Biocontrol Potential of a New Beauveria varroae Strain Isolated from an Urban Ecosystem Against Two Species of Noctuidae Pests
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Laboratory Rearing
2.2. B. varroae Laboratory Isolate
2.3. Effect of B. varroae Isolate on the Mortality of the S. nonagrioides and H. armigera Larvae
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berenbaum, M.R.; Bush, D.S.; Liao, L.H. Cytochrome P450-Mediated Mycotoxin Metabolism by Plant-Feeding Insects. Curr. Opin. Insect Sci. 2021, 43, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Gulzar, A.; Maqsood, A.; Ahmed, M.; Tariq, M.; Ali, M.; Qureshi, R. Toxicity, Antifeedant and Sub-Lethal Effects of Citrullus Colocynthis Extracts on Cotton Bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Pak. J. Zool. 2017, 49, 2019–2026. [Google Scholar] [CrossRef]
- Tay, W.T.; Soria, M.F.; Walsh, T.; Thomazoni, D.; Silvie, P.; Behere, G.T.; Anderson, C.; Downes, S. A Brave New World for an Old World Pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE 2013, 8, e80134. [Google Scholar] [CrossRef]
- Milonas, P.; Gogou, C.; Papadopoulou, A.; Fountas, S.; Liakos, V.; Papadopoulos, N.T. Spatio-Temporal Distribution of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) in a Cotton Production Area. Neotrop. Entomol. 2016, 45, 240–251. [Google Scholar] [CrossRef]
- Fitt, G.P. The Ecology of Heliothis Species in Relation to Agroecosystems. Annu. Rev. Entomol. 1989, 34, 17–53. [Google Scholar] [CrossRef]
- Mironidis, G.K.; Savopoulou-Soultani, M. Effects of Constant and Changing Temperature Conditions on Diapause Induction in Helicoverpa armigera (Lepidoptera: Noctuidae). Bull. Entomol. Res. 2012, 102, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Burgio, G.; Ravaglia, F.; Maini, S.; Bazzocchi, G.G.; Masetti, A.; Lanzoni, A. Mating Disruption of Helicoverpa armigera (Lepidoptera: Noctuidae) on Processing Tomato: First Applications in Northern Italy. Insects 2020, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Riaz, S.; Johnson, J.B.; Ahmad, M.; Fitt, G.P.; Naiker, M. A Review on Biological Interactions and Management of the Cotton Bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Appl. Entomol. 2021, 145, 467–498. [Google Scholar] [CrossRef]
- Dias, P.M.; De Souza Loureiro, E.; Pessoa, L.G.A.; De Oliveira Neto, F.M.; De Souza Tosta, R.A.; Teodoro, P.E. Interactions between Fungal-Infected Helicoverpa armigera and the Predator Chrysoperla externa. Insects 2019, 10, 309. [Google Scholar] [CrossRef]
- Ahmed, K.; Awan, M.S. Integrated Management of Insect Pests of Chickpea Cicer arietinum (L. Walp) in South Asian Countries: Present Status and Future Strategies—A Review. Pak. J. Zool. 2013, 45, 1125–1145. [Google Scholar]
- Cunningham, J.P.; Zalucki, M.P.; West, S.A. Learning in Helicoverpa armigera (Lepidoptera: Noctuidae): A New Look at the Behaviour and Control of a Polyphagous Pest. Bull. Entomol. Res. 1999, 89, 201–207. [Google Scholar] [CrossRef]
- Patankar, A.G.; Giri, A.P.; Harsulkar, A.M.; Sainani, M.N.; Deshpande, V.V.; Ranjekar, P.K.; Gupta, V.S. Complexity in Specificities and Expression of Helicoverpa armigera Gut Proteinases Explains Polyphagous Nature of the Insect Pest. Insect Biochem. Mol. Biol. 2001, 31, 453–464. [Google Scholar] [CrossRef]
- Haile, F.; Nowatzki, T.; Storer, N. Issues Overview of Pest Status, Potential Risk, and Management Considerations of Helicoverpa armigera (Lepidoptera: Noctuidae) for U.S. Soybean Production. J. Integr. Pest. Manag. 2021, 12, 3–4. [Google Scholar] [CrossRef]
- Sharma, H. Heliothis/Helicoverpa Management: The Emerging Trends and Need for Future Research, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005; ISBN 9780429082764. [Google Scholar]
- Thakur, P.; Rana, R.; Sharma, A.; Priyanka Thakur, C.; Kumar, A. Biophysical Characters of Tomato Varieties in Relation to Resistance against Tomato Fruit Borer, Helicoverpa armigera (Hubner). J. Entomol. Zool. Stud. 2017, 5, 108–112. [Google Scholar]
- Saba, S.; Khan, M.M.; Akhtar, I.; Hussain Shah, S.W.; Maan, N.A.; Anum, W.; Manzoor, N.; Rehman, M.; Kanwal, N. Evaluation of Toxicological Responses of Helicoverpa armigera (Hübner) against Some Insecticides by Using Probit Analysis in Laboratory. Plant Prot. 2019, 3, 15–20. [Google Scholar] [CrossRef]
- Rizvi, S.A.H.; Jaffar, S. Efficacy of Some Selected Chemical Insecticides and Bio-Pesticides against Tomato Fruit Worm, (Helicoverpa armigera) under the Agro Climatic Condition of Gilgit Baltistan, Pakistan. J. Entomol. Zool. Stud. 2014, 3, 50–52. [Google Scholar]
- Buès, R.; Bouvier, J.C.; Boudinhon, L. Insecticide Resistance and Mechanisms of Resistance to Selected Strains of Helicoverpa armigera (Lepidoptera: Noctuidae) in the South of France. Crop Prot. 2005, 24, 814–820. [Google Scholar] [CrossRef]
- Pietrantonio, P.V.; Junek, T.A.; Parker, R.; Mott, D.; Siders, K.; Troxclair, N.; Vargas-Camplis, J.; Westbrook, J.K.; Vassiliou, V.A. Detection and Evolution of Resistance to the Pyrethroid Cypermethrin in Helicoverpa zea (Lepidoptera: Noctuidae) Populations in Texas. Environ. Entomol. 2007, 36, 1174–1188. [Google Scholar] [CrossRef]
- Ugurlu, S.; Gurkan, M.O. Note: Insecticide Resistance in Helicoverpa armigera from Cotton-Growing Areas in Turkey. Phytoparasitica 2007, 35, 376–379. [Google Scholar] [CrossRef]
- Avilla, C.; González-Zamora, J.E. Monitoring Resistance of Helicoverpa armigera to Different Insecticides Used in Cotton in Spain. Crop Prot. 2010, 29, 100–103. [Google Scholar] [CrossRef]
- Cruz, D.; Eizaguirre, M. Host Location Behaviour of Gravid Females in the Mediterranean Corn Borer Sesamia nonagrioides: External Morphology of Antennae and Ovipositor Sensilla. Bull. Insectology 2016, 69, 181–192. [Google Scholar]
- M Camargo, A.; Arias-Martín, M.; Castañera, P.; P Farinós, G. Performance of Sesamia nonagrioides on Cultivated and Wild Host Plants: Implications for Bt Maize Resistance Management. Pest. Manag. Sci. 2020, 76, 3657–3666. [Google Scholar] [CrossRef]
- Pedigo, L.; Rice, M.; Krell, R. Entomology and Pest Management, 7th ed.; Waveland Press: Long Grove, IL, USA, 2021; ISBN 978-1-4786-3992-3. [Google Scholar]
- Malvar, R.A.; Revilla, P.; Velasco, P.; Cartea, M.E.; Ordás, A. Insect Damage to Sweet Corn Hybrids in the South Atlantic European Coast. J. Am. Soc. Hortic. Sci. 2002, 127, 693–696. [Google Scholar] [CrossRef]
- Eizaguirre, M.; Fantinou, A.A. Abundance of Sesamia nonagrioides (Lef.) (Lepidoptera: Noctuidae) on the Edges of the Mediterranean Basin. Psyche A J. Entomol. 2012, 2012, 854045. [Google Scholar] [CrossRef]
- Jika, A.K.N.; Le Ru, B.; Capdevielle-Dulac, C.; Chardonnet, F.; Silvain, J.F.; Kaiser, L.; Dupas, S. Population Genetics of the Mediterranean Corn Borer (Sesamia nonagrioides) Differs between Wild and Cultivated Plants. PLoS ONE 2020, 15, e0230434. [Google Scholar] [CrossRef]
- Gillyboeuf, N.; Anglade, P.; Lavenseau, L.; Peypelut, L. Cold Hardiness and Overwintering Strategy of the Pink Maize Stalk Borer, Sesamia nonagrioides Lef (Lepidoptera, Noctuidae). Oecologia 1994, 99, 366–373. [Google Scholar] [CrossRef]
- Maiorano, A.; Cerrani, I.; Fumagalli, D.; Donatelli, M. New Biological Model to Manage the Impact of Climate Warming on Maize Corn Borers. Agron. Sustain. Dev. 2014, 34, 609–621. [Google Scholar] [CrossRef]
- Kaçar, G.; Butrón, A.; Kontogiannatos, D.; Han, P.; Peñaflor, M.F.G.V.; Farinós, G.P.; Huang, F.; Hutchison, W.D.; de Souza, B.H.S.; Malvar, R.A.; et al. Recent Trends in Management Strategies for Two Major Maize Borers: Ostrinia nubilalis and Sesamia nonagrioides. J. Pest Sci. 2023, 96, 879–901. [Google Scholar] [CrossRef]
- Tsitsipis, J.; Gliatis, A.; Mazomenos, B. Seasonal Appearance of the Corn Stalk Borer, Sesamia nonagrioides, in Central Greece. Meded. Fac. Landbouwwet. Rijksuniv. Gent 1984, 49, 667–674. [Google Scholar]
- Blandino, M.; Saladini, M.A.; Alma, A.; Reyneri, A. Pyrethroid Application Timing to Control European Corn Borer (Lepidoptera: Crambidae) and Minimize Fumonisin Contamination in Maize Kernels. Cereal Res. Commun. 2010, 38, 75–82. [Google Scholar] [CrossRef]
- Shelton, A.M.; Zhao, J.Z.; Roush, R.T. Economic, Ecological, Food Safety, and Social Consequences of the Deployment of Bt Transgenic Plants. Annu. Rev. Entomol. 2002, 47, 845–881. [Google Scholar] [CrossRef]
- Cherry, A.J.; Banito, A.; Djegui, D.; Lomer, C. Suppression of the Stem-Borer Sesamia calamistis (Lepidoptera; Noctuidae) in Maize Following Seed Dressing, Topical Application and Stem Injection with African Isolates of Beauveria bassiana. Int. J. Pest. Manag. 2004, 50, 67–73. [Google Scholar] [CrossRef]
- Tang, L.C.; Hou, R.F. Potential Application of the Entomopathogenic Fungus, Nomuraea Rileyi, for Control of the Corn Earworm, Helicoverpa armigera. Entomol. Exp. Appl. 1998, 88, 25–30. [Google Scholar] [CrossRef]
- Skinner, M.; Parker, B.L.; Kim, J.S. Role of Entomopathogenic Fungi in Integrated Pest Management. Integr. Pest. Manag. Curr. Concepts Ecol. Perspect. 2014, 169–191. [Google Scholar] [CrossRef]
- Kambrekar, D.N.; Aruna, J. Screening for Endophytic Beauveria bassiana from Different Plants and Its Pathogenecity against Chickpea Pod Borer, Helicoverpa armigera (Hubner). J. Exp. Zool. 2018, 21, 727–731. [Google Scholar]
- Priyashantha, A.K.H.; Galappaththi, M.C.A.; Karunarathna, S.C.; Lumyong, S. Entomopathogenic Fungi: Bioweapons against Insect Pests. In The Role of Entomopathogenic Fungi in Agriculture; CRC Press: Boca Raton, FL, USA, 2024; pp. 91–116. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Chondrogiannis, C.; Grammatikopoulos, G. Effects of Three Endophytic Entomopathogens on Sweet Sorghum and on the Larvae of the Stalk Borer Sesamia nonagrioides. Entomol. Exp. Appl. 2015, 154, 78–87. [Google Scholar] [CrossRef]
- Canassa, F.; Tall, S.; Moral, R.A.; de Lara, I.A.R.; Delalibera, I.; Meyling, N.V. Effects of Bean Seed Treatment by the Entomopathogenic Fungi Metarhizium robertsii and Beauveria bassiana on Plant Growth, Spider Mite Populations and Behavior of Predatory Mites. Biol. Control 2019, 132, 199–208. [Google Scholar] [CrossRef]
- Gołębiowski, M.; Bojke, A.; Tkaczuk, C. Effects of the Entomopathogenic Fungi Metarhizium robertsii, Metarhizium flavoviride, and Isaria fumosorosea on the Lipid Composition of Galleria Mellonella Larvae. Mycologia 2021, 113, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Mantzoukas, S.; Grammatikopoulos, G. The Effect of Three Entomopathogenic Endophytes of the Sweet Sorghum on the Growth and Feeding Performance of Its Pest, Sesamia nonagrioides Larvae, and Their Efficacy under Field Conditions. Crop Prot. 2020, 127, 104952. [Google Scholar] [CrossRef]
- Pelizza, S.A.; Mariottini, Y.; Russo, L.M.; Vianna, M.F.; Scorsetti, A.C.; Lange, C.E. Beauveria bassiana (Ascomycota: Hypocreales) Introduced as an Endophyte in Corn Plants and Its Effects on Consumption, Reproductive Capacity, and Food Preference of Dichroplus maculipennis (Orthoptera: Acrididae: Melanoplinae). J. Insect Sci. 2017, 17, 53. [Google Scholar] [CrossRef]
- Jaber, L.R.; Vidal, S. Fungal Endophyte Negative Effects on Herbivory Are Enhanced on Intact Plants and Maintained in a Subsequent Generation. Ecol. Entomol. 2010, 35, 25–36. [Google Scholar] [CrossRef]
- Qayyum, M.A.; Wakil, W.; Arif, M.J.; Sahi, S.T.; Dunlap, C.A. Infection of Helicoverpa armigera by Endophytic Beauveria bassiana Colonizing Tomato Plants. Biol. Control 2015, 90, 200–207. [Google Scholar] [CrossRef]
- Kalvnadi, E.; Mirmoayedi, A.; Alizadeh, M.; Pourian, H.R. Sub-Lethal Concentrations of the Entomopathogenic Fungus, Beauveria bassiana Increase Fitness Costs of Helicoverpa armigera (Lepidoptera: Noctuidae) Offspring. J. Invertebr. Pathol. 2018, 158, 32–42. [Google Scholar] [CrossRef]
- de Souza Loureiro, E.; Tosta, R.A.d.S.; Dias, P.M.; Pessoa, L.G.A.; Neto, F.M.d.O.; Devoz, G.L.R.; Muchalak, F. Performance of Metarhizium Rileyi Applied on Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Rev. Agric. Neotrop. 2020, 7, 60–65. [Google Scholar] [CrossRef]
- Lopez, D.C.; Sword, G.A. The Endophytic Fungal Entomopathogens Beauveria bassiana and Purpureocillium lilacinum Enhance the Growth of Cultivated Cotton (Gossypium hirsutum) and Negatively Affect Survival of the Cotton Bollworm (Helicoverpa zea). Biol. Control 2015, 89, 53–60. [Google Scholar] [CrossRef]
- Darsouei, R.; Karimi, J.; Stelinski, L.L. Endophytic Colonization of Sugar Beet by Beauveria varroae and Beauveria bassiana Reduces Performance and Host Preference in Army Worm, Spodoptera littoralis. Crop Prot. 2024, 175, 106441. [Google Scholar] [CrossRef]
- Lagogiannis, I.; Mantzoukas, S.; Eliopoulos, P.A.; Poulas, K. First Record of Beauveria Varroae, Cordyceps blackwelliae, and Purpureocillium lavendulum from Greece and Their Pathogenicity against Thaumetopoea pityocampa. Diversity 2023, 15, 312. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Navas-Cortés, J.A.; Maranhao, E.A.A.; Ortiz-Urquiza, A.; Santiago-Álvarez, C. Factors Affecting the Occurrence and Distribution of Entomopathogenic Fungi in Natural and Cultivated Soils. Mycol. Res. 2007, 111, 947–966. [Google Scholar] [CrossRef] [PubMed]
- Goettel, M.S.; Douglas Inglis, G. Fungi: Hyphomycetes. In Manual of Techniques in Insect Pathology; Academic Press: Cambridge, MA, USA, 1997; pp. 213–249. [Google Scholar] [CrossRef]
- Cox, D.R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B (Methodol.) 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Seyedtalebi, F.S.; Safavi, S.A.; Talaei-Hassanloui, R.; Bandani, A.R. Quantitative Comparison for Some Immune Responses among Eurygaster Integriceps, Ephestia Kuehniella and Zophobas Morio against the Entomopathogenic Fungus Beuveria Bassiana. Invertebr. Surviv. J. 2017, 14, 174–181. [Google Scholar] [CrossRef]
- Vianna, M.F.; Pelizza, S.; Russo, M.L.; Toledo, A.; Mourelos, C.; Scorsetti, A.C. ISSR Markers to Explore Entomopathogenic Fungi Genetic Diversity: Implications for Biological Control of Tobacco Pests. J. Biosci. 2020, 45, 136. [Google Scholar] [CrossRef]
- Wang, C.; Feng, M.G. Advances in Fundamental and Applied Studies in China of Fungal Biocontrol Agents for Use against Arthropod Pests. Biol. Control 2014, 68, 129–135. [Google Scholar] [CrossRef]
- Kumar, A.; Sharfuddin, C. Evaluation of Beauveria bassiana and Metarhizium anisopliae, for the Management of Helicoverpa armigera (Hubner). J. Mycopathol. Res. 2022, 60, 91–97. [Google Scholar] [CrossRef]
- Amer, M.M.; El-Sayed, T.I.; Bakheit, H.K.; Moustafa, S.A.; El-Sayed, Y.A. Pathogenicity and Genetic Variability of Five Entomopathogenic Fungi Against Spodoptera littoralis. Res. J. Agric. Biol. Sci. 2008, 4, 354–367. [Google Scholar]
- Asi, M.R.; Bashir, M.H.; Afzal, M.; Zia, K.; Akram, M. Potential of Entomopathogenic Fungi For Biocontrol of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). J. Anim. Plant Sci. 2013, 23, 913–918. [Google Scholar]
- El-Katatny, M.H. Virulence Potential of Some Fungal Isolates and Their Control-Promise against the Egyptian Cotton Leaf Worm, Spodoptera littoralis. Arch. Phytopathol. Plant Prot. 2010, 43, 332–356. [Google Scholar] [CrossRef]
- El Husseini, M.M.M. Effect of the Fungus, Beauveria bassiana (Balsamo) Vuillemin, on the Beet Armyworm, Spodoptera exigua (Hübner) Larvae (Lepidoptera: Noctuidae), under Laboratory and Open Field Conditions. Egypt. J. Biol. Pest. Control 2019, 29, 52. [Google Scholar] [CrossRef]
- Fite, T.; Tefera, T.; Negeri, M.; Damte, T.; Sori, W. Evaluation of Beauveria bassiana, Metarhizium anisopliae, and Bacillus thuringiensis for the Management of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) under Laboratory and Field Conditions. Biocontrol Sci. Technol. 2020, 30, 278–295. [Google Scholar] [CrossRef]
- Fargues, J.; Goettel, M.S.; Smits, N.; Ouedraogo, A.; Vidal, C.; Lacey, L.A.; Lomer, C.J.; Rougier, M. Variability in Susceptibility to Simulated Sunlight of Conidia among Isolates of Entomopathogenic Hyphomycetes. Mycopathologia 1996, 135, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.D.; Wakefield, M.E.; Price, N.; Wildey, K.B.; Chambers, J.; Moore, D.; Aquino De Muro, M.; Bell, B.A. The Potential Use of Insect-Specific Fungi to Control Grain Storage Pests in Empty Grain Stores. HGCA Proj. Rep. 2004, 1–49. [Google Scholar]
- Mehinto, J.T.; Atachi, P.; Douro-Kpindou, O.K.; Dannou, E.A.; Tamò, M. Mortality of Maruca vitrata (Lepidoptera: Crambidae) Larval Stages Induced by Different Doses of the Entomopathogenic Fungi Metarhizium anisopliae and Beauveria bassiana. Int. J. 2014, 2, 273–285. [Google Scholar]
- Freed, S.; Feng-Liang, J.; Naeem, M.; Shun-Xiang, R.; Hussian, M. Toxicity of Proteins Secreted by Entomopathogenic Fungi against Plutella xylostella (Lepidoptera: Plutellidae). Int. J. Agric. Biol. 2012, 14, 291–295. [Google Scholar]
- Ali, S.; Huang, Z.; Ren, S. Production of Cuticle Degrading Enzymes by Isaria fumosorosea and Their Evaluation as a Biocontrol Agent against Diamondback Moth. J. Pest Sci. 2010, 83, 361–370. [Google Scholar] [CrossRef]
- Pauli, G.; Mascarin, G.M.; Eilenberg, J.; Delalibera Júnior, I. Within-Host Competition between Two Entomopathogenic Fungi and a Granulovirus in Diatraea saccharalis (Lepidoptera: Crambidae). Insects 2018, 9, 64. [Google Scholar] [CrossRef]
- Feng, Z.; Carruthers, R.I.; Roberts, D.W.; Robson, D.S. Age-Specific Dose-Mortality Effects of Beauveria bassiana (Deuteromycotina: Hyphomycetes) on the European Corn Borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). J. Invertebr. Pathol. 1985, 46, 259–264. [Google Scholar] [CrossRef]
- Vandenberg, J.D.; Ramos, M.; Altre, U.-A.J. Dose-Response and Age-and Temperature-Related Susceptibility Dose-Response and Age-and Temperature-Related Susceptibility of the Diamondback Moth (Lepidoptera: Plutellidae) to Two of the Diamondback Moth (Lepidoptera: Plutellidae) to Two Isolates of Isolates of Beauveria bassiana (Hyphomycetes: Moniliaceae). Entomol. Collect. 1998, 27, 1017–1021. [Google Scholar]
- Ferron, P. Étude En Laboratoire Des Conditions Écologiques Favorisant Le Développement de La Mycose a Beauveria tenella Du Ver Blanc. Entomophaga 1967, 12, 257–293. [Google Scholar] [CrossRef]
- Hafez, M.; Zaki, F.N.; Moursy, A.; Sabbour, M. Biological Effects of the Entomopathogenic Fungus, Beauveria bassiana on the Potato Tuber Moth Phthorimaea operculella (Seller). Anz. Schadlingskunde Pflanzenschutz Umweltschutz 1997, 70, 158–159. [Google Scholar] [CrossRef]
- Wraight, S.P.; Ramos, M.E.; Avery, P.B.; Jaronski, S.T.; Vandenberg, J.D. Comparative Virulence of Beauveria bassiana Isolates against Lepidopteran Pests of Vegetable Crops. J. Invertebr. Pathol. 2010, 103, 186–199. [Google Scholar] [CrossRef]
- Butt, T.M.; Goettel, M.S. Bioassays of Entomogenous Fungi. Bioassays Entomopathog. Microbes Nematodes 2000, 141–195. [Google Scholar] [CrossRef]
Insect | Doses | Exposure Time (Days) | Survival Table | |
---|---|---|---|---|
Survival Effect * | Hazard Effect ** | |||
S. nonagrioides | 103 | 2 | 0.967 | 0.034 |
6 | 0.898 | 0.108 | ||
10 | 0.800 | 0.223 | ||
104 | 2 | 0.933 | 0.069 | |
6 | 0.800 | 0.223 | ||
10 | 0.733 | 0.310 | ||
105 | 2 | 0.767 | 0.266 | |
6 | 0.600 | 0.511 | ||
10 | 0.467 | 0.762 | ||
106 | 2 | 0.600 | 0.511 | |
6 | 0.533 | 0.629 | ||
10 | 0.400 | 0.916 | ||
107 | 2 | 0.500 | 0.693 | |
6 | 0.300 | 1.204 | ||
10 | 0.233 | 2.455 | ||
108 | 2 | 0.333 | 1.099 | |
6 | 0.133 | 2.015 | ||
10 | 0.033 | 3.401 | ||
H. armigera | 103 | 2 | 0.900 | 0.123 |
6 | 0.867 | 0.166 | ||
10 | 0.833 | 0.210 | ||
104 | 2 | 0.900 | 0.105 | |
6 | 0.867 | 0.143 | ||
10 | 0.833 | 0.182 | ||
105 | 2 | 0.767 | 0.266 | |
6 | 0.600 | 0.511 | ||
10 | 0.467 | 0.762 | ||
106 | 2 | 0.467 | 0.762 | |
6 | 0.333 | 1.099 | ||
10 | 0.300 | 1.204 | ||
107 | 2 | 0.400 | 0.793 | |
6 | 0.200 | 1.304 | ||
10 | 0.133 | 2.255 | ||
108 | 2 | 0.133 | 1.499 | |
6 | 0.063 | 2.215 | ||
10 | 0.033 | 3.608 |
Tests of Between-Subjects Effects | |||
---|---|---|---|
Dependent Variable: Mortality | |||
Source | df | F | Sig. |
Insect | 1 | 11.499 | 0.000 |
Dose | 6 | 7.702 | 0.000 |
Experimental time | 9 | 7.249 | 0.005 |
Insect * Dose | 6 | 4.188 | 0.000 |
Insect * Experimental time | 9 | 3.420 | 0.007 |
Experimental time * Dose | 53 | 12.534 | 0.011 |
Insect * Experimental time * Dose | 53 | 2.946 | 0.019 |
Error | 780 | ||
Total | 1000 | ||
Corrected total | 999 |
Factor | B | sd | df | Sig. | Exp(B) | 95.0% CI for Exp(B) | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Dose | 0.948 | 0.049 | 1 | 0.000 | 1.673 | 1.630 | 1.721 |
Experimental Days | 0.408 | 0.057 | 1 | 0.000 | 1.460 | 1.316 | 1.621 |
Insect | −0.039 | 0.040 | 1 | 0.333 | 0.032 | 0.019 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantzoukas, S.; Papantzikos, V.; Lagogiannis, I.; Eliopoulos, P.A.; Patakioutas, G. Biocontrol Potential of a New Beauveria varroae Strain Isolated from an Urban Ecosystem Against Two Species of Noctuidae Pests. Crops 2025, 5, 49. https://doi.org/10.3390/crops5040049
Mantzoukas S, Papantzikos V, Lagogiannis I, Eliopoulos PA, Patakioutas G. Biocontrol Potential of a New Beauveria varroae Strain Isolated from an Urban Ecosystem Against Two Species of Noctuidae Pests. Crops. 2025; 5(4):49. https://doi.org/10.3390/crops5040049
Chicago/Turabian StyleMantzoukas, Spiridon, Vasileios Papantzikos, Ioannis Lagogiannis, Panagiotis A. Eliopoulos, and George Patakioutas. 2025. "Biocontrol Potential of a New Beauveria varroae Strain Isolated from an Urban Ecosystem Against Two Species of Noctuidae Pests" Crops 5, no. 4: 49. https://doi.org/10.3390/crops5040049
APA StyleMantzoukas, S., Papantzikos, V., Lagogiannis, I., Eliopoulos, P. A., & Patakioutas, G. (2025). Biocontrol Potential of a New Beauveria varroae Strain Isolated from an Urban Ecosystem Against Two Species of Noctuidae Pests. Crops, 5(4), 49. https://doi.org/10.3390/crops5040049