Metaproteomics, Heterotrophic Growth, and Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi after Long-Term Operation of an Autotrophic Nitrifying Biofilm Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Medium
2.2. Nitrifying Packed-Bed Reactor
2.3. Bioreactor Disassembly
2.4. Processing of Bioreactor Samples
2.4.1. ATP Measurements
2.4.2. qPCR and 16S rRNA Gene Amplicon Sequencing
2.4.3. Metaproteomic Analysis
3. Results and Discussion
3.1. Nitrifying Packed-Bed Operation
3.2. Cell Abundance in the Biofilm Biomass
3.3. Relative Abundance of N. europaea and N. winogradskyi
3.4. Composition of the Microbial Community
3.5. Metaproteomics
3.5.1. Database Search Restricted to Nitrosomonas and Nitrobacter
3.5.2. Database Search Broadened to Bacteria (Eubacteria)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, M.S.; Ewert, M.K.; Keener, J.F. Life Support Baseline Values and Assumptions Document; NASA/TP-2015-218570; NASA: Houston, TX, USA, 2018.
- Pickett, M.T.; Roberson, L.B.; Calabria, J.L.; Bullard, T.J.; Turner, G.; Yeh, D.H. Regenerative water purification for space applications: Needs, challenges, and technologies towards ‘closing the loop’. Life Sci. Space Res. 2020, 24, 64–82. [Google Scholar] [CrossRef] [PubMed]
- Volpin, F.; Badeti, U.; Wang, C.; Jiang, J.; Vogel, J.; Freguia, S.; Fam, D.; Cho, J.; Phuntsho, S.; Shon, H.K. Urine Treatment on the International Space Station: Current Practice and Novel Approaches. Membranes 2020, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, Z.; Abney, M.; Brown, B.; Fox, E.; Stanley, C. State of NASA Oxygen Recovery. In Proceedings of the 48th International Conference on Environmental Systems, Albuquerque, NM, USA, 8–12 July 2018. [Google Scholar]
- Verbeelen, T.; Leys, N.; Ganigue, R.; Mastroleo, F. Development of Nitrogen Recycling Strategies for Bioregenerative Life Support Systems in Space. Front. Microbiol. 2021, 12, 700810. [Google Scholar] [CrossRef] [PubMed]
- Lasseur, C.; Brunet, J.; De Weever, H.; Dixon, M.; Dussap, G.; Godia, F.; Leys, N.; Mergeay, M.; Van Der Straeten, D. MELiSSA: The European Project of a Closed Life Support System. Gravit. Space Biol. 2010, 23, 3–12. [Google Scholar]
- Hendrickx, L.; De Wever, H.; Hermans, V.; Mastroleo, F.; Morin, N.; Wilmotte, A.; Janssen, P.; Mergeay, M. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): Reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions. Res. Microbiol. 2006, 157, 77–86. [Google Scholar] [CrossRef]
- Hendrickx, L.; Mergeay, M. From the deep sea to the stars: Human life support through minimal communities. Curr. Opin. Microbiol. 2007, 10, 231–237. [Google Scholar] [CrossRef]
- Mastroleo, F.; Van Houdt, R.; Leroy, B.; Benotmane, M.A.; Janssen, A.; Mergeay, M.; Vanhavere, F.; Hendrickx, L.; Wattiez, R.; Leys, N. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J. 2009, 3, 1402–1419. [Google Scholar] [CrossRef] [Green Version]
- Paradiso, R.; De Micco, V.; Buonomo, R.; Aronne, G.; Barbieri, G.; De Pascale, S. Soilless cultivation of soybean for Bioregenerative Life-Support Systems: A literature review and the experience of the MELiSSA Project—Food characterisation Phase I. Plant Biol. 2014, 16 (Suppl. 1), 69–78. [Google Scholar] [CrossRef]
- Alemany, L.; Peiro, E.; Arnau, C.; Garcia, D.; Poughon, L.; Cornet, J.F.; Dussap, C.G.; Gerbi, O.; Lamaze, B.; Lasseur, C.; et al. Continuous controlled long-term operation and modeling of a closed loop connecting an air-lift photobioreactor and an animal compartment for the development of a life support system. Biochem. Eng. J. 2019, 151, 107323. [Google Scholar] [CrossRef]
- Poughon, L.; Laroche, C.; Creuly, C.; Dussap, C.G.; Paille, C.; Lasseur, C.; Monsieurs, P.; Heylen, W.; Coninx, I.; Mastroleo, F.; et al. Limnospira indica PCC8005 growth in photobioreactor: Model and simulation of the ISS and ground experiments. Life Sci. Space Res. 2020, 25, 53–65. [Google Scholar] [CrossRef]
- Albiol, J.; Gòdia, F.; Luis Montesinos, J.; Pérez, J.; Vernerey, A.; Cabello, F.; Creus, N.; Morist, A.; Mengual, X.; Lasseur, C. Biological Life Support System Demostration Facility: The Melissa Pilot Plant; SAE Technical Paper 2000-01-2379; SAE: Warrendale, PA, USA, 2000. [Google Scholar]
- Gòdia, F.; Albiol, J.; Perez, J.; Creus, N.; Cabello, F.; Montras, A.; Masot, A.; Lasseur, C. The MELISSA pilot plant facility as an integration test-bed for advanced life support systems. Adv. Space Res.-Ser. 2004, 34, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gragera, D.; Arnau, C.; Peiro, E.; Dussap, C.G.; Poughon, L.; Gerbi, O.; Lamaze, B.; Lasseur, C.; Godia, F. Integration of Nitrifying, Photosynthetic and Animal Compartments at the MELiSSA Pilot Plant. Front. Astron. Space 2021, 8, 750616. [Google Scholar] [CrossRef]
- Clauwaert, P.; Muys, M.; Alloul, A.; De Paepe, J.; Luther, A.; Sun, X.; Ilgrande, C.; Christiaens, M.E.R.; Hu, X.; Zhang, D.; et al. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. Prog. Aerosp. Sci. 2017, 91, 87–98. [Google Scholar] [CrossRef]
- Heinonen-Tanski, H.; van Wijk-Sijbesma, C. Human excreta for plant production. Bioresour. Technol. 2005, 96, 403–411. [Google Scholar] [CrossRef]
- Chain, P.; Lamerdin, J.; Larimer, F.; Regala, W.; Lao, V.; Land, M.; Hauser, L.; Hooper, A.; Klotz, M.; Norton, J.; et al. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J. Bacteriol. 2003, 185, 2759–2773. [Google Scholar] [CrossRef] [Green Version]
- Caranto, J.D.; Lancaster, K.M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc. Natl. Acad. Sci. USA 2017, 114, 8217–8222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starkenburg, S.R.; Chain, P.S.G.; Sayavedra-Soto, L.A.; Hauser, L.; Land, M.L.; Larimer, F.W.; Malfatti, S.A.; Klotz, M.G.; Bottomley, P.J.; Arp, D.J.; et al. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Appl. Environ. Microbiol. 2006, 72, 2050–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, I.; van Spanning, R.J.M.; Jetten, M.S.M. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology 2004, 150, 4107–4114. [Google Scholar] [CrossRef] [Green Version]
- Freitag, A.; Rudert, M.; Bock, E. Growth of Nitrobacter by Dissimilatoric Nitrate Reduction. FEMS Microbiol. Lett. 1987, 48, 105–109. [Google Scholar] [CrossRef]
- Starkenburg, S.R.; Arp, D.J.; Bottomley, P.J. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255. Environ. Microbiol. 2008, 10, 3036–3042. [Google Scholar] [CrossRef]
- Perez, J.; Montesinos, J.L.; Albiol, J.; Godia, F. Nitrification by immobilized cells in a micro-ecological life support system using packed-bed bioreactors: An engineering study. J. Chem. Technol. Biotechnol. 2004, 79, 742–754. [Google Scholar] [CrossRef]
- Montras, A.; Pycke, B.; Boon, N.; Godia, F.; Mergeay, M.; Hendrickx, L.; Perez, J. Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi in an autotrophic nitrifying biofilm reactor as depicted by molecular analyses and mathematical modelling. Water Res. 2008, 42, 1700–1714. [Google Scholar] [CrossRef] [PubMed]
- Cruvellier, N.; Poughon, L.; Creuly, C.; Dussap, C.G.; Lasseur, C. High ammonium loading and nitrification modelling in a fixed-bed bioreactor. J. Water Process. Eng. 2017, 20, 90–96. [Google Scholar] [CrossRef]
- Perez, J.; Buchanan, A.; Mellbye, B.; Ferrell, R.; Chang, J.H.; Chaplen, F.; Bottomley, P.J.; Arp, D.J.; Sayavedra-Soto, L.A. Interactions of Nitrosomonas europaea and Nitrobacter winogradskyi grown in co-culture. Arch. Microbiol. 2015, 197, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Lorenzo, C.; Rodriguez-Diaz, M.; Sipkema, D.; Juarez-Jimenez, B.; Rodelas, B.; Smidt, H.; Gonzalez-Lopez, J. Effect of salinity on nitrification efficiency and structure of ammonia-oxidizing bacterial communities in a submerged fixed bed bioreactor. Chem. Eng. J. 2015, 266, 233–240. [Google Scholar] [CrossRef]
- Jeong, D.; Cho, K.; Lee, C.H.; Lee, S.; Bae, H. Effects of salinity on nitrification efficiency and bacterial community structure in a nitrifying osmotic membrane bioreactor. Process Biochem. 2018, 73, 132–141. [Google Scholar] [CrossRef]
- Wang, Y.L.; Niu, Q.G.; Zhang, X.; Liu, L.; Wang, Y.B.; Chen, Y.Q.; Negi, M.; Figeys, D.; Li, Y.Y.; Zhang, T. Exploring the effects of operational mode and microbial interactions on bacterial community assembly in a one-stage partial-nitritation anammox reactor using integrated multi-omics. Microbiome 2019, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Wang, L. Multi-omics analysis reveals structure and function of biofilm microbial communities in a pre-denitrification biofilter. Sci. Total Environ. 2021, 757, 143908. [Google Scholar] [CrossRef]
- Jose, D.; Preena, P.G.; Kumar, V.J.R.; Philip, R.; Singh, I.S.B. Metaproteomic insights into ammonia oxidising bacterial consortium developed for bioaugmenting nitrification in aquaculture systems. Biologia 2020, 75, 1751–1757. [Google Scholar] [CrossRef]
- Salerno, C.; Berardi, G.; Laera, G.; Pollice, A. Functional Response of MBR Microbial Consortia to Substrate Stress as Revealed by Metaproteomics. Microb. Ecol. 2019, 78, 873–884. [Google Scholar] [CrossRef]
- Mysara, M.; Njima, M.; Leys, N.; Raes, J.; Monsieurs, P. From reads to operational taxonomic units: An ensemble processing pipeline for MiSeq amplicon sequencing data. GigaScience 2017, 6, giw017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsch, E.W.; Csordas, A.; Sun, Z.; Jarnuczak, A.; Perez-Riverol, Y.; Ternent, T.; Campbell, D.S.; Bernal-Llinares, M.; Okuda, S.; Kawano, S.; et al. The ProteomeXchange consortium in 2017: Supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 2017, 45, D1100–D1106. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.W.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef] [PubMed]
- Mastroleo, F.; Leroy, B.; van Houdt, R.; s’Heeren, C.; Mergeay, M.; Hendrickx, L.; Wattiez, R. Shotgun Proteome Analysis of Rhodospirillum rubrum S1H: Integrating Data from Gel-Free and Gel-Based Peptides Fractionation Methods. J. Proteome Res. 2009, 8, 2530–2541. [Google Scholar] [CrossRef]
- Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell Proteom. 2005, 4, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Vallenet, D.; Labarre, L.; Rouy, Z.; Barbe, V.; Bocs, S.; Cruveiller, S.; Lajus, A.; Pascal, G.; Scarpelli, C.; Médigue, C. MaGe: A microbial genome annotation system supported by synteny results. Nucleic Acids Res. 2006, 34, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Meincke, M.; Bock, E.; Kastrau, D.; Kroneck, P.M.H. Nitrite Oxidoreductase from Nitrobacter-Hamburgensis—Redox Centers and Their Catalytic Role. Arch. Microbiol. 1992, 158, 127–131. [Google Scholar] [CrossRef]
- Beaumont, H.J.E.; Lens, S.I.; Westerhoff, H.V.; van Spanning, R.J.A. Novel nirK cluster genes in Nitrosomonas europaea are required for NirK-dependent tolerance to nitrite. J. Bacteriol. 2005, 187, 6849–6851. [Google Scholar] [CrossRef] [Green Version]
- Jason, J.; Cantera, L.; Stein, L.Y. Role of nitrite reductase in the ammonia-oxidizing pathway of Nitrosomonas europaea. Arch. Microbiol. 2007, 188, 349–354. [Google Scholar]
- Kozlowski, J.A.; Price, J.; Stein, L.Y. Revision of N2O-Producing Pathways in the Ammonia-Oxidizing Bacterium Nitrosomonas europaea ATCC. Appl. Environ. Microbol. 2014, 80, 4930–4935. [Google Scholar] [CrossRef] [Green Version]
- Pearson, I.V.; Page, M.D.; van Spanning, R.J.; Ferguson, S.J. A mutant of Paracoccus denitrificans with disrupted genes coding for cytochrome c550 and pseudoazurin establishes these two proteins as the in vivo electron donors to cytochrome cd1 nitrite reductase. J. Bacteriol. 2003, 185, 6308–6315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedlacek, C.J.; Nielsen, S.; Greis, K.D.; Haffey, W.D.; Revsbech, N.P.; Ticak, T.; Laanbroek, H.J.; Bollmann, A. Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp Strain Is79. Appl. Environ. Microbiol. 2016, 82, 4776–4788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Period (Days) | HRT (h−1) | Inlet N-NH4+ (mg L−1·Day−1) | Load N-NH4+ (mg L−1·Day−1) | |
---|---|---|---|---|
Start | End | |||
0 | 60 | Initiation phase | ||
60 | 75 | 14 | 105 | 180 |
75 | 100 | 14 | 150 | 258 |
100 | 200 | 14 | 245 | 420 |
200 | 270 | 14 | 300 | 520 |
270 | 305 | 14 | 375 | 630 |
305 | 330 | 14 | 430 | 750 |
330 | 350 | 14 | 490 | 850 |
350 | 385 | 14 | 600 | 1043 |
385 | 425 | 14 | 750 | 1300 |
425 | 435 | 14 | 850 | 1478 |
435 | 450 | 14 | 630 | 1080 |
450 | 475 | 14 | 501 | 860 |
475 | 570 | 8 | 300 | 860 |
570 | 690 | 14 | 300 | 430 |
690 | 720 | 8 | 300 | 870 |
720 | 780 | 6 | 300 | 1285 |
780 | 820 | 8 | 300 | 870 |
820 | 840 | 6 | 300 | 1285 |
Sample Name | Total Proteins Identified Using Ns/Nb Database | Ns and Nb Protein Abundance Based on emPAI (%) |
---|---|---|
F5c | 530 | 51–49 |
F5b | 341 | 71–29 |
F5a | 558 | 70–30 |
F4c | 387 | 85–15 |
F4b | 531 | 87–13 |
F4a | 435 | 80–20 |
F3c | 519 | 88–12 |
F3b | 519 | 86–14 |
F3a | 474 | 86–14 |
F2c | 470 | 93–7 |
F2b | 300 | 76–24 |
F2a | 514 | 91–9 |
F1c | 578 | 95–5 |
F1b | 234 | 81–19 |
F1a | 582 | 92–8 |
F0 | 281 | 77–23 |
Organism | UniProtKB | Locus Name | Gene Name | Gene Product | Section | |||||
---|---|---|---|---|---|---|---|---|---|---|
F0 | F1 | F2 | F3 | F4 | F5 | |||||
Nb | Q3STU2 | Nwi_1037 | - | Protein of unknown function * | 0.86 | 0.97 (a) 0.52 (b) 0.20 (c) | 0.22 (a) ND (b) 0.45 (c) | 0.78 (a) 0.40 (b) 0.41 (c) | 2.52 (a) 1.17 (b) 1.14 (c) | 2.87 (a) 5.09 (b) 2.50 (c) |
Nb | Q3SQJ6 | Nwi_219 1 | groES | 10 kDa chaperonin | 2.98 | 1.19 (a) 1.94 (b) 1.01 (c) | 1.90 (a) 3.58 (b) 1.17 (c) | 1.18 (a) 1.85 (b) 1.43 (c) | 1.94 (a) 1.44 (b) 1.27 (c) | 2.45 (a) 4.35 (b) 2.55 (c) |
Ns | Q82W35 | NE0863 | bfr | Bacterioferritin | 2.86 | 1.15 (a) 3.34 (b) 0.74 (c) | 0.27 (a) 1.23 (b) 0.86 (c) | 1.80 (a) 0.77 (b) 0.79 (c) | 1.55 (a) 0.96 (b) 0.84 (c) | 0.52 (a) 0.75 (b) 0.46 (c) |
Ns | Q82S02 | NE2563 | - | General diffusion Gram-negative porin | 3.06 | 1.05 (a) 3.31 (b) 1.18 (c) | 1.60 (a) 1.32 (b) 3.26 (c) | 1.49 (a) 1.44 (b) 1.37 (c) | 1.58 (a) 1.48 (b) 1.58 (c) | 0.83 (a) 1.74 (b) 1.13 (c) |
Nb | Q3SPG5 | Nwi_2573 1 | groES | 10kDa chaperonin | 0.97 | 0.56 (a) 0.78 (b) 0.44 (c) | 0.32 (a) 0.89 (b) 0.72 (c) | 1.01 (a) 0.65 (b) 0.92 (c) | 0.90 (a) 0.67 (b) 0.51 (c) | 3.00 (a) 2.21 (b) 0.90 (c) |
Ns | Q04508 | NE0943 3 NE2062 3 | amoB | Ammonia monooxygenase beta subunit | 2.68 | 0.64 (a) 1.86 (b) 0.97 (c) | 0.71 (a) 1.34 (b) 0.83 (c) | 0.66 (a) 0.75 (b) 0.71 (c) | 0.81 (a) 0.83 (b) 1.53 (c) | 0.39 (a) 0.89 (b) 0.58 (c) |
Nb | Q3SUK0 | Nwi_0776 2 | nxrB | Nitrite oxidoreductase beta subunit ** | 1.70 | 0.68 (a) 2.68 (b) 0.40 (c) | 0.60 (a) 2.09 (b) 0.37 (c) | 1.21 (a) 0.91 (b) 0.64 (c) | 0.81 (a) 0.93 (b) 1.15 (c) | 0.55 (a) 0.60 (b) 1.49 (c) |
Ns | Q82TI0 | NE1907 | - | Protein of unknown function—putative murein lipoprotein *** | 2.10 | 0.28 (a) 2.46 (b) 0.95 (c) | 1.02 (a) 2.64 (b) 1.10 (c) | 1.11 (a) 0.49 (b) 0.72 (c) | 1.37 (a) 1.02 (b) 1.61 (c) | 1.00 (a) 1.77 (b) 1.36 (c) |
Ns | Q82VG7 | NE1121 | - | Protein of unknown function * | ND | 1.71 (a) ND (b) 1.92 (c) | 1.16 (a) 0.37 (b) 1.67 (c) | 2.23 (a) 2.00 (b) 1.54 (c) | 2.08 (a) 2.06 (b) 2.45 (c) | 1.52 (a) 2.01 (b) 2.07 (c) |
Ns | Q82Y60 | NE0028 | groEL | 60 kDa chaperonin | 1.89 | 1.73 (a) 1.41 (b) 1.64 (c) | 2.33 (a) 1.52 (b) 1.90 (c) | 1.51 (a) 1.52 (b) 1.96 (c) | 1.48 (a) 1.39 (b) 1.46 (c) | 1.08 (a) 1.32 (b) 1.15 (c) |
Nb | Q3SU14 | Nwi_0965 2 | nxrB | Nitrite oxidoreductase beta subunit ** | 1.60 | 0.64 (a) 2.25 (b) 0.37 (c) | 0.56 (a) 2.22 (b) ND (c) | 1.07 (a) 0.91 (b) 0.60 (c) | 0.76 (a) 0.73 (a) 1.02 (c) | 0.48 (a) ND (b) 1.49 (c) |
Ns | Q50925 | NE2044 4 NE0962 4 NE2339 4 | hao | Hydroxylamine oxidoreductase | 0.56 | 0.39 (a) 0.56 (b) 0.43 (c) | 0.53 (a) 0.59 (b) 0.44 (c) | 0.47 (a) 0.42 (b) 0.49 (c) | 0.52 (a) 0.41 (b) 0.61 (c) | 0.49 (a) 0.58 (b) 0.42 (c) |
Ns | Q82VX5 | NE0924 | aniA | Copper-containing nitrite reductase | ND | 0.52 (a) 0.17 (b) 0.37 (c) | 0.38 (a) 0.50 (b) 0.48 (c) | 0.38 (a) 0.43 (b) 0.44 (c) | 0.36 (a) 0.45 (b) 0.36 (c) | 0.34 (a) 0.53 (b) 0.19 (c) |
Ns | Q82TG8 | NE1919 | cbbQ | Nitric oxide reductase NorQ protein | 0.12 | 0.36 (a) ND (b) 0.35 (c) | 0.38 (a) ND (b) 0.30 (c) | 0.30 (a) 0.42 (b) 0.43 (c) | 0.22 (a) 0.38 (b) 0.32 (c) | 0.27 (a) 0.14 (b) 0.27 (c) |
Organism | UniProtKB | Locus Name | Gene Name | Gene Product | Section | |||||
---|---|---|---|---|---|---|---|---|---|---|
F0 | F1 | F2 | F3 | F4 | F5 | |||||
Halothiobacillus neapolitanus | P45689 | Hneap_0915 | csoS1A | Major carboxysome shell protein CsoS1A | 2.84 | ND (a) ND (b) ND (c) | 0.67 (a) ND (b) ND (c) | 0.89 (a) ND (b) ND (c) | ND (a) 0.39 (b) ND (c) | ND (a) ND (b) 0.80 (c) |
A. faecalis/ O. anthropi/ Brucella sp. | P04377 | Oant_2900 | - | Pseudoazurin | 0.88 | 0.31 (a) ND (b) 0.19 (c) | 0.22 (a) 0.49 (b) 0.35 (c) | 0.30 (a) 0.26 (b) 0.41 (c) | ND (a) 0.38 (b) ND (c) | ND (a) ND (b) 0.45 (c) |
Bradyrhizobium sp. | P85098 | - | narH | Respiratory nitrate reductase beta chain (fragments) | 0.67 | 0.14 (a) 0.49 (b) 0.15 (c) | 0.11 (a) 0.24 (b) 0.10 (c) | ND (a) 0.13 (b) 0.12 (c) | 0.25 (a) 0.11 (b) 0.19 (c) | 0.17 (a) 0.32 (b) ND (c) |
Brucella melitensis | Q8YBC6 | BMEII0973 BMEII0974 | nosZ | Nitrous-oxide reductase | ND | 0.05 (a) 0.29 (b) ND (c) | 0.04 (a) 0.10 (b) 0.06 (c) | 0.06 (a) ND (b) 0.05 (c) | ND (a) 0.05 (b) 0.08 (c) | ND (a) 0.09 (b) 0.08 (c) |
A. faecalis | P38501 | - | nirK | Copper-containing nitrite reductase | ND | 0.14 (a) ND (b) ND (c) | 0.08 (a) ND (b) 0.12 (c) | ND (a) ND (b) 0.09 (c) | 0.12 (a) ND (b) ND (c) | ND (a) 0.24 (b) 0.15 (c) |
Hydrogenophilus thermoluteolus | Q51858 | - | cbbQ | Protein CbbQ | ND | 0.09 (a) ND (b) 0.15 (c) | 0.11 (a) ND (b) 0.10 (c) | 0.15 (a) 0.21 (b) 0.12 (c) | ND (a) 0.18 (b) ND (c) | 0.17 (a) ND (b) 0.13 (c) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastroleo, F.; Arnau, C.; Verbeelen, T.; Mysara, M.; Gòdia, F.; Leys, N.; Van Houdt, R. Metaproteomics, Heterotrophic Growth, and Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi after Long-Term Operation of an Autotrophic Nitrifying Biofilm Reactor. Appl. Microbiol. 2022, 2, 272-287. https://doi.org/10.3390/applmicrobiol2010020
Mastroleo F, Arnau C, Verbeelen T, Mysara M, Gòdia F, Leys N, Van Houdt R. Metaproteomics, Heterotrophic Growth, and Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi after Long-Term Operation of an Autotrophic Nitrifying Biofilm Reactor. Applied Microbiology. 2022; 2(1):272-287. https://doi.org/10.3390/applmicrobiol2010020
Chicago/Turabian StyleMastroleo, Felice, Carolina Arnau, Tom Verbeelen, Mohamed Mysara, Francesc Gòdia, Natalie Leys, and Rob Van Houdt. 2022. "Metaproteomics, Heterotrophic Growth, and Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi after Long-Term Operation of an Autotrophic Nitrifying Biofilm Reactor" Applied Microbiology 2, no. 1: 272-287. https://doi.org/10.3390/applmicrobiol2010020
APA StyleMastroleo, F., Arnau, C., Verbeelen, T., Mysara, M., Gòdia, F., Leys, N., & Van Houdt, R. (2022). Metaproteomics, Heterotrophic Growth, and Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi after Long-Term Operation of an Autotrophic Nitrifying Biofilm Reactor. Applied Microbiology, 2(1), 272-287. https://doi.org/10.3390/applmicrobiol2010020