; Broberg, A.; Schnürer, J. Lactobacillus plantarum MiLAB 393 Produces the Antifungal Cyclic Dipeptides Cyclo(L-Phe–L-Pro) and Cyclo(L-Phe-Trans-4-OH-L-Pro) and 3-Phenyllactic Acid. Appl. Environ. Microbiol. 2002, 68, 4322–4327. [Google Scholar] [CrossRef] [PubMed]
- Nehal, F.; Sahnoun, M.; Smaoui, S.; Jaouadi, B.; Bejar, S.; Mohammed, S. Characterization, High Production and Antimicrobial Activity of Exopolysaccharides from Lactococcus lactis F-Mou. Microb. Pthogenesis 2019, 132, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Allonsius, C.N.; van den Broek, M.F.L.; De Boeck, I.; Kiekens, S.; Oerlemans, E.F.M.; Kiekens, F.; Foubert, K.; Vandenheuvel, D.; Cos, P.; Delputte, P.; et al. Interplay between Lactobacillus rhamnosus GG and Candida and the Involvement of Exopolysaccharides. Microb. Biotechnol. 2017, 10, 1753–1763. [Google Scholar] [CrossRef] [PubMed]
- Jasim, B.; Sreelakshmi, K.S.; Mathew, J.; Radhakrishnan, E.K. Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa Monnieri. Microb. Ecol. 2016, 72, 106–119. [Google Scholar] [CrossRef]
- Lei, S.; Zhao, H.; Pang, B.; Qu, R.; Lian, Z.; Jiang, C.; Shao, D.; Huang, Q.; Jin, M.; Shi, J. Capability of Iturin from Bacillus subtilis to Inhibit Candida albicans In Vitro and In Vivo. Appl. Microbiol. Biotechnol. 2019, 103, 4377–4392. [Google Scholar] [CrossRef]
- Daas, M.S.; Acedo, J.Z.; Rosana, A.R.R.; Orata, F.D.; Reiz, B.; Zheng, J.; Nateche, F.; Case, R.J.; Kebbouche-Gana, S.; Vederas, J.C. Bacillus amyloliquefaciens ssp. plantarum F11 Isolated from Algerian Salty Lake as a Source of Biosurfactants and Bioactive Lipopeptides. FEMS Microbiol. Lett. 2018, 365, fnx248. [Google Scholar] [CrossRef]
- Gomaa, E.Z.; El-Mahdy, O.M. Improvement of Chitinase Production by Bacillus thuringiensis NM101-19 for Antifungal Biocontrol through Physical Mutation. Microbiology 2018, 87, 472–485. [Google Scholar] [CrossRef]
- Subramani, A.K.; Raval, R.; Sundareshan, S.; Sivasengh, R.; Raval, K. A Marine Chitinase from Bacillus aryabhattai with Antifungal Activity and Broad Specificity toward Crystalline Chitin Degradation. Prep. Biochem. Biotechnol. 2022, 52, 1160–1172. [Google Scholar] [CrossRef]
- Salazar, F.; Ortiz, A.; Sansinenea, E. A Strong Antifungal Activity of 7-O-succinyl Macrolactin A vs Macrolactin A from Bacillus amyloliquefaciens ELI149. Curr. Microbiol. 2020, 77, 3409–3413. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hassan, Y.I.; Lepp, D.; Shao, S.; Zhou, T. Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins. Toxins 2017, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Loi, M.; Fanelli, F.; Liuzzi, V.C.; Logrieco, A.F.; Mulè, G. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins 2017, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Juodeikiene, G.; Bartkiene, E.; Cernauskas, D.; Cizeikiene, D.; Zadeike, D.; Lele, V.; Bartkevics, V. Antifungal Activity of Lactic Acid Bacteria and Their Application for Fusarium Mycotoxin Reduction in Malting Wheat Grains. LWT—Food Sci. Technol. 2018, 89, 307–314. [Google Scholar] [CrossRef]
- Yiannikouris, A.; François, J.; Poughon, L.; Dussap, C.-G.; Bertin, G.; Jeminet, G.; Jouany, J.-P. Adsorption of Zearalenone by β-D-Glucans in the Saccharomyces cerevisiae Cell Wall. J. Food Prot. 2004, 67, 1195–1200. [Google Scholar] [CrossRef]
- Haskard, C.A.; El-Nezami, H.S.; Kankaanpää, P.E.; Salminen, S.; Ahokas, J.T. Surface Binding of Aflatoxin B1 by Lactic Acid Bacteria. Appl. Environ. Microbiol. 2001, 67, 3086–3091. [Google Scholar] [CrossRef]
- Mokoena, M.P.; Chelule, P.K.; Gqaleni, N. Reduction of Fumonisin B1 and Zearalenone by Lactic Acid Bacteria in Fermented Maize Meal. J. Food Prod. 2005, 68, 2095–2099. [Google Scholar] [CrossRef]
- El-Nezami, H.; Polychronaki, N.; Salminen, S.; Mykkänen, H. Binding Rather than Metabolism May Explain the Interaction of Two Food-Grade Lactobacillus Strains with Zearalenone and Its Derivative α-Zearalenol. Appl. Environ. Microbiol. 2002, 68, 3545–3549. [Google Scholar] [CrossRef]
- Okeke, C.A.; Ezekiel, C.N.; Nwangburuka, C.C.; Sulyok, M.; Ezeamagu, C.O.; Adeleke, R.A.; Dike, S.K.; Krska, R. Bacterial Diversity and Mycotoxin Reduction during Maize Fermentation (Steeping) for Ogi Production. Front. Microbiol. 2015, 6, 1402. [Google Scholar] [CrossRef] [PubMed]
- Ben Taheur, F.; Fedhila, K.; Chaieb, K.; Kouidhi, B.; Bakhrouf, A.; Abrunhosa, L. Adsorption of Aflatoxin B1, Zearalenone and Ochratoxin A by Microorganisms Isolated from Kefir Grains. Int. J. Food Microbiol. 2017, 251, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, K.J.; Fabiszewska, A.U. Improvement of the Quality of Maize Grain Silage by a Synergistic Action of Selected Lactobacilli Strains. World J. Microbiol. Biotechnol. 2018, 34, 9. [Google Scholar] [CrossRef] [PubMed]
- El-Nezami, H.S.; Chrevatidis, A.; Auriola, S.; Salminen, S.; Mykkänen, H. Removal of Common Fusarium Toxins In Vitro by Strains of Lactobacillus and Propionibacterium. Food Addit. Contam. 2002, 19, 680–686. [Google Scholar] [CrossRef]
- Franco, T.S.; Garcia, S.; Hirooka, E.Y.; Ono, Y.S.; dos Santos, J.S. Lactic Acid Bacteria in the Inhibition of Fusarium graminearum and Deoxynivalenol Detoxification. J. Appl. Microbiol. 2011, 111, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.-Y.; He, Z.-F.; Li, H.-J.; Han, P.-F.; Meng, X.; Zhang, Y.; Zhou, F.; Ouyang, K.-P.; Chen, X.-Y.; Tang, J. In Vitro Removal of Deoxynivalenol and T-2 Toxin by Lactic Acid Bacteria. Food Sci. Biotechnol. 2012, 21, 1677–1683. [Google Scholar] [CrossRef]
- Panwar, R.; Kumar, N.; Kashyap, V.; Ram, C.; Kapila, R. Aflatoxin M1 Detoxification Ability of Probiotic Lactobacilli of Indian Origin in in Vitro Digestion Model. Probiotics Antimicrob. Proteins 2019, 11, 460–469. [Google Scholar] [CrossRef]
- Sevim, S.; Topal, G.G.; Tengilimoglu-Metin, M.M.; Sancak, B.; Kizil, M. Effects of Inulin and Lactic Acid Bacteria Strains on Aflatoxin M1 Detoxification in Yoghurt. Food Control 2019, 100, 235–239. [Google Scholar] [CrossRef]
- Hatab, S.; Yue, T.; Mohamad, O. Removal of Patulin from Apple Juice Using Inactivated Lactic Acid Bacteria. J. Appl. Microbiol. 2012, 112, 892–899. [Google Scholar] [CrossRef]
- Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S.; Attar, H.; Alavi, S.A. Effect of Probiotics on Patulin Removal from Synbiotic Apple Juice. J. Sci. Food Agric. 2017, 97, 2601–2609. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, Y.; Wang, X.; Pei, J.; Zheng, J.; Zhang, B. Absorption of Fumonisin B1 and B2 by Lactobacillus plantarum ZJ8. Acta Microbiol. Sin. 2014, 54, 1481–1488. [Google Scholar]
- Zhao, H.; Wang, X.; Zhang, J.; Zhang, J.; Zhang, B. The Mechanism of Lactobacillus Strains for Their Ability to Remove Fumonisins B1 and B2. Food Chem. Toxicol. 2016, 97, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, F.A.; Yan, B.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1403–1436. [Google Scholar] [CrossRef] [PubMed]
- Shier, W.T.; Shier, A.C.; Xie, W.; Mirocha, C.J. Structure-Activity Relationships for Human Estrogenic Activity in Zearalenone Mycotoxins. Toxicon 2001, 39, 1435–1438. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; He, J.; Gong, J. Microbial Transformation of Trichothecene Mycotoxins. World Mycotoxin J. 2008, 1, 23–30. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, T.; Gong, J.; Young, C.; Su, X.; Li, X.-Z.; Zhu, H.; Tsao, R.; Yang, R. Isolation of Deoxynivalenol-Transforming Bacteria from the Chicken Intestines Using the Approach of PCR-DGGE Guided Microbial Selection. BMC Microbiol. 2010, 10, 182. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Cao, L.; Liu, W.; Shen, Z. Detoxification of Deoxynivalenol by Bacillus subtilis ASAG 216 and Characterization the Degradation Process. Eur. Food Res. Technol. 2021, 247, 67–76. [Google Scholar] [CrossRef]
- Cho, K.J.; Kang, J.S.; Cho, W.T.; Lee, C.H.; Ha, J.K.; Bin Song, K. In Vitro Degradation of Zearalenone by Bacillus subtilis. Biotechnol. Lett. 2010, 32, 1921–1924. [Google Scholar] [CrossRef]
- Tinyiro, S.E.; Wokadala, C.; Xu, D.; Yao, W. Adsorption and Degradation of Zearalenone by Bacillus Strains. Folia Microbiol. 2011, 56, 321–327. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, J.; Tang, Y.; Ma, Q.; Zhang, J.; Ji, C.; Zhao, L. Characterization and Genome Analysis of a Zearalenone-degrading Bacillus velezensis Strain ANSB01E. Curr. Microbiol. 2020, 77, 273–278. [Google Scholar] [CrossRef]
- Zhu, Y.; Drouin, P.; Lepp, D.; Li, X.-Z.; Zhu, H.; Castex, M.; Zhou, T. A Novel Microbial Zearalenone Transformation through Phosphorylation. Toxins 2021, 13, 294. [Google Scholar] [CrossRef] [PubMed]
- Afsharmanesh, H.; Perez-Garcia, A.; Zeriouh, H.; Ahmadzadeh, M.; Romero, D. Aflatoxin Degradation by Bacillus subtilis UTB1 Is Based on Production of an Oxidoreductase Involved in Bacilysin Biosynthesis. Food Control 2018, 94, 48–55. [Google Scholar] [CrossRef]
- Rao, K.R.; Vipin, A.V.; Hariprasad, P.; Anu Appaiah, K.A.; Venkateswaran, G. Biological Detoxification of Aflatoxin B1 by Bacillus licheniformis CFR1. Food Control 2017, 71, 234–241. [Google Scholar] [CrossRef]
- Farzaneh, M.; Shi, Z.-Q.; Ghassempour, A.; Sedaghat, N.; Ahmadzadeh, M.; Mirabolfathy, M.; Javan-Nikkhah, M. Aflatoxin B1 Degradation by Bacillus subtilis UTBSP1 Isolated from Pistachio Nuts of Iran. Food Control 2012, 23, 100–106. [Google Scholar] [CrossRef]
- Chang, X.; Wu, Z.; Wu, S.; Dai, Y.; Sun, C. Degradation of Ochratoxin A by Bacillus amyloliquefaciens ASAG1. Food Addit. Contam. Part A 2015, 32, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Park, J.H.; Chung, S.H.; Kim, M. Ochratoxin A Reduction Ability of Biocontrol Agent Bacillus subtilis Isolated from Korean Traditional Fermented Food Kimchi. Sci. Rep. 2018, 8, 8039. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yuan, Y.; Liu, B.; Zhang, Z.; Yue, T. Biocontrol Activity and Patulin-Removal Effects of Bacillus subtilis, Rhodobacter sphaeroides and Agrobacterium tumefaciens against Penicillium expansum. J. Appl. Microbiol. 2016, 121, 1384–1393. [Google Scholar] [CrossRef]
- Mita, M.M.; Jannat, M.; Bashar, S.; Protic, I.A.; Saha, P.; Masud, M.; Islam, R.; Islam, N.B.; Alam, Z.; Islam, R. Potential Native Bacilli Reduce Fumonisin Contamination in Maize. Agronomy 2022, 12, 2608. [Google Scholar] [CrossRef]
- EFSA Biohaz Panel. Updated List of QPS-Recommended Microorganisms for Safety Risk Assessments Carried Out by EFSA; EFSA Biohaz Panel: Parma, Italy, 2023. [Google Scholar] [CrossRef]
- Müller, D.C.; Mischler, S.; Schönlechner, R.; Miescher Schwenninger, S. Multiple Techno-Functional Characteristics of Leuconostoc and Their Potential in Sourdough Fermentations. Microorganisms 2021, 9, 1633. [Google Scholar] [CrossRef]
- Ogunremi, O.R.; Freimüller Leischtfeld, S.; Miescher Schwenninger, S. MALDI-TOF MS Profiling and Exopolysaccharide Production Properties of Lactic Acid Bacteria from Kunu-Zaki—A Cereal-Based Nigerian Fermented Beverage. Int. J. Food Microbiol. 2022, 366, 109563. [Google Scholar] [CrossRef]
- Völkl, A.; Vogler, B.; Schollenberger, M.; Karlovsky, P. Microbial Detoxification of Mycotoxin Deoxynivalenol. J. Basic Microbiol. 2004, 44, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Meyer, O.; Schlegel, H.G. Biology of Aerobic Carbon Monoxide-Oxidizing Bacteria. Annu. Rev. Microbiol. 1983, 37, 277–310. [Google Scholar] [CrossRef] [PubMed]
- Miescher Schwenninger, S.; Freimüller Leischtfeld, S.; Gantenbein-Demarchi, C. High-throughput Identification of the Microbial Biodiversity of Cocoa Bean Fermentation by MALDI-TOF MS. Lett. Appl. Microbiol. 2016, 63, 347–355. [Google Scholar] [CrossRef] [PubMed]
- André, A.; Müller, N.; Chetschik, I. Occurrence of Zearalenone and Enniatin B in Swiss Wheat Grains and Wheat Flours. Appl. Sci. 2022, 12, 10566. [Google Scholar] [CrossRef]
- Gao, X.; Ma, Q.; Zhao, L.; Lei, Y.; Shan, Y.; Ji, C. Isolation of Bacillus subtilis: Screening for Aflatoxins B1, M1, and G1 Detoxification. Eur. Food Res. Technol. 2011, 232, 957–962. [Google Scholar] [CrossRef]
- Wang, S.; Hou, Q.; Guo, Q.; Zhang, J.; Sun, Y.; Wei, H.; Shen, L. Isolation and Characterization of Deoxynivalenol-Degrading Bacterium Bacillus licheniformis YB9 with the Capability of Modulating Intestinal Microbial Flora of Mice. Toxins 2020, 12, 184. [Google Scholar] [CrossRef]
- Romanens, E.; Pedan, V.; Meile, L.; Miescher Schwenninger, S. Influence of Two Anti-Fungal Lactobacillus fermentum-Saccharomyces cerevisiae Co-Cultures on Cocoa Bean Fermentation and Final Bean Quality. PLoS ONE 2020, 15, e0239365. [Google Scholar] [CrossRef]
- Wang, H.; Wen, K.; Zhao, X.; Wang, X.; Li, A.; Hong, H. The Inhibitory Activity of Endophytic Bacillus sp. Strain CHM1 against Plant Pathogenic Fungi and Its Plant Growth-Promoting Effect. Crop Prot. 2009, 28, 634–639. [Google Scholar] [CrossRef]
- Karthika, S.; Remya, M.; Varghese, S.; Dhanraj, N.D.; Sali, S.; Rebello, S.; Midhun, S.J.; Jisha, M.S. Bacillus tequilensis PKDN31 and Bacillus licheniformis PKDL10—As Double Headed Swords to Combat Fusarium oxysporum f. sp. lycopersici Induced Tomato Wilt. Microb. Pathog. 2022, 172, 105784. [Google Scholar] [CrossRef]
- Abouloifa, H.; Gaamouche, S.; Rokni, Y.; Hasnaoui, I.; Bellaouchi, R.; Ghabbour, N.; Karboune, S.; Brasca, M.; D’Hallewin, G.; Ben Salah, R.; et al. Antifungal Activity of Probiotic Lactobacillus Strains Isolated from Natural Fermented Green Olives and Their Application as Food Bio-Preservative. Biol. Control 2021, 152, 104450. [Google Scholar] [CrossRef]
- Mauch, A.; Dal Bello, F.; Coffey, A.; Arendt, E.K. The Use of Lactobacillus brevis PS1 to in Vitro Inhibit the Outgrowth of Fusarium culmorum and Other Common Fusarium Species Found on Barley. Int. J. Food Microbiol. 2010, 141, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Ogunremi, O.R.; Freimüller Leischtfeld, S.; Mischler, S.; Miescher Schwenninger, S. Antifungal Activity of Lactic Acid Bacteria Isolated from Kunu-Zaki, a Cereal-Based Nigerian Fermented Beverage. Food Biosci. 2022, 49, 101648. [Google Scholar] [CrossRef]
- Baek, E.; Kim, H.; Choi, H.; Yoon, S.; Kim, J. Antifungal Activity of Leuconostoc citreum and Weissella confusa in Rice Cakes. J. Microbiol. 2012, 50, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Chlebicz, A.; Śliżewska, K. In Vitro Detoxification of Aflatoxin B1, Deoxynivalenol, Fumonisins, T-2 Toxin and Zearalenone by Probiotic Bacteria from Genus Lactobacillus and Saccharomyces cerevisiae Yeast. Probiotics Antimicrob. Proteins 2019, 12, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Adunphatcharaphon, S.; Petchkongkaew, A.; Visessanguan, W. In Vitro Mechanism Assessment of Zearalenone Removal by Plant-Derived Lactobacillus plantarum BCC 47723. Toxins 2021, 13, 286. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Z.U.; Al Thani, R.; Alsafran, M.; Migheli, Q.; Jaoua, S. Selection of Bacillus spp. with Decontamination Potential on Multiple Fusarium Mycotoxins. Food Control 2021, 127, 108–119. [Google Scholar] [CrossRef]
- Yi, P.-J.; Pai, C.-K.; Liu, J.-R. Isolation and Characterization of a Bacillus licheniformis Strain Capable of Degrading Zearalenone. World J. Microbiol. Biotechnol. 2011, 27, 1035–1043. [Google Scholar] [CrossRef]
- Hsu, T.-C.; Yi, P.-J.; Lee, T.-Y.; Liu, J.-R. Probiotic Characteristics and Zearalenone-Removal Ability of a Bacillus licheniformis Strain. PLoS ONE 2018, 13, e0194866. [Google Scholar] [CrossRef]
- Hernandez-Mendoza, A.; Garcia, H.S.; Steele, J.L. Screening of Lactobacillus casei Strains for Their Ability to Bind Aflatoxin B1. Food Chem. Toxicol. 2009, 47, 1064–1068. [Google Scholar] [CrossRef]
- Zhao, L.; Jin, H.; Lan, J.; Zhang, R.; Ren, H.; Zhang, X.; Yu, G. Detoxification of Zearalenone by Three Strains of Lactobacillus plantarum from Fermented Food In Vitro. Food Control 2015, 54, 158–164. [Google Scholar] [CrossRef]
- Fuchs, S.; Sontag, G.; Stidl, R.; Ehrlich, V.; Kundi, M.; Knasmüller, S. Detoxification of Patulin and Ochratoxin A, Two Abundant Mycotoxins, by Lactic Acid Bacteria. Food Chem. Toxicol. 2008, 46, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Haskard, C.; Binnion, C.; Ahokas, J. Factors Affecting the Sequestration of Aflatoxin by Lactobacillus rhamnosus Strain GG. Chem. Biol. Interact. 2000, 128, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Topcu, A.; Bulat, T.; Wishah, R.; Boyac, I.H. Detoxification of Aflatoxin B1 and Patulin by Enterococcus faecium Strains. Int. J. Food Microbiol. 2010, 139, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Taddese, R.; Belzer, C.; Aalvink, S.; de Jonge, M.I.; Nagtegaal, I.D.; Dutilh, B.E.; Boleij, A. Production of Inactivated Gram-Positive and Gram-Negative Species with Preserved Cellular Morphology and Integrity. J. Microbiol. Methods 2021, 184, 106208. [Google Scholar] [CrossRef]
- Niderkorn, V.; Boudra, H.; Morgavi, D.P. Binding of Fusarium Mycotoxins by Fermentative Bacteria In Vitro. J. Appl. Microbiol. 2006, 101, 849–856. [Google Scholar] [CrossRef]
- Chen, S.-W.; Hsu, J.-T.; Chou, Y.-A.; Wang, H.-T. The Application of Digestive Tract Lactic Acid Bacteria with High Esterase Activity for Zearalenone Detoxification. J. Sci. Food Agric. 2018, 98, 3870–3879. [Google Scholar] [CrossRef]
- Wang, G.; Yu, M.; Dong, F.; Shi, J.; Xu, J. Esterase Activity Inspired Selection and Characterization of Zearalenone Degrading Bacteria Bacillus pumilus ES-21. Food Control 2017, 77, 57–64. [Google Scholar] [CrossRef]
Microorganisms | 1:1 | 1:4 | Total |
---|---|---|---|
Acinetobacter baumannii | 2 | 0 | 2 |
Bacillus cereus | 2 | 1 | 3 |
Bacillus megaterium | 3 | 8 | 11 |
Bacillus thuringiensis | 0 | 1 | 1 |
Citrobacter amalonaticus | 1 | 0 | 1 |
Cronobacter sakazakii | 1 | 0 | 1 |
Enterobacter cloacae | 3 | 1 | 4 |
Enterococcus durans | 0 | 3 | 3 |
Enterobacter ludwigii | 1 | 0 | 1 |
Enterococcus faecium | 8 | 2 | 10 |
Enterococcus gallinarum | 1 | 0 | 1 |
Enterococcus hermanniensis | 0 | 1 | 1 |
Enterococcus hirae | 1 | 0 | 1 |
Enterococcus mundtii | 1 | 0 | 1 |
Escherichia coli | 0 | 1 | 1 |
Escherichia hermannii | 3 | 5 | 8 |
Klebsiella pneumoniae | 0 | 1 | 1 |
Kosakonia cowanii | 1 | 0 | 1 |
Lapidilactobacillus concavus | 1 | 2 | 3 |
Loigolactobacillus coryniformis | 23 | 15 | 38 |
Latilactobacillus curvatus | 11 | 1 | 12 |
Lentilactobacillus kefiri | 0 | 1 | 1 |
Lactococcus lactis | 1 | 1 | 2 |
Leuconostoc pseudomesenteroides | 1 | 0 | 1 |
Pediococcus acidilactici | 6 | 9 | 15 |
Pediococcus pentosaceus | 16 | 6 | 22 |
Weissella cibaria | 0 | 1 | 1 |
not identified | 19 | 23 | 42 |
Total | 106 | 83 | 189 |
Strains | DSM 1095 | DSM 4527 | ||||||
---|---|---|---|---|---|---|---|---|
Inhibition | No | Weak | Moderate | Strong | No | Weak | Moderate | Strong |
B. flexus | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
B. licheniformis | 5 | 11 | 10 | 13 | 18 | 7 | 10 | 4 |
B. megaterium | 11 | 1 | 1 | 0 | 6 | 6 | 1 | 0 |
B. pumilus | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 |
B. subtilis | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 |
L. brevis | 0 | 0 | 0 | 10 | 0 | 0 | 2 | 8 |
L. concavus | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
L. coryniformis | 23 | 10 | 0 | 0 | 31 | 2 | 0 | 0 |
L. curvatus | 11 | 1 | 0 | 0 | 12 | 0 | 0 | 0 |
L. fermentum | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
L. kefiri | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
L. parabuchneri | 0 | 0 | 0 | 4 | 0 | 0 | 3 | 1 |
L. plantarum | 1 | 2 | 3 | 0 | 5 | 1 | 0 | 0 |
F. sanfranciscensis | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
Lc. lactis | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
Ln. citreum | 0 | 0 | 1 | 18 | 0 | 0 | 4 | 15 |
Ln. lactis | 0 | 2 | 10 | 2 | 5 | 4 | 5 | 0 |
Ln. mesenteroides | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
Ln. palmae | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 |
Ln. pseudomesenteroides | 0 | 0 | 1 | 3 | 0 | 0 | 2 | 2 |
P. acidilactici | 9 | 5 | 1 | 0 | 14 | 1 | 0 | 0 |
P. pentosaceus | 7 | 12 | 3 | 0 | 18 | 2 | 2 | 0 |
W. cibaria | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
W. confusa | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 |
not identified | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
Total | 76 | 46 | 32 | 58 | 119 | 23 | 36 | 34 |
Species | Total Screened | Reduction of ZEA | ||||
---|---|---|---|---|---|---|
>90% | 70–90% | 50–70% | 20–50% | <20% | ||
B. flexus | 1 | 0 | 0 | 0 | 0 | 1 |
B. licheniformis | 39 | 19 | 6 | 5 | 6 | 3 |
B. megaterium | 13 | 13 | 0 | 0 | 0 | 0 |
B. pumilus | 2 | 0 | 1 | 1 | 0 | 0 |
B. subtilis | 2 | 0 | 1 | 1 | 0 | 0 |
F. sanfranciscensis | 2 | 0 | 0 | 1 | 1 | 0 |
L. plantarum | 6 | 0 | 0 | 0 | 1 | 5 |
L. concavus | 3 | 0 | 0 | 0 | 0 | 3 |
L. curvatus | 12 | 0 | 0 | 0 | 0 | 12 |
L. kefiri | 1 | 0 | 0 | 0 | 0 | 1 |
L. parabuchneri | 4 | 0 | 0 | 3 | 1 | 0 |
L. brevis | 10 | 10 | 0 | 0 | 0 | 0 |
L. fermentum | 1 | 0 | 0 | 0 | 1 | 0 |
L. coryniformis | 33 | 0 | 0 | 0 | 0 | 33 |
Lc. lactis | 2 | 0 | 0 | 0 | 0 | 2 |
Ln. citreum | 19 | 0 | 0 | 0 | 2 | 17 |
Ln. lactis | 14 | 0 | 0 | 0 | 1 | 13 |
Ln. mesenteroides | 1 | 0 | 0 | 0 | 0 | 1 |
Ln. palmae | 2 | 0 | 0 | 0 | 0 | 2 |
Ln. pseudomesenteroides | 4 | 0 | 0 | 0 | 2 | 2 |
P. acidilactici | 15 | 0 | 0 | 0 | 0 | 15 |
P. pentosaceus | 22 | 0 | 0 | 0 | 0 | 22 |
W. cibaria | 1 | 0 | 0 | 0 | 0 | 1 |
W. confusa | 2 | 0 | 0 | 0 | 0 | 2 |
not identified | 1 | 0 | 0 | 0 | 0 | 1 |
Total | 212 | 42 | 8 | 11 | 15 | 136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mischler, S.; André, A.; Freimüller Leischtfeld, S.; Müller, N.; Chetschik, I.; Miescher Schwenninger, S. Potential of Lactic Acid Bacteria and Bacillus spp. in a Bio-Detoxification Strategy for Mycotoxin Contaminated Wheat Grains. Appl. Microbiol. 2024, 4, 96-111. https://doi.org/10.3390/applmicrobiol4010007
Mischler S, André A, Freimüller Leischtfeld S, Müller N, Chetschik I, Miescher Schwenninger S. Potential of Lactic Acid Bacteria and Bacillus spp. in a Bio-Detoxification Strategy for Mycotoxin Contaminated Wheat Grains. Applied Microbiology. 2024; 4(1):96-111. https://doi.org/10.3390/applmicrobiol4010007
Chicago/Turabian StyleMischler, Sandra, Amandine André, Susette Freimüller Leischtfeld, Nadina Müller, Irene Chetschik, and Susanne Miescher Schwenninger. 2024. "Potential of Lactic Acid Bacteria and Bacillus spp. in a Bio-Detoxification Strategy for Mycotoxin Contaminated Wheat Grains" Applied Microbiology 4, no. 1: 96-111. https://doi.org/10.3390/applmicrobiol4010007
APA StyleMischler, S., André, A., Freimüller Leischtfeld, S., Müller, N., Chetschik, I., & Miescher Schwenninger, S. (2024). Potential of Lactic Acid Bacteria and Bacillus spp. in a Bio-Detoxification Strategy for Mycotoxin Contaminated Wheat Grains. Applied Microbiology, 4(1), 96-111. https://doi.org/10.3390/applmicrobiol4010007