A Systematic Review of Integrated Management in Blueberry (Vaccinium spp.): Technological Innovation, Sustainability, and Practices in Propagation, Physiology, Agronomy, Harvest, and Postharvest
Abstract
1. Introduction
2. Global Context of Blueberry (Vaccinium spp.) Production Systems
3. Materials and Methods
3.1. Selection and Evaluation Process
3.2. Eligibility Criteria
3.3. Inclusion and Exclusion Criteria
4. Results and Discussion
4.1. Conceptual Framework for Integrated Blueberry Production Systems
4.2. Innovations in Propagation, Plant Material Acquisition, and Genetic Improvement
4.3. Advances in Agronomic Practices and Cultural Management Strategies for Optimizing Blueberry (Vaccinium spp.) Cultivation
4.4. Integrated Irrigation, Fertigation, and Mineral Nutrition Strategies in Blueberry (Vaccinium spp.) Cultivation
4.5. Integrated Approaches for the Sanitary and Phytosanitary Management of Blueberries (Vaccinium spp.)
4.6. Crop Physiology and Eco-Physiological Regulation Under Controlled Environments
4.7. Blueberry Harvesting: Transition to Mechanized and Assisted Systems
4.8. Post-Harvest Technologies and Dynamics of Blueberry (Vaccinium spp.) Storage and Marketing
4.9. Modeling, Computer Vision, and Precision Agriculture in Blueberry Cultivation
4.10. Environmental Sustainability and Efficiency in Production Systems
4.11. Human Health and Nutraceutical Value of Blueberry
4.12. Production in Controlled Environments and Greenhouse Innovation
5. Study Limitations
6. Practical Use of Evidence-Based Recommendations
7. Economic and Regional Aspects of Technology Adoption in Blueberry Production
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tundis, R.; Tenuta, M.C.; Loizzo, M.R.; Bonesi, M.; Finetti, F.; Trabalzini, L.; Deguin, B. Vaccinium Species (Ericaceae): From Chemical Composition to Bio-Functional Activities. Appl. Sci. 2021, 11, 5655. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Merca Laies, M.M.; Sărățeanu, V. Genotype and Year Effects on Some Production Characteristics in Three Blueberry Cultivars (Vaccinium corymbosum L.). Appl. Fruit Sci. 2024, 66, 1757–1765. [Google Scholar] [CrossRef]
- Fang, Y.; Nunez, G.H.; da Silva, M.N.; Phillips, D.A.; Munoz, P.R. A Review for Southern Highbush Blueberry Alternative Production Systems. Agronomy 2020, 10, 1531. [Google Scholar] [CrossRef]
- Correia, S.; Matos, M.; Leal, F. Advances in Blueberry (Vaccinium spp.) in Vitro Culture: A Review. Horticulturae 2024, 10, 533. [Google Scholar] [CrossRef]
- Messiga, A.J.; Haak, D.; Dorais, M. Blueberry Yield and Soil Properties Response to Long-Term Fertigation and Broadcast Nitrogen. Sci. Hortic. 2018, 230, 92–101. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, H.; Yang, H.; Zhang, C.; Lyu, L.; Li, W.; Wu, W. A Physiological and Metabolomic Analysis Reveals the Effect of Shading Intensity on Blueberry Fruit Quality. Food Chem. X 2022, 15, 100367. [Google Scholar] [CrossRef]
- Bal, J.J.M. Blueberry Culture in Greenhouses, Tunnels, and under Raincovers. In Proceedings of the VI International Symposium on Vaccinium Culture, Orono, ME, USA, 12–17 August 1996; Volume 446, pp. 327–332. [Google Scholar]
- Brondino, L.; Borra, D.; Giuggioli, N.R.; Massaglia, S. Mechanized Blueberry Harvesting: Preliminary Results in the Italian Context. Agriculture 2021, 11, 1197. [Google Scholar] [CrossRef]
- Cai, Y.; Takeda, F.; Foote, B.; DeVetter, L.W. Effects of Machine-Harvest Interval on Fruit Quality of Fresh Market Northern Highbush Blueberry. Horticulturae 2021, 7, 245. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, X.; Liu, Y.; Liu, C. Characterization of Postharvest Changes in Fruit Quality Traits of Highbush Blueberry (Vaccinium corymbosum L.) Cultivars. Horticulturae 2025, 11, 1250. [Google Scholar] [CrossRef]
- Salinas-Velandia, D.A.; Romero-Perdomo, F.; Numa-Vergel, S.; Villagrán, E.; Donado-Godoy, P.; Galindo-Pacheco, J.R. Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies. Int. J. Environ. Res. Public Health 2022, 19, 12053. [Google Scholar] [CrossRef]
- Shehata, I.M.; Viswanath, O.; Koushik, S.S. Systematic Review: A Comprehensive. In How to Successfully Publish a Manuscript: A Step-by-Step Guide; Springer Nature: Cham, Switzerland, 2025; Volume 191. [Google Scholar]
- Villagran, E.; Espitia, J.J.; Amado, G.; Rodriguez, J.; Gomez, L.; Velasquez, J.F.; Gil, R.; Baeza, E.; Aguilar, C.E.; Akrami, M.; et al. CO2 Enrichment in Protected Agriculture: A Systematic Review of Greenhouses, Controlled Environment Systems, and Vertical Farms—Part 2. Sustainability 2025, 17, 2809. [Google Scholar] [CrossRef]
- Espitia, J.J.; Velázquez, F.A.; Rodriguez, J.; Gomez, L.; Baeza, E.; Aguilar-Rodríguez, C.E.; Flores-Velazquez, J.; Villagran, E. Solar Energy Applications in Protected Agriculture: A Technical and Bibliometric Review of Greenhouse Systems and Solar Technologies. Agronomy 2024, 14, 2791. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, Y.; Zhao, C.; Zhao, F.; Bai, S. The PRISMA 2020 Statement: A System Review of Hospital Preparedness for Bioterrorism Events. Int. J. Environ. Res. Public Health 2022, 19, 16257. [Google Scholar] [CrossRef] [PubMed]
- Villagran, E.; Ortiz, G.A.; Mojica, L.; Flores-Velasquez, J.; Aguilar, C.E.; Gomez, L.; Antolinez, E.; Numa, S. Bibliometric Study of Cut Flower Research. Ornam. Hortic. 2023, 29, 500–514. [Google Scholar] [CrossRef]
- Rocha, G.A.O.; Medina, A.N.C.; Arias, L.G.; Caita, J.F.A.; Villagran, E. Análisis Sobre La Actividad Científica Referente a Las Estrategias de Climatización Pasiva Usada En Invernaderos: Parte 2: Análisis Técnico. Cienc. Lat. Rev. Científica Multidiscip. 2022, 6, 2220–2245. [Google Scholar]
- Tian, L.; Liu, L.; Jiang, Y.; Yang, Y.; Dong, G.; Yu, H. Tobacco Rattle Virus-Induced VcANS Gene Silencing in Blueberry Fruit. Gene 2023, 852, 147054. [Google Scholar]
- Ehlenfeldt, M.K. Investigations of Metaxenia in Northern Highbush Blueberry (Vaccinium corymbosum L.) Cultivars. J. Am. Pomol. Soc. 2003, 57, 26–31. [Google Scholar] [CrossRef]
- Bal, J.J.M.; Balkhoven, J.; Peppelman, G. Results of Testing Highbush Blueberry Cultivars in The Netherlands. In Proceedings of the VIII International Symposium on Vaccinium Culture, Sevilla, Spain, 3–8 May 2004; Volume 715, pp. 157–162. [Google Scholar]
- Stringer, S.J.; Draper, A.D.; Spiers, J.M.; Marshall, D.A. Potential New Blueberry Cultivars for the Gulf Coast Region of the US. In Proceedings of the IX International Vaccinium Symposium, Corvallis, OR, USA, 14–18 July 2008; Volume 810, pp. 87–92. [Google Scholar]
- Xu, G.; An, Q.; Liu, G.; Zhao, L.; Wang, H. A New Blueberry Cultivar ‘chasing Dream’. Acta Hortic. Sin. 2021, 48, 2797–2798. [Google Scholar]
- Pluta, S.; Zurawicz, E. The High-Bush Blueberry (Vaccinium corymbosum L.) Breeding Programme in Poland. In Proceedings of the X International Symposium on Vaccinium and Other Superfruits, Maastricht, The Netherlands, 17–22 June 2012; Volume 1017, pp. 177–180. [Google Scholar]
- Hamim, A.; Lamrini, A.; Bouriah, S.; Mohammed, E. Study of Growth and Yield Parameters of Two Cultivars of Blueberry in Loukkos Region. In Proceedings of the International Conference on Advanced Intelligent Systems for Sustainable Development, Marrakech, MO, USA, 8–11 July 2019; Springer: Cham, Switzerland, 2019; pp. 357–363. [Google Scholar]
- Zhu, B.; Guo, P.; Wu, S.; Yang, Q.; He, F.; Gao, X.; Zhang, Y.; Xiao, J. A Better Fruit Quality of Grafted Blueberry than Own-Rooted Blueberry Is Linked to Its Anatomy. Plants 2024, 13, 625. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Wu, L.; Li, Y. Technical System of Blueberry Micropropagation in China. In Proceedings of the VIII International Symposium on Vaccinium Culture, Sevilla, Spain, 3–8 May 2004; Volume 715, pp. 421–426. [Google Scholar]
- Qiu, D.; Wei, X.; Fan, S.; Jian, D.; Chen, J. Regeneration of Blueberry Cultivars through Indirect Shoot Organogenesis. HortScience 2018, 53, 1045–1049. [Google Scholar] [CrossRef]
- Fernández, E.G.B.; Hanzer, V.; Lok-Lee, F.; Laimer, M. “Recovery” of Vaccinium myrtillus from Phytoplasma Infection in Vitro. Acta Hortic. 2023, 369–376. [Google Scholar] [CrossRef]
- Hernández, R.; López, A.; Valenzuela, B.; D’Afonseca, V.; Gomez, A.; Arencibia, A.D. Organogenesis of Plant Tissues in Colchicine Allows Selecting in Field Trial Blueberry (Vaccinium spp. cv Duke) Clones with Commercial Potential. Horticulturae 2024, 10, 283. [Google Scholar] [CrossRef]
- Olmstead, J.W.; Armenta, H.P.R.; Lyrene, P.M. Using Sparkleberry as a Genetic Source for Machine Harvest Traits for Southern Highbush Blueberry. Horttechnology 2013, 23, 419–424. [Google Scholar] [CrossRef]
- Postman, J.; Oliphant, J.; Hummer, K. Diseases Impact Management of USDA Clonal Vaccinium Genebank. In Proceedings of the IX International Vaccinium Symposium, Corvallis, OR, USA, 14–18 July 2008; Volume 810, pp. 319–324. [Google Scholar]
- Nestby, R.; Retamales, J.B. Diagnosis and Management of Nutritional Constraints in Berries. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 567–582. [Google Scholar]
- Smrke, T.; Veberic, R.; Hudina, M.; Zitko, V.; Ferlan, M.; Jakopic, J. Fruit Quality and Yield of Three Highbush Blueberry (Vaccinium corymbosum L.) Cultivars Grown in Two Planting Systems under Different Protected Environments. Horticulturae 2021, 7, 591. [Google Scholar] [CrossRef]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B. Suitability of Sphagnum Moss, Coir, and Douglas Fir Bark as Soilless Substrates for Container Production of Highbush Blueberry. HortScience 2017, 52, 1692–1699. [Google Scholar] [CrossRef]
- He, S.; Yu, H.; Gu, Y. Prospects and Problems of Blueberry Growing in China. Acta Hortic. 2009, 810, 61–64. [Google Scholar] [CrossRef]
- Girgenti, V.; Peano, C.; Giuggioli, N.R.; Giraudo, E.; Guerrini, S. First Results of Biodegradable Mulching on Small Berry Fruits. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Berries: From Genomics to Sustainable Production, Quality and Health, Lisbon, Portugal, 22–27 August 2010; Volume 926, pp. 571–576. [Google Scholar]
- Lobos, G.A.; Retamales, J.B.; Hancock, J.F.; Flore, J.A.; Romero-Bravo, S.; Del Pozo, A. Productivity and Fruit Quality of Vaccinium corymbosum cv. Elliott under Photo-Selective Shading Nets. Sci. Hortic. 2013, 153, 143–149. [Google Scholar] [CrossRef]
- Coletti, R.; Nienow, A.A.; Calvete, E.O. Dormancy Breaking of Blueberries Cultivars in a Protected Environment with Hydrogen Cyanamide and Mineral Oil. Rev. Bras. Frutic. 2011, 33, 685–690. [Google Scholar] [CrossRef]
- Boudreau-Forgues, Ã.-M.; Gaudreau, L.; Nguyen, T.T.A.; Gosselin, A.; Thériault, L.; Brégard, A.; Dorais, M. Impact of Silicon Applications on the Agronomic and Nutritional Performance of Container-Grown Organic Highbush Blueberries. In Proceedings of the IV International Symposium on Organic Greenhouse Horticulture, Cancun, Mexico, 22–27 October 2023; Volume 1428, pp. 55–62. [Google Scholar]
- Leal-Ayala, O.G.; Sandoval-Villa, M.; Trejo-Téllez, L.I.; Sandoval-Rangel, A.; Cabrera-De la Fuente, M.; Benavides-Mendoza, A. Nitrogen Form and Root Division Modifies the Nutrimental and Biomolecules Concentration in Blueberry (Vaccinium corymbosum L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 11998. [Google Scholar] [CrossRef]
- Ngoc, N.P.; Thao, P.T.P. Yield-Limiting Nutrient Response of Lowbush Blueberry Grown in Recent and Ancient Alluvial Soils of the Mekong Delta. PeerJ 2024, 12, e17992. [Google Scholar] [CrossRef]
- Heller, C.R.; Nunez, G.H. Preplant Fertilization Increases Substrate Microbial Respiration but Does Not Affect Southern Highbush Blueberry Establishment in a Coconut Coir-Based Substrate. HortScience 2022, 57, 17–21. [Google Scholar] [CrossRef]
- Viencz, T.; Santana, K.; Ayub, R.A.; Botelho, R.V. Development, Photosynthesis and Yield of Blueberry Cultivar ‘Climax’Growth with Different Substrates and Nitrogen Fertilization under Protected Cultivation. Cienc. Rural 2021, 51, e20190367. [Google Scholar] [CrossRef]
- Bolaños-Alcántara, M.N.; Pineda-Pineda, J.; Castro-Brindis, R.; Vargas-Hernández, M.; Avitia-GarcÃa, E. Nitrate/Ammonium Ratio and Electrical Conductivity in Blueberry Quality. In Proceedings of the XXX International Horticultural Congress IHC2018: III International Berry Fruit Symposium, Istanbul, Turkey, 12–16 August 2018; Volume 1265, pp. 233–240. [Google Scholar]
- Bandaranayake, W.M.; Syvertsen, J.P.; Schumann, A.; Kadyampakeni, D.M. Leaching Losses from Blueberries Grown in Sandy Soils Amended with Pine Bark; Wiley Online Library: Hoboken, NJ, USA, 2020. [Google Scholar]
- Ordóñez-Díaz, J.L.; Pereira-Caro, G.; Cardeñosa, V.; Muriel, J.L.; Moreno-Rojas, J.M. Study of the Quality Attributes of Selected Blueberry (Vaccinium corymbosum L.) Varieties Grown under Different Irrigation Regimes and Cultivation Systems. Appl. Sci. 2020, 10, 8459. [Google Scholar] [CrossRef]
- Cardeñosa, V.; Girones-Vilaplana, A.; Muriel, J.L.; Moreno, D.A.; Moreno-Rojas, J.M. Influence of Genotype, Cultivation System and Irrigation Regime on Antioxidant Capacity and Selected Phenolics of Blueberries (Vaccinium corymbosum L.). Food Chem. 2016, 202, 276–283. [Google Scholar] [CrossRef]
- Bian, D.; Yang, F.; Zhao, G.; Zheng, K.; Lin, H. Construction of Intelligent Water and Fertilizer Integration System for Blueberry Greenhouse. J. Chinese Agric. Mech. 2022, 43, 55–61. [Google Scholar]
- Liu, L.; Zhang, Y.; Zhang, X.; Huang, X.; Huang, C. Application and Development of Agricultural Smart Irrigation in Northern Water-Scarce Areas. Agric. Eng. 2023, 13, 78–83. [Google Scholar]
- Gurovich, L.A. Real-Time Plant Water Potential Assessment Based on Electrical Signalling in Higher Plants. In Proceedings of the 7th World Congress on Computers in Agriculture Conference Proceedings, Reno, NV, USA, 22–24 June 2009; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2009; p. 1. [Google Scholar]
- Stückrath, R.; Quevedo, R.; de la Fuente, L.; Hernández, A.; Sepúlveda, V. Effect of Foliar Application of Calcium on the Quality of Blueberry Fruits. J. Plant Nutr. 2008, 31, 1299–1312. [Google Scholar] [CrossRef]
- France, A.; Santelices, C.; Buddie, A.; Kirk, P. Silver Leaf: First Worldwide Report of a New and Harmful Disease on Blueberry. In Proceedings of the IX International Vaccinium Symposium, Corvallis, OR, USA, 14–18 July 2008; Volume 810, pp. 341–344. [Google Scholar]
- Yu, L.; Rarisara, I.; Xu, S.G.; Wu, X.; Zhao, J.R. First Report of Stem Blight of Blueberry Caused by Botryosphaeria Dothidea in China. Plant Dis. 2012, 96, 1697. [Google Scholar] [CrossRef]
- Atashi Khalilabad, A.; Fotouhifar, K.; Atghia, O. Characterization and Report of Ectophoma Multirostrata, Causing Stem Canker Disease in Highbush Blueberry in Iran. J. Phytopathol. 2023, 171, 470–477. [Google Scholar] [CrossRef]
- Di Genova, D.; Lewis, K.J.; Oliver, J.E. Natural Infection of Southern Highbush Blueberry (Vaccinium corymbosum Interspecific Hybrids) by Xylella fastidiosa subsp. Fastidiosa. Plant Dis. 2020, 104, 2598–2605. [Google Scholar] [CrossRef]
- Lan, C.Z.; Ruan, H.C.; Yao, J.A. First Report of Phytophthora Cinnamomi Causing Root and Stem Rot of Blueberry (Vaccinium corymbosum) in China. Plant Dis. 2016, 100, 2537. [Google Scholar] [CrossRef]
- Yeo, J.R.; Weiland, J.E.; Sullivan, D.M.; Bryla, D.R. Susceptibility of Highbush Blueberry Cultivars to Phytophthora Root Rot. HortScience 2016, 51, 74–78. [Google Scholar] [CrossRef]
- Smith, B.J.; Miller-Butler, M.A. Effect of Nitrogen Fertilization and Fungicides on Botryosphaeria Stem Blight Lesion Development on Detached Blueberry Stems. In Proceedings of the XI International Vaccinium Symposium, Orlando, FL, USA, 10–14 April 2016; Volume 1180, pp. 61–70. [Google Scholar]
- Smith, B.J.; Miller-Butler, M.A.; Curry, K.J.; Sakhanokho, H.F. Effect of Phytophthora Cinnamomi Isolate, Inoculum Delivery Method, and Flood and Drought Conditions on Vigor, Disease Severity Scores, and Survival of Blueberry Plants. In Proceedings of the XI International Vaccinium Symposium, Orlando, FL, USA, 10–14 April 2016; Volume 1180, pp. 93–104. [Google Scholar]
- Wiseman, M.S.; Gordon, M.I.; Putnam, M.L. First Report of Leaf Rust Caused by Thekopsora Minima on Northern Highbush Blueberry in Oregon. Plant Dis. 2016, 100, 1949. [Google Scholar] [CrossRef]
- Hummer, K.; Williams, R. Pests of Blueberries on São Miguel, Açores, Portugal. In Proceedings of the IX International Vaccinium Symposium, Corvallis, OR, USA, 14–18 July 2008; Volume 810, pp. 287–292. [Google Scholar]
- Nickerson, N.L.; MacNeill, B.H. Studies on the Spread of Red Leaf Disease, Caused by Exobasidium vaccinii, in Lowbush Blueberries. Can. J. Plant Pathol. 1987, 9, 307–310. [Google Scholar] [CrossRef]
- Cook, M.A.; Ozeroff, S.N.; Fitzpatrick, S.M.; Roitberg, B.D. Host-associated Differentiation in Reproductive Behaviour of Cecidomyiid Midges on Cranberry and Blueberry. Entomol. Exp. Appl. 2011, 141, 8–14. [Google Scholar] [CrossRef]
- Tartanus, M.; Malusa, E.; Sas, D.; Łabanowska, B. Integrated Control of Lecanium Scale (Parthenolecanium sp.) on Highbush Blueberry in Open Field and Protected Crops. J. Plant Prot. Res. 2018, 58, 297–303. [Google Scholar] [CrossRef]
- Tuovinen, T. Risk of Invasive Arthropod Pests Related to Climate Change in the Northernmost Small Fruit Production Area in EU. In Proceedings of the Workshop on Berry Production in Changing Climate Conditions and Cultivation Systems. COST-Action 863: Euroberry Research: From Genomics to Sustainable Production, Quality and Health, Geisenheim, Germany, 29–31 October 2008; Volume 838, pp. 151–154. [Google Scholar]
- Shantharaj, D.; Román-Écija, M.; Velasco-Amo, M.P.; Navas-Cortés, J.A.; Landa, B.B.; De La Fuente, L. European Xylella fastidiosa Strains Can Cause Symptoms in Blueberry. Plant Dis. 2024, 108, 2658–2662. [Google Scholar] [CrossRef]
- Waliullah, S.; Di Genova, D.; Oliver, J.E.; Ali, M.E. Development of a CAPS Marker and a LAMP Assay for Rapid Detection of Xylella fastidiosa subsp. Multiplex and Differentiation from X. fastidiosa subsp. Fastidiosa on Blueberry. Int. J. Mol. Sci. 2022, 23, 1937. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.E.; Lewis, K.J.; Taylor, S.J.; Chen, J. Complete Genome Sequences of Xylella fastidiosa subsp. Fastidiosa and X. fastidiosa subsp. Multiplex Strains Causing Blueberry Bacterial Leaf Scorch Disease in Georgia, USA. Microbiol. Resour. Announc. 2023, 12, e00114-23. [Google Scholar] [PubMed]
- Shantharaj, D.; Naranjo, E.; Merfa, M.V.; Cobine, P.A.; Santra, S.; De La Fuente, L. Zinc Oxide-Based Nanoformulation Zinkicide Mitigates the Xylem-Limited Pathogen Xylella fastidiosa in Tobacco and Southern Highbush Blueberry. Plant Dis. 2023, 107, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Pszczółkowska, A.; Okorski, A.; Paukszto, Ł.; Jastrzębski, J. First Report of Anthracnose Disease Caused by Colletotrichum Fioriniae on Blueberry in Western Poland. Plant Dis. 2016, 100, 2167. [Google Scholar] [CrossRef]
- Ehlenfeldt, M.K.; Polashock, J.J.; Stretch, A.W.; Kramer, M. Leaf Disk Infection by Colletotrichum Acutatum and Its Relation to Fruit Rot in Diverse Blueberry Germplasm. HortScience 2006, 41, 270–271. [Google Scholar] [CrossRef]
- Onofre, R.B.; Mertely, J.C.; Aguiar, F.M.; Timilsina, S.; Harmon, P.; Vallad, G.E.; Peres, N.A. First Report of Target Spot Caused by Corynespora Cassiicola on Blueberry in North America. Plant Dis. 2016, 100, 528. [Google Scholar] [CrossRef]
- Zheng, X.; Qi, X.; Xu, J.; Cui, Y.; Yu, X.; Chang, X.; Zhou, Y.; Gong, G. First Report of Corynespora Leaf Spot of Blueberry Caused by Corynespora Cassiicola in Sichuan, China. Plant Dis. 2015, 99, 1651. [Google Scholar] [CrossRef]
- Ehlenfeldt, M.K.; Stretch, A.W. Resistance to Blighting by Monilinia vaccinii-corymbosi in Diploid and Polyploid Vaccinium Species. HortScience 2001, 36, 955–957. [Google Scholar] [CrossRef]
- Lehman, J.S.; Igarashi, S.; Oudemans, P.V. Host Resistance to Monilinia vaccinii-corymbosi in Flowers and Fruits of Highbush Blueberry. Plant Dis. 2007, 91, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Tarnowski, T.L.B.; Savelle, A.T.; Scherm, H. Activity of Fungicides against Monilinia vaccinii-corymbosi in Blueberry Flowers Treated at Different Phenological Stages. Plant Dis. 2008, 92, 961–965. [Google Scholar] [CrossRef]
- Thomas-Sharma, S.; Scherm, H. Pre-and Post-Anthesis Activity of Fenbuconazole and Triforine against Blueberry Flower Infection by Monilinia vaccinii-corymbosi. Crop Prot. 2017, 96, 180–187. [Google Scholar]
- Ngugi, H.K.; Scherm, H.; Lehman, J.S. Relationships between Blueberry Flower Age, Pollination, and Conidial Infection by Monilinia vaccinii-corymbosi. Phytopathology 2002, 92, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Lehman, J.S.; Oudemans, P.V. Phenology of Apothecium Production in Populations of Monilinia vaccinii-corymbosi from Early-and Late-Maturing Blueberry Cultivars. Phytopathology 1997, 87, 218–223. [Google Scholar]
- Lehman, J.S.; Oudemans, P.V. Variation and Heritability of Phenology in the Fungus Monilinia vaccinii-corymbosi on Blueberry. Phytopathology 2000, 90, 390–395. [Google Scholar] [CrossRef]
- Boyzo-Marin, J.; Rebollar-Alviter, A.; Silva-Rojas, H.V.; Ramirez-Maldonaldo, G. First Report of Neofusicoccum Parvum Causing Stem Blight and Dieback of Blueberry in Mexico. Plant Dis. 2016, 100, 2524. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; He, W.; Zhang, Y. Stem Blight of Blueberry Caused by Lasiodiplodia vaccinii sp. Nov. in China. Plant Dis. 2019, 103, 2041–2050. [Google Scholar] [CrossRef] [PubMed]
- Yi-Lan, J.; Shi-Long, J.; Xuan-Li, J. Disease-Resistant Identification and Analysis to Transcriptome Differences of Blueberry Leaf Spot Induced by Beta-Aminobutyric Acid. Arch. Microbiol. 2021, 203, 3623–3632. [Google Scholar]
- Jagdale, G.B.; Holladay, T.; Brannen, P.M.; Cline, W.O.; Agudelo, P.; Nyczepir, A.P.; Noe, J.P. Incidence and Pathogenicity of Plant-Parasitic Nematodes Associated with Blueberry (Vaccinium spp.) Replant Disease in Georgia and North Carolina. J. Nematol. 2013, 45, 92. [Google Scholar]
- Forge, T.; Zasada, I.; Pinkerton, J.; Koch, C. Host Status and Damage Potential of Paratrichodorus Renifer and Pratylenchus penetrans (Nematoda) to Blueberry (Vaccinium spp.). Can. J. Plant Pathol. 2012, 34, 277–282. [Google Scholar]
- Polavarapu, S.; Koppenhöfer, A.M.; Barry, J.D.; Holdcraft, R.J.; Fuzy, E.M. Entomopathogenic Nematodes and Neonicotinoids for Remedial Control of Oriental Beetle, Anomala orientalis (Coleoptera: Scarabaeidae), in Highbush Blueberry. Crop Prot. 2007, 26, 1266–1271. [Google Scholar]
- Reeh, K.W.; Hillier, N.K.; Cutler, G.C. Potential of Bumble Bees as Bio-Vectors of Clonostachys Rosea for Botrytis Blight Management in Lowbush Blueberry. J. Pest Sci. 2014, 87, 543–550. [Google Scholar] [CrossRef]
- Reeh, K.W.; Cutler, G.C. Laboratory Efficacy and Fungicide Compatibility of Clonostachys Rosea against Botrytis Blight on Lowbush Blueberry. Can. J. Plant Sci. 2013, 93, 639–642. [Google Scholar] [CrossRef]
- Navarro, P.D.; Palma-Millanao, R.; Ceballos, R.; Monje, A.J. Steinernema australe Enhanced Its Efficacy against Aegorhinus nodipennis (Coleoptera: Curculionidae) Larvae in Berry Orchards after an Artificial Selection Process. Agronomy 2022, 12, 1128. [Google Scholar] [CrossRef]
- Thimmappa, B.C.; Salhi, L.N.; Forget, L.; Sarrasin, M.; Bustamante Villalobos, P.; Henrissat, B.; Lang, B.F.; Burger, G. A Biofertilizing Fungal Endophyte of Cranberry Plants Suppresses the Plant Pathogen Diaporthe. Front. Microbiol. 2024, 15, 1327392. [Google Scholar] [CrossRef]
- Li, J.; Hou, R.; Zhang, F. A New Schizophyllum commune Strain as a Potential Biocontrol Agent against Blueberry Root Rot. Arch. Microbiol. 2024, 206, 235. [Google Scholar] [CrossRef]
- Montalba, R.; Arriagada, C.; Alvear, M.; Zúñiga, G.E. Effects of Conventional and Organic Nitrogen Fertilizers on Soil Microbial Activity, Mycorrhizal Colonization, Leaf Antioxidant Content, and Fusarium Wilt in Highbush Blueberry (Vaccinium corymbosum L.). Sci. Hortic. 2010, 125, 775–778. [Google Scholar] [CrossRef]
- Marucci, R.C.; Ruber, S.E.; Pec, M.; Liburd, O.E. Are Predatory Mites Effective as Biological Control Agents to Suppress Oligonychus ilicis (Acari: Tetranychidae) in Blueberry Plantings? J. Econ. Entomol. 2024, 117, 834–842. [Google Scholar] [PubMed]
- Roubos, C.R.; Rodriguez-Saona, C.; Holdcraft, R.; Mason, K.S.; Isaacs, R. Relative Toxicity and Residual Activity of Insecticides Used in Blueberry Pest Management: Mortality of Natural Enemies. J. Econ. Entomol. 2014, 107, 277–285. [Google Scholar] [PubMed]
- Hughes, A.; White, S.N.; Boyd, N.S.; Hildebrand, P.; Christopher Cutler, G. Red Sorrel Management and Potential Effect of Red Sorrel Pollen on Botrytis Cinerea Spore Germination and Infection of Lowbush Blueberry (Vaccinium angustifolium Ait.) Flowers. Can. J. Plant Sci. 2016, 96, 590–596. [Google Scholar] [CrossRef]
- Cerna Larenas, M.; Guzmán Estrada, R.; Guerrero Contreras, J.; Meriño Gergichevich, C. Determination of the Fluorescence Spectrum of Botrytis Cinerea Pers: Fr. Isolated from Highbush Blueberry (Vaccinium corymbosum L.). J. Soil Sci. Plant Nutr. 2015, 15, 938–948. [Google Scholar]
- El Horri, H.; Bartolini, S.; Remorini, D.; Ceccanti, C.; Florio, M.; D’Asaro, L.; Jain, G.; Massai, R.; Landi, M.; Guidi, L. Light Down-Conversion Technology Improves Vegetative Growth, Berry Production, and Postharvest Quality in Tunnel-Cultivated Blueberry. Agronomy 2025, 15, 1708. [Google Scholar]
- Tran, Q.; Retano, A.; Bryla, D.R.; Garcia-Jaramillo, M.; Jin, X. Integrated Electrodialysis–Forward Osmosis Process for Sustainable Water Reuse: A Case Study in Southern Highbush Blueberry. J. Environ. Chem. Eng. 2025, 13, 117178. [Google Scholar]
- Sun, K.X.; Zhang, Y.J.; Zhou, C.Z.; Yang, S.L.; Jiang, H.X.; Cui, R.R. Effect of Gradual Pollen Presentation on Pollination Efficiency and Reproduction of Vaccinium corymbosum Berkeley in Two Habitats. Front. Ecol. Evol. 2024, 12, 1476848. [Google Scholar] [CrossRef]
- Wang, H.; Xia, X.; An, L. Effect of Hydrogen Cyanamide on Bud Break, Fruit Yield and Quality of Highbush Blueberry in Greenhouse Production. Agriculture 2021, 11, 439. [Google Scholar] [CrossRef]
- Bañados, M.P.; Strik, B. Manipulation of the Annual Growth Cycle of Blueberry Using Photoperiod. In Proceedings of the VIII International Symposium on Vaccinium Culture, Sevilla, Spain, 3–8 May 2004; Volume 715, pp. 65–72. [Google Scholar]
- Spiers, J.M.; Marshall, D.A.; Braswell, J.H. Chilling Requirement Studies in Blueberries. Small Fruits Rev. 2004, 3, 325–330. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, L.; Dang, C.; Wang, H.; Jiang, G.; Li, G.; Zhang, Z.; Lou, X.; Zheng, Y. Effects of High Temperature on Leaf Stomatal Traits and Gas Exchange Parameters of Blueberry. Trans. Chin. Soc. Agric. Eng. 2016, 32, 218–225. [Google Scholar]
- Albert, K.R.; Mikkelsen, T.N.; Ro-Poulsen, H. Ambient UV-B Radiation Decreases Photosynthesis in High Arctic Vaccinium uliginosum. Physiol. Plant. 2008, 133, 199–210. [Google Scholar] [CrossRef]
- Lobos, G.A.; Retamales, J.B.; Hancock, J.F.; Flore, J.A. Physiological Response of Vaccinium corymbosum ‘Elliott’ to Shading Nets in Michigan. In Proceedings of the IX International Vaccinium Symposium, Corvallis, OR, USA, 14–18 July 2008; Volume 810, pp. 465–470. [Google Scholar]
- Suzuki, A.; Shimizu, T.; Aoba, K. Effects of Leaf/Fruit Ratio and Pollen Density on Highbush Blueberry Fruit Quality and Maturation. J. Japanese Soc. Hortic. Sci. 1998, 67, 739–743. [Google Scholar] [CrossRef]
- Strik, B.C. Flowering and Fruiting on Command in Berry Crops. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Berries: From Genomics to Sustainable Production, Quality and Health, Lisbon, Portugal, 22–27 August 2010; Volume 926, pp. 197–214. [Google Scholar]
- Lenart, A.; Wrona, D.; Krupa, T. Biostimulators with Marine Algae Extracts and Their Role in Increasing Tolerance to Drought Stress in Highbush Blueberry Cultivation. PLoS ONE 2024, 19, e0306831. [Google Scholar] [CrossRef]
- Percival, D.; MacKenzie, J.L. Use of Plant Growth Regulators to Increase Polyphenolic Compounds in the Wild Blueberry. Can. J. Plant Sci. 2007, 87, 333–336. [Google Scholar] [CrossRef]
- Sim, A.; Pearse, J.; McGuinness, B.; Williams, H.; Duke, M. Evaluation of a Low-Cost Selective Shaking Device and Soft Surface Catchment for Fresh Market Blueberry Harvesting. In Proceedings of the 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), Bari, Italy, 28 August–1 September 2024; IEEE: New York, NY, USA, 2024; pp. 2813–2818. [Google Scholar]
- Takeda, F.; Krewer, G.; Li, C.; MacLean, D.; Olmstead, J.W. Techniques for Increasing Machine Harvest Efficiency in Highbush Blueberry. Horttechnology 2013, 23, 430–436. [Google Scholar] [CrossRef]
- Yu, P.; Li, C.; Takeda, F.; Krewer, G.; Rains, G.; Hamrita, T. Quantitative Evaluation of a Rotary Blueberry Mechanical Harvester Using a Miniature Instrumented Sphere. Comput. Electron. Agric. 2012, 88, 25–31. [Google Scholar] [CrossRef]
- Esau, K.; Esau, T.; Zaman, Q.; Farooque, A.; Schumann, A. Effective Use of a Variable Speed Blower Fan on a Mechanical Wild Blueberry Harvester. Appl. Eng. Agric. 2018, 34, 831–840. [Google Scholar] [CrossRef]
- Gibson, L.; Rupasinghe, H.P.V.; Forney, C.F.; Eaton, L. Characterization of Changes in Polyphenols, Antioxidant Capacity and Physico-Chemical Parameters during Lowbush Blueberry Fruit Ripening. Antioxidants 2013, 2, 216–229. [Google Scholar] [CrossRef]
- Gallardo, R.K.; Zilberman, D. The Economic Feasibility of Adopting Mechanical Harvesters by the Highbush Blueberry Industry. Horttechnology 2016, 26, 299–308. [Google Scholar] [CrossRef]
- Olmstead, J.W.; Finn, C.E. Breeding Highbush Blueberry Cultivars Adapted to Machine Harvest for the Fresh Market. Horttechnology 2014, 24, 290–294. [Google Scholar] [CrossRef]
- Fathollahi-Fard, A.M.; Tian, G.; Ke, H.; Fu, Y.; Wong, K.Y. Efficient Multi-Objective Metaheuristic Algorithm for Sustainable Harvest Planning Problem. Comput. Oper. Res. 2023, 158, 106304. [Google Scholar] [CrossRef]
- Huang, R.; Ye, M.; Li, X.; Ji, L.; Karwe, M.; Chen, H. Evaluation of High Hydrostatic Pressure Inactivation of Human Norovirus on Strawberries, Blueberries, Raspberries and in Their Purees. Int. J. Food Microbiol. 2016, 223, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Scheidt, T.B.; Silva, F.V.M. High Pressure Processing and Storage of Blueberries: Effect on Fruit Hardness. High Press. Res. 2018, 38, 80–89. [Google Scholar] [CrossRef]
- Adhikari, J.; Araghi, L.R.; Singh, R.; Adhikari, K.; Patil, B.S. Continuous-Flow High-Pressure Homogenization of Blueberry Juice Enhances Anthocyanin and Ascorbic Acid Stability during Cold Storage. J. Agric. Food Chem. 2024, 72, 11629–11639. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Shojaei, M.; Singh, A.; Ye, Y.; Mandal, R.; Yan, Y.; Pico, J.; Gerbrandt, E.M.; Castellarin, S.D. Effects of Pulsed Light on the Postharvest Quality and Shelf-Life of Highbush Blueberries (cv. Draper). Appl. Food Res. 2023, 3, 100273. [Google Scholar] [CrossRef]
- Salehi, F. Application of Pulsed Light Technology for Fruits and Vegetables Disinfection: A Review. J. Appl. Microbiol. 2022, 132, 2521–2530. [Google Scholar] [CrossRef]
- Zhu, N.; Zhu, Y.; Yu, N.; Wei, Y.; Zhang, J.; Hou, Y.; Sun, A. Evaluation of Microbial, Physicochemical Parameters and Flavor of Blueberry Juice after Microchip-Pulsed Electric Field. Food Chem. 2019, 274, 146–155. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, S.; Li, J.; Qu, C.; Sun, A.; Qiao, X. Design and Optimization of a Microchip Operating at Low-Voltage Pulsed Electric Field for Juice Sterilization. Food Bioprocess Technol. 2019, 12, 1696–1707. [Google Scholar] [CrossRef]
- Barba, F.J.; Jäger, H.; Meneses, N.; Esteve, M.J.; Frígola, A.; Knorr, D. Evaluation of Quality Changes of Blueberry Juice during Refrigerated Storage after High-Pressure and Pulsed Electric Fields Processing. Innov. Food Sci. Emerg. Technol. 2012, 14, 18–24. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Li, X.; Li, B.; Liu, S.; Chang, N.; Jie, D.; Ning, C.; Gao, H.; Meng, X. Combined Effect of Ultrasound, Heat, and Pressure on Escherichia coli O157: H7, Polyphenol Oxidase Activity, and Anthocyanins in Blueberry (Vaccinium corymbosum) Juice. Ultrason. Sonochem. 2017, 37, 251–259. [Google Scholar] [CrossRef]
- Pathak, N.; Grossi Bovi, G.; Limnaios, A.; Fröhling, A.; Brincat, J.; Taoukis, P.; Valdramidis, V.P.; Schlüter, O. Impact of Cold Atmospheric Pressure Plasma Processing on Storage of Blueberries. J. Food Process. Preserv. 2020, 44, e14581. [Google Scholar] [CrossRef]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H. Atmospheric Cold Plasma Inactivation of Aerobic Microorganisms on Blueberries and Effects on Quality Attributes. Food Microbiol. 2015, 46, 479–484. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, F.; Zhu, D.; Zhao, D.; Zhao, Y.; Li, J. Evaluation of the Effects of Immersion Thawing Methods on Quality of Blueberries. J. Food Process Eng. 2020, 43, e13538. [Google Scholar] [CrossRef]
- Darniadi, S.; Ifie, I.; Ho, P.; Murray, B.S. Evaluation of Total Monomeric Anthocyanin, Total Phenolic Content and Individual Anthocyanins of Foam-Mat Freeze-Dried and Spray-Dried Blueberry Powder. J. Food Meas. Charact. 2019, 13, 1599–1606. [Google Scholar] [CrossRef]
- Zárate-Carbajal, A.; Turgeon, S.L.; Bazinet, L.; Mcsweeney, M.; Sierra, A.D. Optimizing Wild Blueberry Juice Production: Sensory, Physicochemical, and Phytochemical Characteristics. Int. J. Gastron. Food Sci. 2025, 41, 101279. [Google Scholar] [CrossRef]
- Cao, X.M.; Bi, X.F.; Li, R.J.; Dong, P.; Hu, X.S.; Liao, X.J. Effects of Ultrahigh Pressure and Thermal Sterilization on the Quality of Strawberry Cloudy Juice and Clear Juice. J. High Press. Phys. 2014, 28, 631–640. [Google Scholar]
- Beaulieu, J.C.; Stein-Chisholm, R.E.; Lloyd, S.W.; Bett-Garber, K.L.; Grimm, C.C.; Watson, M.A.; Lea, J.M. Volatile, Anthocyanidin, Quality and Sensory Changes in Rabbiteye Blueberry from Whole Fruit through Pilot Plant Juice Processing. J. Sci. Food Agric. 2017, 97, 469–478. [Google Scholar] [CrossRef]
- Yang, L.; Feng, X.; Xu, S.; Li, Q.; Huang, B. Effects of Different Freezing Temperatures and Freeze-Thaw Cycles on the Quality Characteristics of Blueberries. Mod. Food Sci. Technol. 2023, 39, 127–136. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, L.; Li, J.; Wang, L.; Song, X. Extraction and Characterization of Pectin from Jerusalem ArtiChoke Residue and Its Application in Blueberry Preservation. Coatings 2022, 12, 385. [Google Scholar] [CrossRef]
- Xie, X.; Nie, Y.; Wang, Y.; Wen, B.; Shang, J.; Guo, X.; Tian, J.; Wang, Y.; Zhang, Y.; Li, S.; et al. Integration of GC-MS, ROAV, and Chemometrics to Characterize Key Differential Volatile Compounds in Wild and Cultivated Blueberries from Northeast China. LWT-Food Sci. Technol. 2025, 225, 11795. [Google Scholar]
- Jiahui, Y.; Wang, W.; Tang, Y.; Zhang, S.; Lin, R.; Zhang, D. Experimental Study on Microwave Freeze-Drying of Foamed Blueberry Pulp Assisted by Absorbing Materials. Trans. Chin. Soc. Agric. Eng. 2022, 38, 284–292. [Google Scholar] [CrossRef]
- Zhang, X.; Bi, J.; Chen, Q.; Wu, X.; Li, X.; Lü, Y. Quality and Processing Characteristics of a Mixed Freeze-Dried Powder of Blueberry and Blue Honeysuckle Berries during Storage. Food Sci. 2022, 43, 240–247. [Google Scholar]
- Chu, W.; Sun, Y.; Xiao, L.; Chen, A.; Tao, Y. Hygroscopic Mechanism of Blueberry Powder Based on Glass Transition Theory. Food Sci. 2023, 44, 41–47. [Google Scholar]
- Rashwan, A.K.; Osman, A.I.; Karim, N.; Mo, J.; Chen, W. Unveiling the Mechanisms of the Development of Blueberries-Based Functional Foods: An Updated and Comprehensive Review. Food Rev. Int. 2024, 40, 1913–1940. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Cui, M.-Y.; Fu, Y.; Wang, X.-H.; Yang, Q.; Zhu, Y.; Yang, X.-H.; Bi, H.-J.; Gao, X.-L. Aroma Enhancement of Blueberry Wine by Postharvest Partial Dehydration of Blueberries. Food Chem. 2023, 426, 136593. [Google Scholar] [CrossRef]
- Song, Z.; Xu, B.; Kang, S.; Dai, H.; Zhou, X.; Li, M.; Luo, M.; Ji, S.; Zhou, Q. Calcium Chloride Treatment Delayed the Softening of Postharvest Blueberries by Regulating ABA Biosynthesis and Signal Transduction. Sci. Hortic. 2025, 339, 113879. [Google Scholar]
- Duan, C.; Xiao, X.; Yu, Y.; Xu, M.; Zhang, Y.; Liu, X.; Dai, H.; Pi, F.; Wang, J. In Situ Raman Characterization of the Stability of Blueberry Anthocyanins in Aqueous Solutions under Perturbations in Temperature, UV, PH. Food Chem. 2024, 431, 137155. [Google Scholar]
- Wu, Z.; Li, H.; Wang, Y.; Tan, H.; Yang, Y.; Zhan, Y.; Wang, F. Effects of Different Thermal-Treated Temperatures on Polyphenols and Flavonoids of Blueberry Juice during Cold Storage. Food Ferment. Ind. 2019, 45, 209–215. [Google Scholar]
- Lacombe, A.; Wu, V.C.H. The Effects of Sanitizing Hurdles against Foodborne Pathogens during Blueberry Processing. Food Control 2023, 154, 109981. [Google Scholar] [CrossRef]
- Tadepalli, S.; Bridges, D.F.; Anderson, R.; Zhang, R.; Wu, V.C.H. Synergistic Effect of Sequential Wash Treatment with Two Different Low-Dosage Antimicrobial Washes in Combination with Frozen Storage Increases Salmonella typhimurium and Listeria monocytogenes Reduction on Wild Blueberries. Food Control 2019, 102, 87–93. [Google Scholar] [CrossRef]
- Callahan, S.; Perry, J.J. Survival of Listeria innocua and Native Microflora in Sanitizer-Treated Wild Blueberries (Vaccinium angustifolium). Int. J. Fruit Sci. 2020, 20, S66–S81. [Google Scholar] [CrossRef]
- Lacombe, A.; Antosch, J.G.; Wu, V.C.H. Scale-up Model of Forced Air-integrated Gaseous Chlorine Dioxide for the Decontamination of Lowbush Blueberries. J. Food Saf. 2020, 40, e12793. [Google Scholar] [CrossRef]
- Ells, T.; Tregunno, N.; Fan, L.; Elliot, M.; Doucette, C.; Lyu, H.; Jollimore, A. Microbiological Analysis of Wild Lowbush Blueberries Harvested in Nova Scotia, Canada for the Fresh Produce Market. Microorganisms 2024, 12, 2251. [Google Scholar] [CrossRef] [PubMed]
- Balyan, S.; Dadwal, V.; Jha, D.K.; Patil, B.S. Innovative Food Safety Strategy: Eugenol Nanoemulsion with Lactobacillus Derived Post-Biotic Biopolymer for Biofilm Inhibition on Food and Contact Surfaces. Food Control 2025, 176, 111348. [Google Scholar] [CrossRef]
- Suresh, S.N.; SenthilKumar, P.; Pushparaj, C.; Sarangi, P.K.; Regina, V.R.; Subramani, R. Almond Gum-chitosan Nanocomposite as Edible Formulation for Advancing Postharvest Longevity of Fruits and Vegetables. Polym. Adv. Technol. 2024, 35, e6453. [Google Scholar] [CrossRef]
- Guohong, F.; Jindong, Z.; Yujie, Z.H.U.; Tiantian, W. Comprehensive Quality Evaluation of Blueberries Based on Near-Infrared Spectroscopy and Fiber Optic Droplet Analysis. Food Sci. 2024, 45, 216–224. [Google Scholar]
- Sharma, P.; Venugopal, A.P. Bruise Damage Susceptibility of Blueberry and Strawberry. In Mechanical Damage in Fresh Horticultural Produce: Measurement, Analysis and Control; Springer: Singapore, 2024; pp. 239–267. [Google Scholar]
- Jung, J.; Lin, C.; Zhao, Y. Enhancing Anthocyanin–Phenolic Copigmentation through Epicarp Layer Treatment and Edible Coatings to Retain Anthocyanins in Thermally Processed Whole Blueberries. J. Food Sci. 2022, 87, 3809–3821. [Google Scholar] [CrossRef]
- Ning, N.; Wang, X.; Li, J.; Bi, X.; Li, M.; Xing, Y.; Che, Z.; Wang, Y. Effects of Different Antioxidants Combined with High Hydrostatic Pressure on the Color and Anthocyanin Retention of a Blueberry Juice Blend during Storage. Food Sci. Technol. Int. 2023, 29, 518–528. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, F.; Chen, Y.; Ning, N.; Hao, G.; Bi, X. The Effect of High-Pressure Processing on the Copigmentation and Storage Stability of Polyphenols with Anthocyanin Monomers. Foods 2024, 13, 3756. [Google Scholar] [CrossRef]
- Guo, J.; Giusti, M.M.; Kaletunç, G. Encapsulation of Purple Corn and Blueberry Extracts in Alginate-Pectin Hydrogel Particles: Impact of Processing and Storage Parameters on Encapsulation Efficiency. Food Res. Int. 2018, 107, 414–422. [Google Scholar] [CrossRef]
- Correia, R.; Grace, M.H.; Esposito, D.; Lila, M.A. Wild Blueberry Polyphenol-Protein Food Ingredients Produced by Three Drying Methods: Comparative Physico-Chemical Properties, Phytochemical Content, and Stability during Storage. Food Chem. 2017, 235, 76–85. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, W.; Li, L.; Deng, W.; Liu, M.; Hu, J. Biodegradable Starch-Based Packaging Films Incorporated with Polyurethane-Encapsulated Essential-Oil Microcapsules for Sustained Food Preservation. Int. J. Biol. Macromol. 2023, 235, 123889. [Google Scholar] [CrossRef]
- Xie, C.; Wang, Q.; Ying, R.; Wang, Y.; Wang, Z.; Huang, M. Binding a Chondroitin Sulfate-Based Nanocomplex with Kappa-Carrageenan to Enhance the Stability of Anthocyanins. Food Hydrocoll. 2020, 100, 105448. [Google Scholar] [CrossRef]
- Howard, L.R.; Brownmiller, C.; Mauromoustakos, A.; Prior, R.L. Improved Stability of Blueberry Juice Anthocyanins by Acidification and Refrigeration. J. Berry Res. 2016, 6, 189–201. [Google Scholar] [CrossRef]
- Yao, G.-L.; Ma, X.-H.; Cao, X.-Y.; Chen, J. Effects of Power Ultrasound on Stability of Cyanidin-3-Glucoside Obtained from Blueberry. Molecules 2016, 21, 1564. [Google Scholar] [CrossRef] [PubMed]
- Shaoqian, C.A.O.; Kai, J.; Liang, L.I.U. Coupled Oxidative Degradation of Blueberry Anthocyanins Induced by Catechol. Sci. Technol. Food Ind. 2022, 43, 58–63. [Google Scholar]
- Waterhouse, G.I.N.; Sun-Waterhouse, D.; Su, G.; Zhao, H.; Zhao, M. Spray-Drying of Antioxidant-Rich Blueberry Waste Extracts; Interplay between Waste Pretreatments and Spray-Drying Process. Food Bioprocess Technol. 2017, 10, 1074–1092. [Google Scholar] [CrossRef]
- Calabuig-Jiménez, L.; Hinestroza-Córdoba, L.I.; Barrera, C.; Seguí, L.; Betoret, N. Effects of Processing and Storage Conditions on Functional Properties of Powdered Blueberry Pomace. Sustainability 2022, 14, 1839. [Google Scholar] [CrossRef]
- Khanal, R.C.; Howard, L.R.; Brownmiller, C.R.; Prior, R.L. Influence of Extrusion Processing on Procyanidin Composition and Total Anthocyanin Contents of Blueberry Pomace. J. Food Sci. 2009, 74, H52–H58. [Google Scholar] [CrossRef]
- Griep, P.; Ferreira, J.; Fischer, B.; Fernandes, I.A.; Cansian, R.L.; Junges, A.; Backes, G.T. Development and Characterization of Active Edible Film with Blueberry Residue Extract (Vaccinium spp.). Biomass Convers. Biorefinery 2024, 14, 22087–22097. [Google Scholar]
- Ikramov, R.; Nilova, L.; Malyutenkova, S. Implementation of a Differentiated Approach to the Use of Microwaves Processing in the Production of Gelatin Jellies. In Proceedings of the E3S Web of Conferences, Chelyabinsk, Russia, 17–19 February 2021; EDP Sciences: London, UK, 2021; Volume 258, p. 12014. [Google Scholar]
- Mu, L.; Bi, J.; Zhao, H.; Li, J.; Hou, H.-M.; Zhang, G.-L.; Hao, H.; Zhou, L. Intelligent PH-Responsive Films Based on Natural Blueberry Anthocyanins: A Non-Destructive Monitoring System for the Freshness of Aquatic Products with Prospective Smartphone Compatibility. Food Chem. X 2025, 28, 102587. [Google Scholar] [CrossRef]
- Bof, M.J.; Laurent, F.E.; Massolo, F.; Locaso, D.E.; Versino, F.; García, M.A. Bio-Packaging Material Impact on Blueberries Quality Attributes under Transport and Marketing Conditions. Polymers 2021, 13, 481. [Google Scholar] [CrossRef]
- Grillo, G.; Gunjević, V.; Radošević, K.; Redovniković, I.R.; Cravotto, G. Deep Eutectic Solvents and Nonconventional Technologies for Blueberry-Peel Extraction: Kinetics, Anthocyanin Stability, and Antiproliferative Activity. Antioxidants 2020, 9, 1069. [Google Scholar] [CrossRef]
- Singh, P.; Niknejad, N.; Spiers, J.D.; Bao, Y.; Ru, S. Development of a Smartphone Application for Rapid Blueberry Detection and Yield Estimation. Smart Agric. Technol. 2025, 12, 101361. [Google Scholar] [CrossRef]
- Zhang, R.; Dong, W.; Hou, P.; Li, H.; Han, X.; Chen, Q.; Li, F.; Zhang, X. YOLOv11-BSD: Blueberry Maturity Detection Under Simulated Nighttime Conditions Evaluated with Causal Analysis. Smart Agric. Technol. 2025, 12, 101314. [Google Scholar] [CrossRef]
- Zhai, Y.; Liang, Z.; Zhang, L.; Xu, S.; Huang, C.; Zhou, X.; Li, M.; Huang, Y. Machine Learning Based Blueberry Detection Method by CIE-YOLOv5. In Proceedings of the International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2023), Nanchang, China, 1–3 December 2023; SPIE: Bellingham, WA, USA, 2024; Volume 13105, pp. 462–467. [Google Scholar]
- Schumann, A.W.; Mood, N.S.; Mungofa, P.D.K.; MacEachern, C.; Zaman, Q.; Esau, T. Detection of Three Fruit Maturity Stages in Wild Blueberry Fields Using Deep Learning Artificial Neural Networks. In Proceedings of the 2019 ASABE Annual International Meeting, Boston, MA, USA, 7–10 July 2019; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2019; p. 1. [Google Scholar]
- Qu, H.; Zheng, C.; Ji, H.; Barai, K.; Zhang, Y.-J. A Fast and Efficient Approach to Estimate Wild Blueberry Yield Using Machine Learning with Drone Photography: Flight Altitude, Sampling Method and Model Effects. Comput. Electron. Agric. 2024, 216, 108543. [Google Scholar] [CrossRef]
- Leiva-Valenzuela, G.A.; Lu, R.; Aguilera, J.M. Assessment of Internal Quality of Blueberry Using Hyperspectral Imaging. In Proceedings of the ASABE Annual International Meeting, Dallas, TX, USA, 29 July–1 August 2012; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2012; p. 1. [Google Scholar]
- Li, R.; Fu, L. Nondestructive Measurement of Firmness and Sugar Content of Blueberries Based on Hyperspectral Imaging. Trans. Chinese Soc. Agric. Eng. 2017, 33, 362–366. [Google Scholar]
- Sinelli, N.; Spinardi, A.; Di Egidio, V.; Mignani, I.; Casiraghi, E. Evaluation of Quality and Nutraceutical Content of Blueberries (Vaccinium corymbosum L.) by near and Mid-Infrared Spectroscopy. Postharvest Biol. Technol. 2008, 50, 31–36. [Google Scholar] [CrossRef]
- Guidetti, R.; Beghi, R.; Bodria, L.; Spinardi, A.; Mignani, I.; Folini, L. Prediction of Blueberry (Vaccinium corymbosum) Ripeness by a Portable Vis-NIR Device. In Proceedings of the IX International Vaccinium Symposium, Corvallis, OR, USA, 14–18 July 2008; Volume 810, pp. 877–886. [Google Scholar]
- Cruz, J.O. Terahertz Time-Domain Spectroscopy (THz-TDS) for Classification of Blueberries According to Their Maturity. In Proceedings of the 2020 IEEE Engineering International Research Conference (EIRCON), Lima, Peru, 21–23 October 2020; IEEE: New York, NY, USA, 2020; pp. 1–4. [Google Scholar]
- Ni, X.; Takeda, F.; Jiang, H.; Yang, W.Q.; Saito, S.; Li, C. A Deep Learning-Based Web Application for Segmentation and Quantification of Blueberry Internal Bruising. Comput. Electron. Agric. 2022, 201, 107200. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C.; Takeda, F. Nondestructive Detection and Quantification of Blueberry Bruising Using Near-Infrared (NIR) Hyperspectral Reflectance Imaging. Sci. Rep. 2016, 6, 35679. [Google Scholar] [CrossRef]
- Kuzy, J.D.; Li, C. Blueberry Bruise Detection by Pulse-Phase Thermography and Neural Network. In Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2015; p. 1. [Google Scholar]
- da Silva Vieira, G.; Rocha, B.M.; Fonseca, A.U.; de Sousa, N.M.; Ferreira, J.C.; Cabacinha, C.D.; Soares, F. Automatic Detection of Insect Predation through the Segmentation of Damaged Leaves. Smart Agric. Technol. 2022, 2, 100056. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Lakhan, A.; Abdulkareem, K.H.; Almujally, N.A.; Al-Attar, B.B.S.M.T.; Memon, S.; Marhoon, H.A.; Martinek, R. Edge-Cloud Remote Sensing Data-Based Plant Disease Detection Using Deep Neural Networks with Transfer Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 11219–11229. [Google Scholar] [CrossRef]
- Bogodukhova, E.S.; Britvina, V.V.; Mukhanova, A.A.; Gelmiyarova, V.N.; Agostinho, A.C. Creating a Digital Platform with a Deep Neural Network for Detecting Plant Diseases Using Information Technology. BIO Web Conf. 2023, 71, 1117. [Google Scholar] [CrossRef]
- Kushwaha, A.; Rajesh, E. Detecting Malign in Leaves Using Deep Learning Algorithm Model ResNet for Smart Framing. In Artificial Intelligence, Blockchain, Computing and Security Volume 1; CRC Press: Boca Raton, FL, USA, 2023; pp. 407–411. ISBN 1003393586. [Google Scholar]
- Yu, B.; Zhao, H.; Zhang, X. BlueberryNet: A Lightweight CNN for Real-Time Ripeness Detection in Automated Blueberry Processing Systems. Processes 2025, 13, 2518. [Google Scholar] [CrossRef]
- Sullca, C.; Molina, C.; Rodríguez, C.; Fernández, T. Diseases Detection in Blueberry Leaves Using Computer Vision and Machine Learning Techniques. Int. J. Mach. Learn. Comput. 2019, 9, 656–661. [Google Scholar] [CrossRef]
- Jian, C.; Bingbing, W.; Long, Y.I.N.; Yanqing, L.I.; Zhaoxin, L.I.; Zhuang, L.I. The Lightweight Bee Pollination Recognition Model Based On YOLOv10n-CHL. Smart Agric. 2025, 7, 185–198. [Google Scholar]
- Huang, Y.; Wang, D.; Liu, Y.; Zhou, H.; Sun, Y. Measurement of Early Disease Blueberries Based on Vis/Nir Hyperspectral Imaging System. Sensors 2020, 20, 5783. [Google Scholar] [CrossRef] [PubMed]
- Zaman, Q.U.; Schumann, A.W.; Percival, D.C.; Gordon, R.J. Estimation of Wild Blueberry Fruit Yield Using Digital Color Photography. Trans. ASABE 2008, 51, 1539–1544. [Google Scholar] [CrossRef]
- Chang, Y.K.; Zaman, Q.; Farooque, A.A.; Schumann, A.W.; Percival, D.C. An Automated Yield Monitoring System II for Commercial Wild Blueberry Double-Head Harvester. Comput. Electron. Agric. 2012, 81, 97–103. [Google Scholar] [CrossRef]
- Panda, S.S.; Hoogenboom, G.; Paz, J.O. Remote Sensing and Geospatial Technological Applications for Site-Specific Management of Fruit and Nut Crops: A Review. Remote Sens. 2010, 2, 1973–1997. [Google Scholar]
- Reich, R.M.; Lojewski, N.; Lundquist, J.E.; Bravo, V.A. Predicting Abundance and Productivity of Blueberry Plants under Insect Defoliation in Alaska. J. Sustain. For. 2018, 37, 525–536. [Google Scholar] [CrossRef]
- Esau, T.; Zaman, Q.; Groulx, D.; Corscadden, K.; Chang, Y.; Schumann, A.; Havard, P. Economic Analysis for Smart Sprayer Application in Wild Blueberry Fields. In Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2015; p. 1. [Google Scholar]
- Esau, T.; Zaman, Q.; Groulx, D.; Chang, Y.; Schumann, A.; Havard, P. Smart Sprayer for Spot-Application of Agrochemicals in Wild Blueberry Fields. In Proceedings of the 2014 ASABE Annual International Meeting, Montreal, QC, Canada, 13–16 July 2014; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2014; p. 1. [Google Scholar]
- Chang, Y.K.; Zaman, Q.U.; Chattha, H.; Read, S.; Schumann, A.W. Sensing System Using Digital Cameras for Spot-Application of Fertilizer in Wild Blueberry Fields. In Proceedings of the 2014 ASABE Annual International Meeting, Montreal, QC, Canada, 13–16 July 2014; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2014; p. 1. [Google Scholar]
- Chattha, H.S.; Zaman, Q.U.; Schumann, A.W.; Brewster, G.R.; Chang, Y.K.; Read, S. Evaluation of Modified Variable Rate Granular Fertilizer Spreader for Spot-Specific Fertilization in Wild Blueberry Fields. In Proceedings of the 2013 ASABE Annual International Meeting, Kansas, MO, USA, 21–24 July 2013; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2013; p. 1. [Google Scholar]
- Percival, D.C.; Gallant, D.; Harrington, T.; Brown, G. Potential for Commercial Unmanned Aerial Vehicle Use in Wild Blueberry Production. In Proceedings of the XI International Vaccinium Symposium, Orlando, FL, USA, 10–14 April 2016; Volume 1180, pp. 233–240. [Google Scholar]
- Bracamonte, D.; Chang, A.; Vinces, L.; Oliden, J. A Blueberry Classification Algorithm Using Convolutional Neural Networks Developed in Python and a Raspberry Pi 4. In Proceedings of the 2022 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), Bogota, Colombia, 5–7 October 2022; IEEE: New York, NY, USA, 2022; pp. 1–5. [Google Scholar]
- Leiva-Valenzuela, G.A.; Aguilera, J.M. Automatic Detection of Orientation and Diseases in Blueberries Using Image Analysis to Improve Their Postharvest Storage Quality. Food Control 2013, 33, 166–173. [Google Scholar] [CrossRef]
- Villagrán, E.; Romero-Perdomo, F.; Numa-Vergel, S.; Galindo-Pacheco, J.R.; Salinas-Velandia, D.A. Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next? Horticulturae 2024, 10, 15. [Google Scholar]
- Girgenti, V.; Peano, C.; Bounous, M.; Baudino, C. A Life Cycle Assessment of Non-Renewable Energy Use and Greenhouse Gas Emissions Associated with Blueberry and Raspberry Production in Northern Italy. Sci. Total Environ. 2013, 458, 414–418. [Google Scholar]
- Cordes, H.; Iriarte, A.; Villalobos, P. Evaluating the Carbon Footprint of Chilean Organic Blueberry Production. Int. J. Life Cycle Assess. 2016, 21, 281–292. [Google Scholar] [CrossRef]
- Chapa, J.; Kipp, S.; Cai, H.; Huang, J.-Y. A Comparative Life Cycle Assessment of Fresh Imported and Frozen Domestic Organic Blueberries Consumed in Indiana. J. Clean. Prod. 2019, 217, 716–723. [Google Scholar] [CrossRef]
- Pérez, R.; Laca, A.; Laca, A.; Díaz, M. Environmental Behaviour of Blueberry Production at Small-Scale in Northern Spain and Improvement Opportunities. J. Clean. Prod. 2022, 339, 130594. [Google Scholar] [CrossRef]
- Trejo-Pech, C.O.; Rodríguez-Magaña, A.; Briseño-Ramírez, H.; Ahumada, R. A Monte Carlo Simulation Case Study on Blueberries from Mexico. Int. Food Agribus. Manag. Rev. 2024, 27, 359–377. [Google Scholar] [CrossRef]
- Mari, A.; Kekes, T.; Boukouvalas, C.; Krokida, M. Integrating Life Cycle Assessment in Innovative Berry Processing with Edible Coating and Osmotic Dehydration. Foods 2025, 14, 1167. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.B.N.; de Oliveira, G.M.; Gallo Ruelas, M.; Gadelha, M.S.M.; de Farias Santos, A.C.F.; Zamora, F.V. Blueberries for Brainpower: A Systematic Review and Meta-Analysis with Bayesian Post Hoc Analysis of RCTS Exploring Cognitive Function in the Elderly with Prior Cognitive Decline. Biogerontology 2025, 26, 1–15. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar]
- Kalt, W. Vaccinium Berry Crops and Human Health. In Proceedings of the VIII International Symposium on Vaccinium Culture, Sevilla, Spain, 3–8 May 2004; Volume 715, pp. 533–538. [Google Scholar]
- Williams, R.J.; Spencer, J.P.E. Flavonoids, Cognition, and Dementia: Actions, Mechanisms, and Potential Therapeutic Utility for Alzheimer Disease. Free Radic. Biol. Med. 2012, 52, 35–45. [Google Scholar] [PubMed]
- Khoo, H.E.; Chew, L.; Ismail, A.; Azlan, A. Polyphenols: Chemistry, Dietary Sources and Health Benefits; Nova Science Publisher: Hauppauge, NY, USA, 2012. [Google Scholar]
- Routray, W.; Orsat, V. Blueberries and Their Anthocyanins: Factors Affecting Biosynthesis and Properties. Compr. Rev. Food Sci. Food Saf. 2011, 10, 303–320. [Google Scholar] [CrossRef]
- Zhao, F.; Fan, S.; Zhao, H.; Liu, H.; Lyu, L.; Wu, W.; Wu, Y.; Li, W. A Comparison of Fruit Quality of Ten High-Anthocyanin Blueberry Cultivars. J. Nanjing For. Univ. 2025, 49, 63. [Google Scholar]
- Wu, W.L.; Zhao, H.F.; Fang, L.; Lv, L.F.; Li, W.L. Nutritional Components in the Fruit of Different Blueberry Cultivars in Nanjing. Appl. Mech. Mater. 2012, 140, 374–378. [Google Scholar]
- Liović, N.; Čikeš-Čulić, V.; Fredotović, Ž.; Krešić, G.; Bilušić, T. The Effect of Processing Techniques on the Antiproliferative Activity of Blueberry Phenolics before and after in Vitro Digestion. J. Food Process. Preserv. 2022, 46, e16140. [Google Scholar]
- Tan, C.; Wang, M.; Kong, Y.; Wan, M.; Deng, H.; Tong, Y.; Lyu, C.; Meng, X. Anti-Inflammatory and Intestinal Microbiota Modulation Properties of High Hydrostatic Pressure Treated Cyanidin-3-Glucoside and Blueberry Pectin Complexes on Dextran Sodium Sulfate-Induced Ulcerative Colitis Mice. Food Funct. 2022, 13, 4384–4398. [Google Scholar]
- Leng, Y.; Yang, L.; Zhu, H.; Li, D.; Pan, S.; Yuan, F. Stability of Blueberry Extracellular Vesicles and Their Gene Regulation Effects in Intestinal Caco-2 Cells. Biomolecules 2023, 13, 1412. [Google Scholar] [CrossRef]
- Langer, S.; Kennel, A.; Lodge, J.K. The Influence of Juicing on the Appearance of Blueberry Metabolites 2 h after Consumption: A Metabolite Profiling Approach. Br. J. Nutr. 2018, 119, 1233–1244. [Google Scholar] [CrossRef]
- Wang, Y.; Gallegos, J.L.; Haskell-Ramsay, C.; Lodge, J.K. Effects of Chronic Consumption of Specific Fruit (Berries, Citrus and Cherries) on CVD Risk Factors: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Eur. J. Nutr. 2021, 60, 615–639. [Google Scholar] [CrossRef] [PubMed]
- Janowska, S.; Wujec, M. Bilberries as Valuable Sources of Polyphenols with Health-Promoting Properties. Farm. Pol. 2023, 79, 403–412. [Google Scholar] [CrossRef]
- Kunrade, L.; Rembergs, R.; Jēkabsons, K.; Kļaviņš, L.; Kļaviņš, M.; Muceniece, R.; Riekstiņa, U. Inhibition of NF-κ B Pathway in LPS-Stimulated THP-1 Monocytes and COX-2 Activity in Vitro by Berry Pomace Extracts from Five Vaccinium Species. J. Berry Res. 2020, 10, 381–396. [Google Scholar] [CrossRef]
- Toporkova, V.I.; Vishnyakov, E.V.; Sidorov, K.O.; Terninko, I.I.; Ivkin, D.Y. Assessment of the Influence of the Mineral Complex of Rutin on the Degree of Expression of Anti-Diabetic Activity. Drug Dev. Regist. 2021, 10, 197–205. [Google Scholar] [CrossRef]
- Takahashi, S.; Che, J.; Horiuchi, N.; Cho, H.Y.; Onwona-Agyeman, S.; Kojima, K.; Yamada, M.; Ogiwara, I. Production of Low-Potassium Fruit of Potted and Fertigated Southern Highbush Blueberry (Vaccinium corymbosum L. Interspecific Hybrid). Hortic. J. 2021, 90, 161–171. [Google Scholar] [CrossRef]
- Das, Q.; Islam, M.R.; Marcone, M.F.; Warriner, K.; Diarra, M.S. Potential of Berry Extracts to Control Foodborne Pathogens. Food Control 2017, 73, 650–662. [Google Scholar] [CrossRef]
- Vattem, D.A.; Lin, Y.-T.; Ghaedian, R.; Shetty, K. Cranberry Synergies for Dietary Management of Helicobacter pylori Infections. Process Biochem. 2005, 40, 1583–1592. [Google Scholar] [CrossRef]
- Seo, J.Y.; Jang, J.H.; Kim, J.-S.; Kim, E.-J.; Kim, J.-S. Development of Low-Sugar Antioxidant Jam by a Combination of Anthocyanin-Rich Berries. Appl. Biol. Chem. 2016, 59, 305–312. [Google Scholar] [CrossRef]
- Yuan, Y.V.; Baduge, S.A. The Contribution of Phytochemicals to the Antioxidant Potential of Fruit Juices. In Fruit Juices; Elsevier: Amsterdam, The Netherlands, 2018; pp. 95–128. [Google Scholar]
- Aksoylu, Z.; Çağindi, Ö.; Köse, E. Effects of Blueberry, Grape Seed Powder and Poppy Seed Incorporation on Physicochemical and Sensory Properties of Biscuit. J. Food Qual. 2015, 38, 164–174. [Google Scholar] [CrossRef]
- Girard, K.K.; Sinha, N.K. Cranberry, Blueberry, Currant, and Gooseberry. In Handbook of Fruits and Fruit Processing; Wiley Online Library: Hoboken, NJ, USA, 2006; pp. 369–390. [Google Scholar]
- Villagran, E.; Toro-Tobón, G.; Velázquez, F.A.; Estrada-Bonilla, G.A. Integration of IoT Technologies and High-Performance Phenotyping for Climate Control in Greenhouses and Mitigation of Water Deficit: A Study of High-Andean Oat. AgriEngineering 2024, 6, 4011–4040. [Google Scholar] [CrossRef]
- Pereira, M.; Mota, M.; Oliveira, P.B. Extending Blueberry Production Season with Different Covering Materials. In Proceedings of the XII International Vaccinium Symposium, Debert, NS, Canada, 30 August–1 September 2021; Volume 1357, pp. 69–78. [Google Scholar]
- Calderón-Orellana, A.; Hermosilla, N.; Bastías, R.M. Impact of the Covering Material on Drought Tolerance Responses and Soil Water Content in Two Cultivars of Young Blueberry Plants under Protected Cultivation. Water 2023, 15, 2326. [Google Scholar] [CrossRef]
- Couture, A.; Gaudreau, L.; Van Sterthem, A.; Gosselin, A.; Dubé, Y.; Nguyen, T.T.A.; Brégard, A.; Dorais, M. How Can High Tunnel Coverings and an Insect-Proof Barrier Improve Productivity and Pest Management in Berry Crops? In Proceedings of the IV International Symposium on Organic Greenhouse Horticulture, Cancun, Mexico, 22–27 October 2023; Volume 1428, pp. 101–108. [Google Scholar]
- Lihong, X.; Huihui, L.; He, X.; Ruihua, W.E.I.; Wentao, C.A.I. Multi-Factor Coordination Control Technology of Promoting Early Maturing in Southern Blueberry Intelligent Greenhouse. Smart Agric. 2021, 3, 86–98. [Google Scholar]
- Smrke, T.; Veberic, R.; Hudina, M.; Jakopic, J. Pot and Ridge Production of Three Highbush Blueberry (Vaccinium corymbosum L.) Cultivars under High Tunnels. Agriculture 2022, 12, 438. [Google Scholar] [CrossRef]
- Nichols, M. Recent Changes in Berry Fruit Production in New Zealand. In Proceedings of the XI International Symposium on Protected Cultivation in Mild Winter Climates and I International Symposium on Nettings and Screens in Horticulture, Tenerife, Spain, 27–31 January 2019; Volume 1268, pp. 285–288. [Google Scholar]
- Li, Y.; Sun, H.; Chen, L. The Blueberry Industry of China: The Past 10 Years and the Future. In Proceedings of the XI International Vaccinium Symposium, Orlando, FL, USA, 10–14 April 2016; Volume 1180, pp. 531–536. [Google Scholar]
- Li, T.; Bi, G. Container Production of Southern Highbush Blueberries Using High Tunnels. HortScience 2019, 54, 267–274. [Google Scholar] [CrossRef]
- Retamal-Salgado, J.; Bastías, R.M.; Wilckens, R.; Paulino, L. Influence of Microclimatic Conditions under High Tunnels on the Physiological and Productive Responses in Blueberry ‘O’Neal’. Chil. J. Agric. Res. 2015, 75, 291–297. [Google Scholar] [CrossRef]
- Santos, B.M.; Salame-Donoso, T.P. Performance of Southern Highbush Blueberry Cultivars under High Tunnels in Florida. Horttechnology 2012, 22, 700–704. [Google Scholar]
- Ciordia, M.; Garcia, J.C.; Diaz, M.B. Off-Season Production of Southern Highbush Blueberries in the North of Spain. Acta Hortic. 2006, 715, 317–322. [Google Scholar] [CrossRef]
- Ozeki, M.; Tamada, T. The Potentials of Forcing Culture of Southern Highbush Blueberry in Japan. In Proceedings of the VIII International Symposium on Vaccinium Culture, Sevilla, Spain, 3–8 May 2004; Volume 715, pp. 241–246. [Google Scholar]
- Hicklenton, P.; Forney, C.; Domytrak, C. Use of Row Covers and Post Harvest Storage Techniques to Alter Maturity and Marketing Period for Highbush Blueberries. In Proceedings of the XXVI International Horticultural Congress: Berry Crop Breeding, Production and Utilization for a New Century, Toronto, ON, Canada, 11–17 August 2002; Volume 626, pp. 287–295. [Google Scholar]
- Demchak, K. Small Fruit Production in High Tunnels. Horttechnology 2009, 19, 44–49. [Google Scholar] [CrossRef]
- Ogden, A.B.; van Iersel, M.W. Southern Highbush Blueberry Production in High Tunnels: Temperatures, Development, Yield, and Fruit Quality during the Establishment Years. HortScience 2009, 44, 1850–1856. [Google Scholar] [CrossRef]
- Yeh, D.A.; Kramer, J.; Calvin, L.; Weber, C. The Changing Landscape of US Strawberry and Blueberry Markets: Production, Trade, and Challenges from 2000 to 2020; Bulletin Number 257; United States Department of Agriculture (USDA): Washington, DC, USA, 2023.
- Canales, E.; Gallardo, R.K.; Iorizzo, M.; Munoz, P.; Ferrao, L.F.; Luby, C.; Bassil, N.; Pottorff, M.; Perkins-Veazie, P.; Sandefur, P.; et al. Willingness to Pay for Blueberries: Sensory Attributes, Fruit Quality Traits, and Consumers’ Characteristics. HortScience 2024, 59, 1207–1218. [Google Scholar] [CrossRef]
- Brazelton, C.; Fain, C.; Ogg, M.; Riquelme, C.; Rodriguez, V.; Ilyas, S. Global State of the Blueberry Industry Report; International Blueberry Organization: Santiago, Chile, 2025. [Google Scholar]
- Pazos, N.; Janzen, J. Peru’s Blueberry Boom: More Land, More Labor, More Berries to Savor. Farmdoc Dly. 2025, 15, 1. [Google Scholar]
- Montes Ninaquispe, J.C.; Arbulú Ballesteros, M.A.; Cruz Salinas, L.E.; García Juárez, H.D.; Farfán Chilicaus, G.C.; Martel Acosta, R.; Guzmán Valle, M.d.l.Á.; Coronel Estela, C.V. A Strategy for the Sustainability of Peru’s Blueberry Exports: Diversification and Competitiveness. Sustainability 2024, 16, 6606. [Google Scholar] [CrossRef]
- Singh, R.; Singh, R.; Gehlot, A.; Akram, S.V.; Priyadarshi, N.; Twala, B. Horticulture 4.0: Adoption of Industry 4.0 Technologies in Horticulture for Meeting Sustainable Farming. Appl. Sci. 2022, 12, 12557. [Google Scholar] [CrossRef]
- Cao, S.; Qiao, L.; Wang, X.; Huang, T.; Wu, C.; Zhang, Y.; Xue, Z.; Kou, X. Discussion on Postharvest Quality, Strategies of Storage and Transportation Techniques of Blueberries: A Comprehensive Review. Food Qual. Saf. 2025, 9, fyaf038. [Google Scholar] [CrossRef]
- Chan, C.; Nelson, P.R.; Hayes, D.J.; Zhang, Y.-J.; Hall, B. Predicting Water Stress in Wild Blueberry Fields Using Airborne Visible and near Infrared Imaging Spectroscopy. Remote Sens. 2021, 13, 1425. [Google Scholar]
- Leguízamo, J.A.C. Fundamentos Técnicos Del Cultivo Del Arándano (Vaccinium corymbosum L.) En La Región Central de Colombia; Editorial de la Universidad Pedagógica y Tecnológica de Colombia—UPTC: Tunja, Colombia, 2021; Volume 43, ISBN 958660490X. [Google Scholar]
- Macha Huamán, R.; Navarro Soto, F.C.; Ramírez Ríos, A.; Alfaro Paredes, E.A. International Market Concentration of Fresh Blueberries in the Period 2001–2020. Humanit. Soc. Sci. Commun. 2023, 10, 967. [Google Scholar]
- Pinzon, D.A.; Amado, G.M.; Rodriguez, J.; Villagran, E. Global Research Trends and Thematic Evolution of Blueberry (Vaccinium spp.) Science: A Bibliometric Analysis. Horticulturae 2025, 11, 1501. [Google Scholar] [CrossRef]
- Qessaoui, R.; Chafiki, S.; Alouani, M.; Bahoch, S.; Ajerrar, A.; Tahiri, A.; Ait Aabd, N.; Wifaya, A.; Bouharroud, R. Système de Production de Fruits Rouges Dans La Région de Souss-Massa Au Maroc. Afr. Mediterr. Agric. J.-Al Awamia 2024, 145, 211–226. [Google Scholar]
- Jiang, J.; Wei, J.; Yu, H.; He, S. The Developing Blueberry Industry in China. In Modern Fruit Industry; IntechOpen: London, UK, 2019; ISBN 1789847311. [Google Scholar]
- Yu, H.; Wei, J.; Yang, S.; Yang, X.; He, S. The Development Situation and Prospect of Blueberry Industry in China. In Proceedings of the XII International Vaccinium Symposium, Debert, NS, Canada, 30 August–1 September 2021; Volume 1357, pp. 325–328. [Google Scholar]
- Ding, Y.; Ren, X.; Lv, Y. Recent Advancements in Postharvest Fruit Quality and Physiological Mechanism; MDPI-Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2024; ISBN 3725824258. [Google Scholar]
- Villagrán, E.A.; Baeza Romero, E.J.; Bojacá, C.R. Transient CFD Analysis of the Natural Ventilation of Three Types of Greenhouses Used for Agricultural Production in a Tropical Mountain Climate. Biosyst. Eng. 2019, 188, 288–304. [Google Scholar] [CrossRef]
- Rocha, G.A.O.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Mujumdar, A.S.; Yu, D. Advanced Detection Techniques Using Artificial Intelligence in Processing of Berries. Food Eng. Rev. 2022, 14, 176–199. [Google Scholar]
- Bustos, J.F.C.; Preciado, J.C. Phenological States Classification of Blueberries Using Artificial Intelligence. In Proceedings of the 2025 IEEE Conference on Artificial Intelligence (CAI), Santa Clara, CA, USA, 5–7 May 2025; IEEE: New York, NY, USA, 2025; pp. 390–393. [Google Scholar]





| Topic | Key Parameters | Metrics | Recommendation | References |
|---|---|---|---|---|
| Electric assistance | 900 rpm; 1.2 s | 81.3 berries·min−1; efficiency 80.7% | Intermediate phase toward mechanization | [110] |
| Impact and bruising | Drop height 50–101 cm; silicone padding | % impacts in trays/boxes; bruising | Hopper redesign and cushioning | [111,112] |
| Air cleaning | ~18 m·s−1 | Debris removal without loss | Dual plenum with cab control | [113] |
| Optical selection | 680/740/850 nm; spectral indices | >93% maturity classification | In-line integration | [114] |
| Technology | Reported Parameters | Matrix/Cultivar | Quantitative Results | Scale/TRL | Cost/Energy | References |
|---|---|---|---|---|---|---|
| HHP/HPP (High Hydrostatic Pressure) | 200–600 MPa; 5–60 min; 0–4 °C | Juice/puree; whole fruits | Maintains firmness for 28 days; inactivates >4 log HuNoV; retains color and reduces PPO ≥80% | Pilot–industrial | Batch; moderate–high electrical consumption | [118,119,120] |
| Pulsed Light (PL) | 6 J·cm−2 | Fresh fruit (‘Draper’) | Stable firmness; reduced decay after 6 weeks at 0.5 °C | Laboratory–pilot | Low input; avoid overexposure | [121,122] |
| PEF/MPEF (Pulsed Electric Fields/Multi-Pulsed Electric Fields) | 350 V; 100–500 MPa equivalent combined | Juices | Reduced microbiota; vitamin C and anthocyanins better preserved than HTST | Pilot | Continuous possible; medium investment | [123,124,125] |
| Manothermosonication | 600 W; 60 °C | Juice | 5.85 log E. coli reduction; 97.5% anthocyanins retained; 10.9% residual PPO | Lab–pilot | Thermal + acoustic energy | [126] |
| CAPP (Cold Atmospheric Plasma) | 5–10 min | Whole fruit | Reduced bacteria; no change in °Brix or color at optimal dose | Lab | Low energy use; dose adjustment required by cultivar | [127,128] |
| Cold Chains/Thawing | −80/−40/−20 °C; SIT/UASIT | Whole fruit | Reduced drip loss; anthocyanins and °Brix maintained (UASIT > SIT) | Pilot | Electric; critical for logistics | [129] |
| Advanced Drying | Microwave + assisted freeze-drying; FMFD | Powders | >80% total monomeric anthocyanins (TMA); >75% total phenolic compounds (TPC); process time −50% | Lab–pilot | High CAPEX; premium quality | [130] |
| Strategy | Parameters | Outcome | Notes | References |
|---|---|---|---|---|
| Phenolic copigmentation + CaCl2 | Ferulic/tannic acids + CaCl2 | Anthocyanins 3.38 vs. 2.79 mg·g−1; polymeric color −15.5–17.4% | Optimize dose by matrix | [154] |
| HHP + gallic acid | 2 g·L−1; 20 d/4 °C | Anthocyanin loss 62.27 → 13.42%; PPO ↓ | Synergistic pressure + GA effect | [155] |
| Chitosan–κ-carrageenan (CS–KC) nanocomplexes | pH 6; 25 °C | 94.4% anthocyanin retention | Suitable for soft beverages | [160] |
| Alginate–pectin hydrogels | — | t½ 58 → 630 h; photodegradation ↓ | High EEₘ (encapsulation efficiency) | [157] |
| Thermosonication | 600 W; 60 °C | TPC +139%, flavonoids +252%, anthocyanins +94% | Control pH/light | [144] |
| Type | Formulation | Mechanism/Property | Effect on Shelf Life/Quality | Scale | Application Note | References |
|---|---|---|---|---|---|---|
| Antimicrobial biopolymers | Chitosan + pectin; almond gum + chitosan | O2/CO2 barrier; antimicrobial | Decay −33%; weight −22%; shelf life +≈20 d | Pilot | Compatible with fresh fruit | [135,151] |
| “Sensorial” films | HKGB + anthocyanins | DPPH 82.9%; ABTS 86.4%; NH3 sensitivity 32.8% | Freshness indicator compatible with mobile readout | Lab | Integrate into cold chain | [169] |
| Active microcapsules | AEPU in starch | Antioxidant, barrier | +>7 d; biodegradability ~95% at 8 d | Lab | Potential for active packaging | [159] |
| Protein carriers | Protein–polyphenol complexes (soy) | TPC/DPPH retention | Stability in powders/gels | Lab | Food matrices | [158] |
| Country/Scope | Hotspots | Cost-Effective Measures | Key Finding | References |
|---|---|---|---|---|
| Italy | Plastics (packaging) | Substitution with biopolymers; recycling | Largest contributor to GHG emissions | [205] |
| Chile (organic) | Organic fertilizers; energy | Cover crops; energy efficiency | Perennial LUC removes carbon | [206] |
| USA (LCA, supply chain) | Cultivation, freezing, transport | Efficient logistics; renewable energy | Imports from Chile can have lower impact | [207] |
| Spain (conventional/organic) | Synthetic fertilizers, fossil fuels, plastics | Biofertilizers; renewables; composting | Clear intervention hotspots | [208] |
| Processing | Osmotic dehydration | Offset with efficiency and added value | High profitability offsets impact | [210] |
| Management Objective | Recommended Action | Production Context | Expected Benefit | Cost/Complexity | Evidence Strength * |
|---|---|---|---|---|---|
| Improve establishment and uniformity | Use certified, pathogen-free plant material; validate micro-propagated clones locally | All systems | Lower mortality; reduced disease risk; uniform growth | Medium | High |
| Adapt phenology to market window | Select cultivar + chill requirement matched to climate; use tunnels or dormancy regulators where justified | Protected/warm regions | Earlier or synchronized harvest; price premium | Medium–High | High |
| Optimize root-zone conditions | Use peat/coir-based substrates; avoid excessive bark; ensure drainage | Containers/greenhouses | Improved nutrient uptake; reduced stress | Medium | High |
| Reduce water use | Pulse irrigation with soil/substrate moisture sensors | All systems (esp. sandy soils) | −30–45% water use; lower leaching | Medium | High |
| Improve fruit firmness | Preharvest Ca applications + optimal irrigation scheduling | Protected & open field | Higher firmness; longer shelf life | Low–Medium | High |
| Enhance fruit quality (°Brix, phenolics) | Moderate deficit irrigation (validated locally) | Water-limited regions | Higher soluble solids; increased antioxidants | Low | Medium |
| Reduce disease pressure | Resistant/tolerant cultivars + drainage + sanitation pruning | High disease-risk areas | Lower incidence of Phytophthora, cankers | Medium | High |
| Protect beneficial organisms | Use selective inputs compatible with IPM | Protected systems | Stable biological control | Low | High |
| Reduce labor dependency | Assisted or partial mechanized harvest with soft-catch systems | Labor-limited regions | Higher picking efficiency; lower fatigue | High | Medium |
| Minimize mechanical damage | Reduce drop height; use padded contact surfaces | Mechanized harvest | Less bruising; higher pack-out | Medium | High |
| Improve harvest timing | Use optical/spectral maturity tools | Fresh market | Reduced unripe fruit; uniform quality | Medium | High |
| Extend shelf life | Strict cold chain + rapid cooling | All systems | Major decay reduction; quality retention | Medium | Very high |
| Reduce postharvest decay | Pulsed light/HPP/cold plasma (cultivar-calibrated) | Fresh & processed | Lower microbial load; bioactive retention | High | Medium–High |
| Reduce environmental footprint | Replace plastics with biopolymers; improve energy efficiency | All systems | Lower GHG emissions; compliance | Medium | High |
| Valorize residues | Use pomace for extracts, powders, or active packaging | Processing chains | Added value; circularity | Medium | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pinzon, D.A.; Amado, G.; Rodriguez, J.; Villagran, E. A Systematic Review of Integrated Management in Blueberry (Vaccinium spp.): Technological Innovation, Sustainability, and Practices in Propagation, Physiology, Agronomy, Harvest, and Postharvest. Crops 2026, 6, 15. https://doi.org/10.3390/crops6010015
Pinzon DA, Amado G, Rodriguez J, Villagran E. A Systematic Review of Integrated Management in Blueberry (Vaccinium spp.): Technological Innovation, Sustainability, and Practices in Propagation, Physiology, Agronomy, Harvest, and Postharvest. Crops. 2026; 6(1):15. https://doi.org/10.3390/crops6010015
Chicago/Turabian StylePinzon, David Alejandro, Gina Amado, Jader Rodriguez, and Edwin Villagran. 2026. "A Systematic Review of Integrated Management in Blueberry (Vaccinium spp.): Technological Innovation, Sustainability, and Practices in Propagation, Physiology, Agronomy, Harvest, and Postharvest" Crops 6, no. 1: 15. https://doi.org/10.3390/crops6010015
APA StylePinzon, D. A., Amado, G., Rodriguez, J., & Villagran, E. (2026). A Systematic Review of Integrated Management in Blueberry (Vaccinium spp.): Technological Innovation, Sustainability, and Practices in Propagation, Physiology, Agronomy, Harvest, and Postharvest. Crops, 6(1), 15. https://doi.org/10.3390/crops6010015

