Application of a Bacteriophage–Sanitizer Combination in Post-Harvest Control of E. coli O157:H7 Contamination on Spinach Leaves in the Presence or Absence of a High Organic Load Produce Wash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Culture for Microplate and Produce Wash Study
2.2. Bacteriophage Cocktail Preparation
2.3. Initial Produce Rinse to Reduce Background Microbial Contamination on Spinach Leaves
2.4. Wash Solution for the Simulated Dunk Tank
2.5. Wash Solution for the Simulated Dunk Tank with High Organic Load Water
2.6. Application of Wash Solution Containing E. coli O157:H7 and Bacteriophage Cocktail Treatment in a Simulated Dunk Tank
2.7. Application of Wash Solution with High Organic Load Containing E. coli O157:H7 and Bacteriophage Cocktail Treatment in a Simulated Dunk Tank
2.8. Recovery of Bacteria
2.9. Statistical Analysis
3. Results
3.1. Effect of Bacteriophage Cocktail in Sterile Water Wash Solution Containing E. coli O157:H7 in a Simulated Dunk Tank with 100-ppm Bleach
3.2. Effect of Bacteriophage Cocktail in Sterile Water Wash Solution Containing E. coli O157:H7 in a Simulated Dunk Tank with 100-ppm Sanidate 5.0
3.3. Effect of Sterile Wash Solution Containing 9810 ppm of Organic Load Comprising E. coli O157:H7 and Bacteriophage Cocktail Treatment in a Simulated Dunk Tank with 100-ppm Bleach
3.4. Effect of Sterile Wash Solution Containing 9810 ppm of Organic Load Comprising E. coli O157:H7 and Bacteriophage Cocktail Treatment in a Simulated Dunk Tank with 100-ppm Sanidate 5.0
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callejón, R.M.; Rodriguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.; Stephan, R. Fresh fruit and vegetables as vehicles of bacterial foodborne disease: A review and analysis of outbreaks registered by proMED-mail associated with fresh produce. Arch. Für Lebensm. (J. Food Saf. Food Qual.) 2016, 67, 32–39. [Google Scholar]
- Feliziani, E.; Lichter, A.; Smilanick, J.L.; Ippolito, A. Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biol. Technol. 2016, 122, 53–69. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention. List of Selected Multistate Foodborne Outbreak Investigations. Available online: https://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/outbreaks-list.html (accessed on 11 February 2020).
- Sapers, G.M. Efficacy of washing and sanitizing methods for disinfection of fresh fruit and vegetable products. Food Technol. Biotechnol. 2001, 39, 305–311. [Google Scholar]
- Gómez-López, V.M. Decontamination of Fresh and Minimally Processed Produce; Wiley-Blackwell: Hoboken, NJ, USA, 2012. [Google Scholar]
- Higgins, G. Infiltration. Available online: https://ag.umass.edu/vegetable/fact-sheets/infiltration (accessed on 16 February 2018).
- Van Haute, S.; Luo, Y.; Sampers, I.; Mei, L.; Teng, Z.; Zhou, B.; Bornhorst, E.; Wang, Q.; Millner, P. Can UV absorbance rapidly estimate the chlorine demand in wash water during fresh-cut produce washing processes? Postharvest Biol. Technol. 2018, 142, 19–27. [Google Scholar] [CrossRef]
- Jagannathan, B.V.; Vijayakumar, P.P. The need for prevention-based food safety programs for fresh produce. Food Prot. Trends 2019, 39, 572–579. [Google Scholar]
- Barrera, M.; Blenkinsop, R.; Warriner, K. The effect of different processing parameters on the efficacy of commercial post-harvest washing of minimally processed spinach and shredded lettuce. Food Control 2012, 25, 745–751. [Google Scholar] [CrossRef]
- Gombas, D.; Luo, Y.; Brennan, J.; Shergill, G.; Petran, R.; Walsh, R.; Hau, H.; Khurana, K.; Zomorodi, B.; Rosen, J. Guidelines to validate control of cross-contamination during washing of fresh-cut leafy vegetables. J. Food Prot. 2017, 80, 312–330. [Google Scholar] [CrossRef] [Green Version]
- Vengarai Jagannathan, B.; Kitchens, S.; Vijayakumar, P.P.; Price, S.; Morgan, M. Potential for bacteriophage cocktail to complement commercial sanitizer use on produce against Escherichia coli O157:H7. Microorganisms 2020, 8, 1316. [Google Scholar] [CrossRef]
- Vengarai Jagannathan, B.; Kitchens, S.; Priyesh Vijayakumar, P.; Price, S.; Morgan, M. Efficacy of bacteriophage cocktail to control E. coli O157: H7 contamination on baby spinach leaves in the presence or absence of organic Load. Microorganisms 2021, 9, 544. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Kunzetsova, A.; Brockhoff, P.; Christensen, R. lmerTest package: Tests in linear mixed effect models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar]
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. emmeans: Estimated marginal means. R package version 1.4. 4. Am. Stat. 2020, 34, 216–221. [Google Scholar]
- Sargent, S.A.; Ritenour, M.; Brecht, J.; Bartz, J. Handling, cooling and sanitation techniques for maintaining postharvest quality. EDIS 2000, 3, 1–11. [Google Scholar]
- Chen, X.; Hung, Y.-C. Effects of organic load, sanitizer pH and initial chlorine concentration of chlorine-based sanitizers on chlorine demand of fresh produce wash waters. Food Control 2017, 77, 96–101. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Microbiological Hazards in Fresh Leafy Vegetables and Herbs. Meeting Report. Available online: http://www.fao.org/3/a-i0452e.pdf (accessed on 12 December 2019).
- Akbas, M.Y.; Ölmez, H. Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Lett. Appl. Microbiol. 2007, 44, 619–624. [Google Scholar] [CrossRef]
- Park, E.-J.; Alexander, E.; Taylor, G.A.; Costa, R.; Kang, D.-H. The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on green onions and tomatoes with differing organic demands. Food Microbiol. 2009, 26, 386–390. [Google Scholar] [CrossRef]
- Vidaver, A.K. Prospects for control of phytopathogenic bacteria by bacteriophages and bacteriocins. Annu. Rev. Phytopathol. 1976, 14, 451–465. [Google Scholar] [CrossRef]
- Brüssow, H.; Hendrix, R.W. Phage Genomics: Small Is Beautiful. Cell 2002, 108, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Abuladze, T.; Li, M.; Menetrez, M.Y.; Dean, T.; Senecal, A.; Sulakvelidze, A. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl. Environ. Microbiol. 2008, 74, 6230. [Google Scholar] [CrossRef] [Green Version]
- Atterbury, R.J.; Connerton, P.L.; Dodd, C.E.; Rees, C.E.; Connerton, I.F. Isolation and characterization of Campylobacter bacteriophages from retail poultry. Appl. Environ. Microbiol. 2003, 69, 4511–4518. [Google Scholar] [CrossRef] [Green Version]
- Gautier, M.; Rouault, A.; Sommer, P.; Briandet, R. Occurrence of Propionibacterium freudenreichii bacteriophages in swiss cheese. Appl. Environ. Microbiol. 1995, 61, 2572–2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, J.E., Jr.; Oblinger, J.L.; Bitton, G. Recovery of coliphages from chicken, pork sausage and delicatessen meats. J. Food Prot. 1984, 47, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.E., Jr.; Wei, C.I.; Oblinger, J.L. Methodology for enumeration of coliphages in foods. Appl. Environ. Microbiol. 1986, 51, 956–962. [Google Scholar] [CrossRef] [Green Version]
- Whitman, P.A.; Marshall, R.T. Isolation of psychrophilic bacteriophage-host systems from refrigerated food products. Appl. Microbiol. 1971, 22, 220–223. [Google Scholar] [CrossRef] [PubMed]
Wash Treatment | Wash Time (min) | Sampling Time (h) | E. coli O157:H7 Population (log CFU/mL (SD)) | Estimated Marginal Mean (SE) | E. coli O157:H7 Log Reduction (log CFU/mL) | Percentage Reduction (%) of E. coli O157:H7 Compared to PC |
---|---|---|---|---|---|---|
Negative Control (NC) | - | 0 | <1.00 | |||
3 | <1.00 | - | - | - | ||
6 | <1.00 | |||||
Positive Control (PC) | 10 | 0 | 6.43 (0.16) | |||
3 | 6.62 (0.47) | 7.02 (0.14) a | - | - | ||
6 | 7.42 (0.29) | |||||
Treatment 1–100-ppm bleach water (Trt.1) | 10 | 0 | 3.24 (0.28) | 3.19 | 99.86 | |
3 | 3.49 (0.30) | 3.77 (0.14) b | 3.13 | 99.87 | ||
6 | 4.04 (0.73) | 3.38 | 99.85 | |||
Treatment 2–100-ppm Sanidate 5.0 water (Trt.2) | 10 | 0 | <1.00 | 6.43 | 99.99 | |
3 | <1.00 | 0.00 (0.14) d | 6.62 | 99.99 | ||
6 | <1.00 | 7.42 | 99.99 | |||
Treatment 3–100-ppm bleach water + bacteriophage cocktail (Trt.3) | 10 | 0 | 4.35 (0.25) | 2.08 | 98.26 | |
3 | 1.11 (0.21) | 1.61 (0.14) c | 5.51 | 99.99 | ||
6 | 2.10 (0.16) | 5.32 | 99.99 | |||
Treatment 4–100-ppm Sanidate 5.0 water + bacteriophage cocktail (Trt.4) | 10 | 0 | <1.00 | 6.43 | 99.99 | |
3 | <1.00 | 0.00 (0.14) d | 6.62 | 99.99 | ||
6 | <1.00 | 7.42 | 99.99 |
Wash Treatment | Wash Time (min) | Sampling Time (h) | E. coli O157:H7 Population (log CFU/mL (SD)) | Estimated Marginal Mean (SE) | E. coli O157:H7 Log Reduction (log CFU/mL) | Percentage Reduction (%) of E. coli O157:H7 Compared to PC | Percentage Reduction (%) in Trt.O.3 Compared to Trt.O.1 | Percentage Reduction (%) in Trt.O.4 Compared to Trt.O.2 |
---|---|---|---|---|---|---|---|---|
Negative Control (NC) | - | 0 | <1.00 | |||||
3 | <1.00 | - | - | - | - | - | ||
6 | <1.00 | |||||||
Negative Control Organic (NCO) | 10 | 0 | <1.00 | |||||
3 | <1.00 | - | - | - | - | |||
6 | <1.00 | |||||||
Positive Control (PC) | 10 | 0 | 6.35 (0.22) | |||||
3 | 7.00 (0.25) | 7.32 (0.21) a | - | - | - | - | ||
6 | 7.62 (0.06) | |||||||
Treatment 1–100-ppm bleach in organic water (Trt.O.1) | 10 | 0 | 6.46 (0.11) | No significant reduction | 09.66 | |||
3 | 7.20 (0.12) | 7.43 (0.21) a | 30.90 | - | - | |||
6 | 7.63 (0.05) | 38.97 | ||||||
Treatment 2–100-ppm Sanidate 5.0 in organic water (Trt.O.2) | 10 | 0 | 6.25 (0.05) | 0.10 | 14.89 | |||
3 | 6.94 (0.37) | 7.24 (0.21) a | 0.06 | 43.27 | - | - | ||
6 | 7.52 (0.40) | 0.10 | 45.64 | |||||
Treatment 3–100-ppm bleach in organic water + bacteriophage cocktail (Trt.O.3) | 10 | 0 | 5.70 (0.37) | 0.65 | 57.12 | 63.29 | ||
3 | 3.17 (0.72) | 2.75 (0.21) b | 3.83 | 99.96 | 99.98 | - | ||
6 | 2.32 (0.33) | 5.30 | 99.99 | 99.99 | ||||
Treatment 4–100-ppm Sanidate 5.0 in organic water + bacteriophage cocktail (Trt.O.4) | 10 | 0 | 5.50 (0.03) | 0.85 | 76.72 | 69.81 | ||
3 | 3.17 (0.58) | 2.76 (0.21) b | 3.83 | 99.97 | - | 99.96 | ||
6 | 2.35 (0.56) | 5.27 | 99.99 | 99.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vengarai Jagannathan, B.; Kitchens, S.; Price, S.; Morgan, M.; Vijayakumar, P.P. Application of a Bacteriophage–Sanitizer Combination in Post-Harvest Control of E. coli O157:H7 Contamination on Spinach Leaves in the Presence or Absence of a High Organic Load Produce Wash. Appl. Microbiol. 2022, 2, 12-24. https://doi.org/10.3390/applmicrobiol2010002
Vengarai Jagannathan B, Kitchens S, Price S, Morgan M, Vijayakumar PP. Application of a Bacteriophage–Sanitizer Combination in Post-Harvest Control of E. coli O157:H7 Contamination on Spinach Leaves in the Presence or Absence of a High Organic Load Produce Wash. Applied Microbiology. 2022; 2(1):12-24. https://doi.org/10.3390/applmicrobiol2010002
Chicago/Turabian StyleVengarai Jagannathan, Badrinath, Steven Kitchens, Stuart Price, Melissa Morgan, and Paul Priyesh Vijayakumar. 2022. "Application of a Bacteriophage–Sanitizer Combination in Post-Harvest Control of E. coli O157:H7 Contamination on Spinach Leaves in the Presence or Absence of a High Organic Load Produce Wash" Applied Microbiology 2, no. 1: 12-24. https://doi.org/10.3390/applmicrobiol2010002
APA StyleVengarai Jagannathan, B., Kitchens, S., Price, S., Morgan, M., & Vijayakumar, P. P. (2022). Application of a Bacteriophage–Sanitizer Combination in Post-Harvest Control of E. coli O157:H7 Contamination on Spinach Leaves in the Presence or Absence of a High Organic Load Produce Wash. Applied Microbiology, 2(1), 12-24. https://doi.org/10.3390/applmicrobiol2010002