Impacts of Climate Change on Late Soybean Cultivation in Subtropical Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate Scenarios
2.2. Crop Modeling
2.3. Soybean Data
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
ATP | Adenosine triphosphate |
Ay | Achievable yield |
CC | Carbon cycle |
CERES | Crop Environment Resource Synthesis |
Cfa | Humid subtropical climate |
CMIP | Coupled Model Intercomparison Project |
CO2 | Carbon dioxide |
CROPGRO | Crop growth model |
CSDL | Critical short-day length |
CSM | Crop simulation model |
DSSAT | Decision Support System for Agrotechnology Transfer |
EMFL | Time between plant emergence and flower appearance |
END | End of century |
ETm | Evapotranspiration metric |
FLLF | Time between first flower and end of leaf expansion |
FLSD | Time between first flower and first seed |
FLSH | Time between first flower and first pod |
HadGEM2 | Hadley Centre Global Environment Model |
INMET | National Institute of Meteorology |
LAI | Leaf area index |
LFMAX | Maximum leaf photosynthesis |
MG | Maturation group |
MID | Middle of century |
Pn | Net photosynthesis |
PODUR | Time required for the cultivar to reach the final pod load under optimal conditions |
PPSEN | The slope of the relative response of development to photoperiod |
Py | Potential yield |
Rain | Rainfall |
RCP | Representative Concentration Pathway |
SD | Short day |
SDLIP | Fraction oil in seeds (g(oil)/g(seed)) |
SDPDV | Average seed per pod under standard growing conditions |
SDPM | Time between first seed and physiological maturity |
SDPRO | Fraction protein in seeds (g(protein)/g(seed)) |
SFDUR | Seed filling duration for pod cohort |
SIZLF | Maximum size of full leaf (three leaflets) |
SLAVR | Specific leaf area |
Srad | Solar radiation |
THRSH | Threshing percentage, the maximum seed ratio (seed + shell) at maturity |
Tmax | Maximum temperature |
Tmin | Minimum temperature |
W | Watts |
WTPSD | Maximum weight per seed |
XFRT | Maximum fraction of daily growth that is portioned to seed and shell |
ZARC | Agroclimatic Risk Zoning |
References
- Werndl, C. On Defining Climate and Climate Change. Br. J. Philos. Sci. 2016, 67, 337–364. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2018. [Google Scholar]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear Heat Effects on African Maize as Evidenced by Historical Yield Trials. Nat. Clim. Change 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and Adaptation of European Crop Production Systems to Climate Change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 1979 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Osborne, T.M.; Wheeler, T.R. Evidence for a Climate Signal in Trends of Global Crop Yield Variability over the Past 50 Years. Environ. Res. Lett. 2013, 8, 024001. [Google Scholar] [CrossRef]
- Sionit, N.; Strain, B.R.; Flint, E.P. Interaction of Temperature and CO2 Enrichment on Soybean: Photosynthesis and Seed Yield. Can. J. Plant Sci. 1987, 67, 629–636. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, L.; Yu, M.; Zhong, M. Warming Decreases Photosynthates and Yield of Soybean [Glycine max (L.) Merrill] in the North China Plain. Crop J. 2016, 4, 139–146. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Farias, J.R.B.; Neumaier, N.; Nepomuceno, A.L. Soja. In Agrometeorologia dos Cultivos: O Fator Meteorológico na Produção Agrícola; Monteiro, J.E.B.A., Ed.; INMET: Brasilia, Brazil, 2009; Volume 1, pp. 263–277. [Google Scholar]
- Farias, J.R.B.; Nepomuceno, A.L.; Neumaier, N. Ecofisiologia Da Soja. Circ. Técnica 2007, 48, 1–9. [Google Scholar]
- Heino, M.; Kinnunen, P.; Anderson, W.; Ray, D.K.; Puma, M.J.; Varis, O.; Siebert, S.; Kummu, M. Increased Probability of Hot and Dry Weather Extremes during the Growing Season Threatens Global Crop Yields. Sci. Rep. 2023, 13, 3583. [Google Scholar] [CrossRef]
- Luo, Q. Temperature Thresholds and Crop Production: A Review. Clim. Change 2011, 109, 583–598. [Google Scholar] [CrossRef]
- Hossain, Z.; Khatoon, A.; Komatsu, S. Soybean Proteomics for Unraveling Abiotic Stress Response Mechanism. J. Proteome Res. 2013, 12, 4670–4684. [Google Scholar] [CrossRef] [PubMed]
- Siebert, S.; Webber, H.; Rezaei, E.E. Weather Impacts on Crop Yields—Searching for Simple Answers to a Complex Problem. Environ. Res. Lett. 2017, 12, 081001. [Google Scholar] [CrossRef]
- Schauberger, B.; Archontoulis, S.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C.; et al. Consistent Negative Response of US Crops to High Temperatures in Observations and Crop Models. Nat. Commun. 2017, 8, 13931. [Google Scholar] [CrossRef]
- Gibson, L.R.; Mullen, R.E. Influence of Day and Night Temperature on Soybean Seed Yield. Crop Sci. 1996, 36, 98–104. [Google Scholar] [CrossRef]
- Setiyono, T.D.; Weiss, A.; Specht, J.; Bastidas, A.M.; Cassman, K.G.; Dobermann, A. Understanding and Modeling the Effect of Temperature and Daylength on Soybean Phenology under High-Yield Conditions. Field Crops Res. 2007, 100, 257–271. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Sentelhas, P.C.; Battisti, R. Clima e Produtividade da Soja: Efeitos Nas Produtividades Potencial, Atingível e Real; Boletim de Pesquisa: Rondonópolis, Brazil, 2015. [Google Scholar]
- Boote, K.J. Improving Soybean Cultivars for Adaptation to Climate Change and Climate Variability. In Crop Adaptation to Climate Change; Wiley: Hoboken, NJ, USA, 2011; pp. 370–395. [Google Scholar]
- Wu, T.; Li, J.; Wu, C.; Sun, S.; Mao, T.; Jiang, B.; Hou, W.; Han, T. Analysis of the Independent- and Interactive-Photo-Thermal Effects on Soybean Flowering. J. Integr. Agric. 2015, 14, 622–632. [Google Scholar] [CrossRef]
- Choi, D.-H.; Ban, H.-Y.; Seo, B.-S.; Lee, K.-J.; Lee, B.-W. Phenology and Seed Yield Performance of Determinate Soybean Cultivars Grown at Elevated Temperatures in a Temperate Region. PLoS ONE 2016, 11, e0165977. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, R.; Hesketh, J.D. Effects of Photoperiod on Growth and Development of Soybean Floral Bud in Different Maturity. Agron. J. 2001, 93, 944–948. [Google Scholar] [CrossRef]
- Kantolic, A.G.; Slafer, G.A. Development and Seed Number in Indeterminate Soybean as Affected by Timing and Duration of Exposure to Long Photoperiods after Flowering. Ann. Bot. 2007, 99, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Mathew, J.P.; Herbert, S.J.; Zhang, S.; Rautenkranz, A.A.F.; Litchfield, G.V. Differential Response of Soybean Yield Components to the Timing of Light Enrichment. Agron. J. 2000, 92, 1156–1161. [Google Scholar] [CrossRef]
- Watanabe, S.; Harada, K.; Abe, J. Genetic and Molecular Bases of Photoperiod Responses of Flowering in Soybean. Breed. Sci. 2012, 61, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Yamagishi, N.; Zhao, C.; Takeshima, R.; Kasai, M.; Watanabe, S.; Kanazawa, A.; Yoshikawa, N.; Liu, B.; Yamada, T.; et al. The Soybean-Specific Maturity Gene E1 Family of Floral Repressors Controls Night-Break Responses through Down-Regulation of Flowering Locus T Orthologs. Plant Physiol. 2015, 168, 1735–1746. [Google Scholar] [CrossRef]
- Mao, T.; Li, J.; Wen, Z.; Wu, T.; Wu, C.; Sun, S.; Jiang, B.; Hou, W.; Li, W.; Song, Q.; et al. Association Mapping of Loci Controlling Genetic and Environmental Interaction of Soybean Flowering Time under Various Photo-Thermal Conditions. BMC Genom. 2017, 18, 415. [Google Scholar] [CrossRef]
- Yang, W.; Wu, T.; Zhang, X.; Song, W.; Xu, C.; Sun, S.; Hou, W.; Jiang, B.; Han, T.; Wu, C. Critical Photoperiod Measurement of Soybean Genotypes in Different Maturity Groups. Crop Sci. 2019, 59, 2055–2061. [Google Scholar] [CrossRef]
- Câmara, G.M.S.; Sediyama, T.; Dourado-Neto, D.; Bernardes, M.S. Influence of Photoperiod and Air Temperature on the Growth, Flowering and Maturation of Soybean (Glycine max (L.) Merrill). Sci. Agric. 1997, 54, 149–154. [Google Scholar] [CrossRef]
- Rodrigues, O.; Didonet, A.D.; Lhamby, J.C.B.; Bertagnolli, P.F.; da Luz, J.S. Resposta Quantitativa Do Florescimento Da Soja à Temperatura e Ao Fotoperíodo. Pesqui. Agrop. Bras. 2001, 36, 431–437. [Google Scholar] [CrossRef]
- Fietz, C.R.; Rangel, M.A.S. Época de Semeadura Da Soja Para a Região de Dourados-MS, Com Base Na Deficiência Hídrica e No Fotoperíodo. Eng. Agríc. 2008, 28, 666–672. [Google Scholar] [CrossRef]
- Lin, X.; Liu, B.; Weller, J.L.; Abe, J.; Kong, F. Molecular Mechanisms for the Photoperiodic Regulation of Flowering in Soybean. J. Integr. Plant Biol. 2021, 63, 981–994. [Google Scholar] [CrossRef]
- Sharkey, T.D. Evaluating the Role of Rubisco Regulation in Photosynthesis of C3 Plants. Philos. Trans. R. Soc. London B Biol. Sci. 1989, 323, 435–448. [Google Scholar] [CrossRef]
- Parry, M.A.J.; Madgwick, P.J.; Carvalho, J.F.C.; Andralojc, P.J. Prospects for Increasing Photosynthesis by Overcoming the Limitations of Rubisco. J. Agric. Sci. 2007, 145, 31–43. [Google Scholar] [CrossRef]
- Qu, Y.; Mueller-Cajar, O.; Yamori, W. Improving Plant Heat Tolerance through Modification of Rubisco Activase in C3 Plants to Secure Crop Yield and Food Security in a Future Warming World. J. Exp. Bot. 2023, 74, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.R.; Rasineni, G.K.; Raghavendra, A.S. The Impact of Global Elevated CO2 Concentration on Photosynthesis and Plant Productivity. Curr. Sci. 2010, 99, 46–57. [Google Scholar]
- Pires, G.F.; Abrahão, G.M.; Brumatti, L.M.; Oliveira, L.J.C.; Costa, M.H.; Liddicoat, S.; Kato, E.; Ladle, R.J. Increased Climate Risk in Brazilian Double Cropping Agriculture Systems: Implications for Land Use in Northern Brazil. Agric. Meteorol. 2016, 228–229, 286–298. [Google Scholar] [CrossRef]
- Engineer, C.B.; Hashimoto-Sugimoto, M.; Negi, J.; Israelsson-Nordström, M.; Azoulay-Shemer, T.; Rappel, W.-J.; Iba, K.; Schroeder, J.I. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions. Trends Plant Sci. 2016, 21, 16–30. [Google Scholar] [CrossRef]
- Hampf, A.C.; Stella, T.; Berg-Mohnicke, M.; Kawohl, T.; Kilian, M.; Nendel, C. Future Yields of Double-Cropping Systems in the Southern Amazon, Brazil, under Climate Change and Technological Development. Agric. Syst. 2020, 177, 102707. [Google Scholar] [CrossRef]
- Han, Y.; Wang, J.; Zhang, Y.; Wang, S. Effects of Regulated Deficit Irrigation and Elevated CO2 Concentration on the Photosynthetic Parameters and Stomatal Morphology of Two Maize Cultivars. J. Plant Growth Regul. 2023, 42, 2884–2892. [Google Scholar] [CrossRef]
- Eck, H.V.; Mathers, A.C.; Musick, J.T. Plant Water Stress at Various Growth Stages and Growth and Yield of Soybeans. Field Crops Res. 1987, 17, 1–16. [Google Scholar] [CrossRef]
- Di Mauro, G.; Borrás, L.; Rugeroni, P.; Rotundo, J.L. Exploring Soybean Management Options for Environments with Contrasting Water Availability. J. Agron. Crop Sci. 2019, 205, 274–282. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Z.; Zhou, Q.; Wang, X.; Song, S.; Dong, S. Physiological Response of Soybean Plants to Water Deficit. Front. Plant Sci. 2022, 12, 809692. [Google Scholar] [CrossRef]
- Haffez, Y.; Iqbal, S.; Jabben, K.; Shahzad, S.; Jahan, S.; Rasul, F. Effect of Biochar Application on Seed Germination and Seedling Growth of Glicine max (L.) Merr. under Drought Stress. Pak. J. Bot. 2017, 49, 7–13. [Google Scholar]
- Lamichhane, J.R.; Constantin, J.; Schoving, C.; Maury, P.; Debaeke, P.; Aubertot, J.-N.; Dürr, C. Analysis of Soybean Germination, Emergence, and Prediction of a Possible Northward Establishment of the Crop under Climate Change. Eur. J. Agron. 2020, 113, 125972. [Google Scholar] [CrossRef]
- De Souza, P.I.; Egli, D.B.; Bruening, W.P. Water Stress during Seed Filling and Leaf Senescence in Soybean. Agron. J. 1997, 89, 807–812. [Google Scholar] [CrossRef]
- Sadeghipour, O.; Abbasi, S. Soybean Response to Drought and Seed Inoculation. World Appl. Sci. J. 2012, 17, 55–60. [Google Scholar]
- Du, Y.; Zhao, Q.; Chen, L.; Yao, X.; Xie, F. Effect of Drought Stress at Reproductive Stages on Growth and Nitrogen Metabolism in Soybean. Agronomy 2020, 10, 302. [Google Scholar] [CrossRef]
- Ergo, V.V.; Lascano, R.; Vega, C.R.C.; Parola, R.; Carrera, C.S. Heat and Water Stressed Field-Grown Soybean: A Multivariate Study on the Relationship between Physiological-Biochemical Traits and Yield. Environ. Exp. Bot. 2018, 148, 1–11. [Google Scholar] [CrossRef]
- Jumrani, K.; Bhatia, V.S. Interactive Effect of Temperature and Water Stress on Physiological and Biochemical Processes in Soybean. Physiol. Mol. Biol. Plants 2019, 25, 667–681. [Google Scholar] [CrossRef]
- Vital, R.G.; Müller, C.; Freire, F.B.S.; Silva, F.B.; Batista, P.F.; Fuentes, D.; Rodrigues, A.A.; Moura, L.M.F.; Daloso, D.M.; Silva, A.A.; et al. Metabolic, Physiological and Anatomical Responses of Soybean Plants under Water Deficit and High Temperature Condition. Sci. Rep. 2022, 12, 16467. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z 2013, 22, 711–728. [Google Scholar] [CrossRef]
- CONAB. Séries Históricas das Safras: Soja. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/category/911-soja (accessed on 30 March 2025).
- Berlato, M.A.; Fontana, D.C. Variabilidade Interanual Da Precipitação Pluvial e Rendimento Da Soja No Estado Do Rio Grande Do Sul. Rev. Bras. Agrometeorol. 1999, 7, 119–125. [Google Scholar]
- Berlato, M.A.; Farenzena, H.; Fontana, D.C. Associação Entre El Niño Oscilação Sul e a Produtividade Do Milho No Estado Do Rio Grande Do Sul. Pesqui. Agrop. Bras. 2005, 40, 423–432. [Google Scholar] [CrossRef]
- Matzenauer, R.; Radin, B.; Maluf, J.R.T. O Fenômeno ENOS e o Regime de Chuvas No Rio Grande Do Sul. Agrometeoros 2018, 25, 323–331. [Google Scholar] [CrossRef]
- Pilau, F.G.; Marin, F.R.; Grubert, D.A.d.V.; Dalmago, G.A.; Romanelli, T.L. Impact of ENSO-Related Rainfall Variability on Soybean Yield in the State of Rio Grande Do Sul, Brazil. Agrometeoros 2022, 30, e027115. [Google Scholar] [CrossRef]
- Wrege, M.S.; Steinmetz, S.; Reisser Júnior, C.; Almeida, I.R. Ce Atlas Climático da Região Sul do Brasil: Estados do Paraná, Santa Catarina e Rio Grande do Sul, 2nd ed.; Embrapa: Brasilia, Brazil, 2012; Volume 1, ISBN 978-85-7035-013-8.
- Berlato, M.A.; Cordeiro, A.P.A. Sinais de Mudanças Climáticas Globais e Regionais, Projeções Para o Século XXI e as Tendências Observadas No Rio Grande Do Sul: Uma Revisão. Agrometeoros 2018, 25, 273–302. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Bellouin, N.; Collins, W.J.; Culverwell, I.D.; Halloran, P.R.; Hardiman, S.C.; Hinton, T.J.; Jones, C.D.; McDonald, R.E.; McLaren, A.J.; O’Connor, F.M.; et al. The HadGEM2 Family of Met Office Unified Model Climate Configurations. Geosci. Model. Dev. 2011, 4, 723–757. [Google Scholar] [CrossRef]
- Yin, L.; Fu, R.; Shevliakova, E.; Dickinson, R.E. How Well Can CMIP5 Simulate Precipitation and Its Controlling Processes over Tropical South America? Clim. Dyn. 2013, 41, 3127–3143. [Google Scholar] [CrossRef]
- Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Monteiro, A.F.M.; Torres, R.R.; Martins, F.B.; Marrafon, V.H.d.A. Climate Change Impacts on Evapotranspiration in Brazil: A Multi-Model Assessment. Theor. Appl. Clim. 2024, 155, 5363–5373. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias Correction of Regional Climate Model Simulations for Hydrological Climate-Change Impact Studies: Review and Evaluation of Different Methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Maraun, D.; Shepherd, T.G.; Widmann, M.; Zappa, G.; Walton, D.; Gutiérrez, J.M.; Hagemann, S.; Richter, I.; Soares, P.M.M.; Hall, A.; et al. Towards Process-Informed Bias Correction of Climate Change Simulations. Nat. Clim. Change 2017, 7, 764–773. [Google Scholar] [CrossRef]
- Dourado-Neto, D.; Teruel, D.A.; Reichardt, K.; Nielsen, D.R.; Frizzone, J.A.; Bacchi, O.O.S. Principles of Crop Modeling and Simulation: I. Uses of Mathematical Models in Agricultural Science. Sci. Agric. 1998, 55, 46–50. [Google Scholar] [CrossRef]
- Wallach, D.; Makowski, D.; Jones, J.W.; Brun, F. Working with Dynamic Crop Models: Methods, Tools and Examples for Agriculture and Environment, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, ISBN 9780128117569. [Google Scholar]
- Sinclair, T.R.; Seligman, N.G. Crop Modeling: From Infancy to Maturity. Agron. J. 1996, 88, 698–704. [Google Scholar] [CrossRef]
- Monteith, J.L. The Quest for Balance in Crop Modeling. Agron. J. 1996, 88, 695–697. [Google Scholar] [CrossRef]
- Acock, B.; Acock, M.C. Potential for Using Long-Term Field Research Data to Develop and Validate Crop Simulators. Agron. J. 1991, 83, 56–61. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Antle, J.M.; Nelson, G.C.; Porter, C.; Janssen, S.; et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies. Agric. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef]
- Boote, K.J.; Jones, J.W.; Hoogenboom, G. Simulation of Crop Growth: CROPGRO Model. In Agricultural Systems Modeling and Simulation; Peart, R.M., Shoup, W.D., Eds.; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, pp. 651–692. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT Cropping System Model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Babel, M.S.; Turyatunga, E. Evaluation of Climate Change Impacts and Adaptation Measures for Maize Cultivation in the Western Uganda Agro-Ecological Zone. Theor. Appl. Clim. 2015, 119, 239–254. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, W.; Ge, Q. CERES-Maize Model-based Simulation of Climate Change Impacts on Maize Yields and Potential Adaptive Measures in Heilongjiang Province, China. J. Sci. Food Agric. 2015, 95, 2838–2849. [Google Scholar] [CrossRef]
- Chisanga, C.B.; Phiri, E.; Chinene, V.R.N. Evaluating APSIM-and-DSSAT-CERES-Maize Models under Rainfed Conditions Using Zambian Rainfed Maize Cultivars. Nitrogen 2021, 2, 392–414. [Google Scholar] [CrossRef]
- Jiang, R.; He, W.; He, L.; Yang, J.Y.; Qian, B.; Zhou, W.; He, P. Modelling Adaptation Strategies to Reduce Adverse Impacts of Climate Change on Maize Cropping System in Northeast China. Sci. Rep. 2021, 11, 810. [Google Scholar] [CrossRef]
- Feleke, H.G.; Savage, M.; Tesfaye, K. Calibration and Validation of APSIM–Maize, DSSAT CERES–Maize and AquaCrop Models for Ethiopian Tropical Environments. S. Afr. J. Plant Soil 2021, 38, 36–51. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.Á.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; de Araújo Filho, J.C.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasilia, Brazil, 2018; Volume 1, ISBN 9788570358004. [Google Scholar]
- Figueiredo Moura da Silva, E.H.; Silva Antolin, L.A.; Zanon, A.J.; Soares Andrade, A.; Antunes de Souza, H.; dos Santos Carvalho, K.; Aparecido Vieira, N.; Marin, F.R. Impact Assessment of Soybean Yield and Water Productivity in Brazil Due to Climate Change. Eur. J. Agron. 2021, 129, 126329. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Las Necesidades de Agua de los Cultivos, 1st ed.; FAO: Rome, Italy, 1976; Volume 1, ISBN 9789253001361. [Google Scholar]
- Berlato, M.A.; Molion, L.C.B. Evaporação e Evapotranspiração, 1st ed.; Instituto de Pesquisas Agronômicas–IPAGRO: Porto Alegre, Brazil, 1981; Volume 1. [Google Scholar]
- Fontana, D.C. Determinação Da Evapotranspiração. In Agrometeorologia Aplicada à Irrigação; Bergamaschi, H., Ed.; Editora da UFRGS: Porto Alegre, Brazil, 1992; Volume 1, pp. 48–61. [Google Scholar]
- Berlato, M.A.; Matzenauer, R.; Bermagamaschi, H. Evapotranspiração Máxima Da Soja e Relações Com a Evapotranspiração Calculada Pela Equação de Penman, Evaporação Do Tanque “Classe A” e Radiação Solar Global. Agron. Sulriograndense 1986, 22, 243–259. [Google Scholar]
- Thomas, J.F.; Raper, D., Jr. Morphological Response of Soybeans as Governed by Photoperiod, Temperature, and Age at Treatment. Bot. Gaz. 1977, 138, 321–328. [Google Scholar] [CrossRef]
- Thomas, J.F.; Raper, C.D. Effect of Day and Night Temperatures During Floral Induction on Morphology of Soybeans1. Agron. J. 1978, 70, 893–898. [Google Scholar] [CrossRef]
- Boote, K.J.; Pickering, N.B.; Allen, L.H. Plant Modeling: Advances and Gaps in Our Capability to Predict Future Crop Growth and Yield in Response to Global Climate Change. In Advances in Carbon Dioxide Effects Research; Wiley: Hoboken, NJ, USA, 2015; pp. 179–228. [Google Scholar]
- Hesketh, J.D.; Myhre, D.L.; Willey, C.R. Temperature Control of Time Intervals Between Vegetative and Reproductive Events in Soybeans1. Crop Sci. 1973, 13, 250–254. [Google Scholar] [CrossRef]
- Hume, D.J.; Jackson, A.K.H. Pod Formation in Soybeans at Low Temperatures1. Crop Sci. 1981, 21, 933–937. [Google Scholar] [CrossRef]
- Boote, K.J.; Allen, L.H.; Prasad, P.V.V.; Baker, J.T.; Gesch, R.W.; Snyder, A.M.; Pan, D.; Thomas, J.M.G. Elevated Temperature and CO2 Impacts on Pollination, Reproductive Growth, and Yield of Several Globally Important Crops. J. Agric. Meteorol. 2005, 60, 469–474. [Google Scholar] [CrossRef]
- Salem, M.A.; Kakani, V.G.; Koti, S.; Reddy, K.R. Pollen-Based Screening of Soybean Genotypes for High Temperatures. Crop Sci. 2007, 47, 219–231. [Google Scholar] [CrossRef]
- Pan, D. Soybean Responses to Elevated Temperature and Doubled CO2. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1996. [Google Scholar]
- Thomas, J.M.G. Impact of Elevated Temperature and Carbon Dioxide on Development and Composition of Soybean Seed. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2001. [Google Scholar]
- Hatfield, J.L.; Dold, C. Climate Change Impacts on Corn Phenology and Productivity. In Corn-Production and Human Health in Changing Climate; Amanullah, Fahad, S., Eds.; InTech: Rijeka, Croatia, 2018. [Google Scholar]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate Variation Explains a Third of Global Crop Yield Variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed]
- Boff de Oliveira, Z.; Eduardo Knies, A. Produtividade de Cultivares de Soja No Ano Agrícola 2020/21 Com e Sem Irrigação Suplementar Em Três Épocas de Semeadura Na Região Central Do RS. Rev. Bras. Eng. Biossistemas 2021, 15, 561–576. [Google Scholar] [CrossRef]
- Oliveira, Z.B.; Spies, V.M.; da Silva, C.E.; Baranzelli, L.F.; Costa, M.d.S.; Rathke, B. Estimativa e Espacialização Da Produtividade Final Da Soja Em Anos de La Niña No Rio Grande Do Sul. Ciência Nat. 2024, 46, e86829. [Google Scholar] [CrossRef]
- Zanon, A.J.; Streck, N.A.; Richter, G.L.; Becker, C.C.; da Rocha, T.S.M.; Cera, J.C.; Winck, J.E.M.; Cardoso, Â.P.; Tagliapietra, E.L.; Weber, P.S. Contribuição Das Ramificações e a Evolução Do Índice de Área Foliar Em Cultivares Modernas de Soja. Bragantia 2015, 74, 279–290. [Google Scholar] [CrossRef]
- Bubans, V.E.; Carvalho, I.R.; Ceolin, C.; Moura, N.B.; Lautenchleger, F.; Conceição, G.M.; Da Silva, J.A.G.; Treter, R.J.R. Relative Maturity Group and Its Relationships with the Non Preferential Sowing Season of Soybean. Agron. Sci. Biotechnol. 2021, 7, 1–14. [Google Scholar] [CrossRef]
- Meier, C.; Meira, D.; Olivoto, T.; Follmann, D.N.; Nardino, M.; Carvalho, I.R.; Ferrari, M.; de Pelegrin, A.J.; Szareski, V.; de Souza, V.Q. Morphological Traits and Yield Components of Second-Crop Soybeans in Rio Grande Do Sul State, Brazil. Aust. J. Basic Appl. Sci. 2016, 10, 81–88. [Google Scholar]
- Follmann, D.N.; Cargnelutti Filho, A.; Queiróz de Souza, V.; Nardino, M.; Carvalho, I.R.; Demari, G.H.; Ferrari, M.; de Pelegrin, A.J.; Szareski, V.J. Relações Lineares Entre Caracteres de Soja Safrinha. Rev. Ciências Agrárias 2017, 40, 213–221. [Google Scholar] [CrossRef]
- Allen, L.H.; Boote, K.J.; Jones, J.W.; Jones, P.H.; Valle, R.R.; Acock, B.; Rogers, H.H.; Dahlman, R.C. Response of Vegetation to Rising Carbon Dioxide: Photosynthesis, Biomass, and Seed Yield of Soybean. Glob. Biogeochem. Cycles 1987, 1, 1–14. [Google Scholar] [CrossRef]
- Teramura, A.H.; Sullivan, J.H.; Ziska, L.H. Interaction of Elevated Ultraviolet-B Radiation and CO2 on Productivity and Photosynthetic Characteristics in Wheat, Rice, and Soybean. Plant Physiol. 1990, 94, 470–475. [Google Scholar] [CrossRef]
- Vu, J.C.V.; Allen, L.H.; Boote, K.J.; Bowes, G. Effects of Elevated CO 2 and Temperature on Photosynthesis and Rubisco in Rice and Soybean. Plant Cell Environ. 1997, 20, 68–76. [Google Scholar] [CrossRef]
- Ziska, L.H. The Impact of Elevated CO2 on Yield Loss from a C3 and C4 Weed in Field-grown Soybean. Glob. Change Biol. 2000, 6, 899–905. [Google Scholar] [CrossRef]
- Bunce, J.A. Use of the Response of Photosynthesis to Oxygen to Estimate Mesophyll Conductance to Carbon Dioxide in Water-stressed Soybean Leaves. Plant Cell Environ. 2009, 32, 875–881. [Google Scholar] [CrossRef]
- Bunce, J.A. Limitations to Soybean Photosynthesis at Elevated Carbon Dioxide in Free-Air Enrichment and Open Top Chamber Systems. Plant Sci. 2014, 226, 131–135. [Google Scholar] [CrossRef]
- Ahmed, M.; Ahmad, S. Carbon Dioxide Enrichment and Crop Productivity. In Agronomic Crops; Springer: Singapore, 2019; pp. 31–46. [Google Scholar]
- Soba, D.; Shu, T.; Runion, G.B.; Prior, S.A.; Fritschi, F.B.; Aranjuelo, I.; Sanz-Saez, A. Effects of Elevated [CO2] on Photosynthesis and Seed Yield Parameters in Two Soybean Genotypes with Contrasting Water Use Efficiency. Environ. Exp. Bot. 2020, 178, 104154. [Google Scholar] [CrossRef]
- Song, Q.; Srinivasan, V.; Long, S.P.; Zhu, X.-G. Decomposition Analysis on Soybean Productivity Increase under Elevated CO2 Using 3-D Canopy Model Reveals Synergestic Effects of CO2 and Light in Photosynthesis. Ann. Bot. 2020, 126, 601–614. [Google Scholar] [CrossRef]
- Drag, D.W.; Slattery, R.; Siebers, M.; DeLucia, E.H.; Ort, D.R.; Bernacchi, C.J. Soybean Photosynthetic and Biomass Responses to Carbon Dioxide Concentrations Ranging from Pre-Industrial to the Distant Future. J. Exp. Bot. 2020, 71, 3690–3700. [Google Scholar] [CrossRef]
- Campbell, W.J.; Allen, L.H.; Bowes, G. Effects of CO2 Concentration on Rubisco Activity, Amount, and Photosynthesis in Soybean Leaves. Plant Physiol. 1988, 88, 1310–1316. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Davey, P.A.; Bernacchi, C.J.; Dermody, O.C.; Heaton, E.A.; Moore, D.J.; Morgan, P.B.; Naidu, S.L.; Yoo Ra, H.; Zhu, X.; et al. A Meta-analysis of Elevated [CO2] Effects on Soybean (Glycine max) Physiology, Growth and Yield. Glob. Change Biol. 2002, 8, 695–709. [Google Scholar] [CrossRef]
- Jones, R.J.; Quattar, S.; Crookston, R.K. Thermal Environment During Endosperm Cell Division and Grain Filling in Maize: Effects on Kernel Growth and Development in Vitro1. Crop Sci. 1984, 24, 133–137. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.V.; Boyle, D.L.; Schapaugh, W.T. Soybean Pollen Anatomy, Viability and Pod Set under High Temperature Stress. J. Agron. Crop Sci. 2013, 199, 171–177. [Google Scholar] [CrossRef]
- Lin, T.; Okamoto, Y.; Nagasaki, Y.; Shiraiwa, T. The Influence of High Night Temperature on Yield and Physiological Attributes of Soybean Cv. Fukuyutaka. Plant Prod. Sci. 2021, 24, 267–278. [Google Scholar] [CrossRef]
- Yang, L.; Song, W.; Xu, C.; Sapey, E.; Jiang, D.; Wu, C. Effects of High Night Temperature on Soybean Yield and Compositions. Front. Plant Sci. 2023, 14, 1065604. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Yang, R.; Wu, T.; Wu, C.; Sun, S.; Zhang, S.; Jiang, B.; Tian, S.; Liu, X.; Han, T. Analyzing the Effects of Climate Factors on Soybean Protein, Oil Contents, and Composition by Extensive and High-Density Sampling in China. J. Agric. Food Chem. 2016, 64, 4121–4130. [Google Scholar] [CrossRef]
- Nakagawa, A.C.S.; Ario, N.; Tomita, Y.; Tanaka, S.; Murayama, N.; Mizuta, C.; Iwaya-Inoue, M.; Ishibashi, Y. High Temperature during Soybean Seed Development Differentially Alters Lipid and Protein Metabolism. Plant Prod. Sci. 2020, 23, 504–512. [Google Scholar] [CrossRef]
- Tenorio, F.M.; Specht, J.E.; Arkebauer, T.J.; Eskridge, K.M.; Graef, G.L.; Grassini, P. Co-Ordination between Primordium Formation and Leaf Appearance in Soybean (Glycine max) as Influenced by Temperature. Field Crops Res. 2017, 210, 197–206. [Google Scholar] [CrossRef]
- Kronenberg, L.; Yates, S.; Ghiasi, S.; Roth, L.; Friedli, M.; Ruckle, M.E.; Werner, R.A.; Tschurr, F.; Binggeli, M.; Buchmann, N.; et al. Rethinking Temperature Effects on Leaf Growth, Gene Expression and Metabolism: Diel Variation Matters. Plant Cell Environ. 2021, 44, 2262–2276. [Google Scholar] [CrossRef]
- Burroughs, C.H.; Montes, C.M.; Moller, C.A.; Mitchell, N.G.; Michael, A.M.; Peng, B.; Kimm, H.; Pederson, T.L.; Lipka, A.E.; Bernacchi, C.J.; et al. Reductions in Leaf Area Index, Pod Production, Seed Size, and Harvest Index Drive Yield Loss to High Temperatures in Soybean. J. Exp. Bot. 2023, 74, 1629–1641. [Google Scholar] [CrossRef]
- Allen, L.H.; Zhang, L.; Boote, K.J.; Hauser, B.A. Elevated Temperature Intensity, Timing, and Duration of Exposure Affect Soybean Internode Elongation, Mainstem Node Number, and Pod Number per Plant. Crop J. 2018, 6, 148–161. [Google Scholar] [CrossRef]
- Puteh, A.B.; ThuZar, M.; Mondal, M.M.A.; Abdullah, N.A.P.B.; Halim, M.R.A. Soybean [Glycine max (L.) Merrill] Seed Yield Response to High Temperature Stress during Reproductive Growth Stages. Aust. J. Crop Sci. 2013, 7, 1472–1479. [Google Scholar]
- Tacarindua, C.R.P.; Shiraiwa, T.; Homma, K.; Kumagai, E.; Sameshima, R. The Effects of Increased Temperature on Crop Growth and Yield of Soybean Grown in a Temperature Gradient Chamber. Field Crops Res. 2013, 154, 74–81. [Google Scholar] [CrossRef]
- Siebers, M.H.; Yendrek, C.R.; Drag, D.; Locke, A.M.; Rios Acosta, L.; Leakey, A.D.B.; Ainsworth, E.A.; Bernacchi, C.J.; Ort, D.R. Heat Waves Imposed during Early Pod Development in Soybean (Glycine max) Cause Significant Yield Loss despite a Rapid Recovery from Oxidative Stress. Glob. Change Biol. 2015, 21, 3114–3125. [Google Scholar] [CrossRef] [PubMed]
- Thomey, M.L.; Slattery, R.A.; Köhler, I.H.; Bernacchi, C.J.; Ort, D.R. Yield Response of Field-grown Soybean Exposed to Heat Waves under Current and Elevated [CO2]. Glob. Change Biol. 2019, 25, 4352–4368. [Google Scholar] [CrossRef] [PubMed]
- Travasso, M.I.; Magrin, G.O.; Baethgen, W.E.; Castaño, J.P.; Rodriguez, G.R.; Pires, J.L.; Gimenez, A.; Cunha, G.; Fernandes, M. Adaptation Measures for Maize and Soybean in Southeastern South America; AIACC: Washington, DC, USA, 2006. [Google Scholar]
- Justino, F.; Oliveira, E.C.; Rodrigues, R.d.Á.; Gonçalves, P.H.L.; Souza, P.J.O.P.; Stordal, F.; Marengo, J.; da Silva, T.G.; Delgado, R.C.; Lindemann, D.d.S.; et al. Mean and Interannual Variability of Maize and Soybean in Brazil under Global Warming Conditions. Am. J. Clim. Change 2013, 2, 237–253. [Google Scholar] [CrossRef]
- Cera, J.C.; Streck, N.A.; Fensterseifer, C.A.J.; Ferraz, S.E.T.; Bexaira, K.P.; Silveira, W.B.; Cardoso, Â.P. Soybean Yield in Future Climate Scenarios for the State of Rio Grande Do Sul, Brazil. Pesqui. Agrop. Bras. 2017, 52, 380–392. [Google Scholar] [CrossRef]
- da Silva, V.d.P.R.; Silva, R.A.; Maciel, G.F.; de Souza, E.P.; Braga, C.C.; de Holanda, R.M. Soybean Yield in the Matopiba Region under Climate Changes. Rev. Bras. Eng. Agrícola Ambient. 2020, 24, 8–14. [Google Scholar] [CrossRef]
- Minuzzi, R.B.; Frederico, C.d.A.; da Silva, T.G.F. Estimation of Soybean Agronomic Performance in Climatic Scenarios for Southern Brazil. Rev. Ceres 2017, 64, 567–573. [Google Scholar] [CrossRef]
- Battisti, R.; Sentelhas, P.C.; Parker, P.S.; Nendel, C.; Câmara, G.M.D.S.; Farias, J.R.B.; Basso, C.J. Assessment of Crop-Management Strategies to Improve Soybean Resilience to Climate Change in Southern Brazil. Crop Pasture Sci. 2018, 69, 154. [Google Scholar] [CrossRef]
- do Rio, A.; Sentelhas, P.C.; Farias, J.R.B.; Sibaldelli, R.N.R.; Ferreira, R.C. Alternative Sowing Dates as a Mitigation Measure to Reduce Climate Change Impacts on Soybean Yields in Southern Brazil. Int. J. Climatol. 2016, 36, 3664–3672. [Google Scholar] [CrossRef]
- Zanon, A.J.; Streck, N.A.; Grassini, P. Climate and Management Factors Influence Soybean Yield Potential in a Subtropical Environment. Agron. J. 2016, 108, 1447–1454. [Google Scholar] [CrossRef]
- Santachiara, G.; Borrás, L.; Rotundo, J.L. Physiological Processes Leading to Similar Yield in Contrasting Soybean Maturity Groups. Agron. J. 2017, 109, 158–167. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Kimball, B.A.; Quarles, D.R.; Long, S.P.; Ort, D.R. Decreases in Stomatal Conductance of Soybean under Open-Air Elevation of [CO2] Are Closely Coupled with Decreases in Ecosystem Evapotranspiration. Plant Physiol. 2007, 143, 134–144. [Google Scholar] [CrossRef]
- Battisti, R.; Sentelhas, P.C. Drought Tolerance of Brazilian Soybean Cultivars Simulated by a Simple Agrometeorological Yield Model. Exp. Agric. 2015, 51, 285–298. [Google Scholar] [CrossRef]
Soybean Genotypes | Genotype Calibration Parameters and Values | ||||||||
---|---|---|---|---|---|---|---|---|---|
CSDL | PPSEN | EMFL | FLSH | FLSD | SDPM | FLLF | LFMAX | SLAVR | |
MG 6 | 12.58 | 0.311 | 25.3 | 8.2 | 13.7 | 37 | 18.8 | 1.03 | 335 |
MG 7 | 12.33 | 0.32 | 20.6 | 8.2 | 15 | 37 | 18 | 1.1 | 335 |
SIZLF | XFRT | WTPSD | SFDUR | SDPDV | PODUR | THRSH | SDPRO | SDLIP | |
MG 6 | 180 | 1 | 0.19 | 23 | 2.4 | 10 | 78 | 0.4 | 0.2 |
MG 7 | 180 | 1 | 0.19 | 23 | 2.7 | 10 | 78 | 0.4 | 0.2 |
Temperature Zone | Parameters | References |
---|---|---|
Without development zone ( < 7 °C) | Below 7 °C, the soybean development ceases, and irreversible damage is observed in plant tissue. The lower basal temperature is considered. | [11,19,75] |
Cold Zone ( > 7 °C and < 14 °C) | The soybean continues its development; however, flowering is not induced at this temperature range. | [10,11,19,88,89,90] |
Optimum temperature zone ( > 14 °C and < 30 °C) | Temperature zone in which the optimal growth and yield of soybean occurs. In this range, the highest CO2 assimilation rate occurs, obtained by the gross photosynthesis carried out by the plant and the maintenance respiration rate. | [10,11,19,20,90,91,92,93,94] |
Hot zone ( > 30 °C and < 35 °C) | Soybean yield losses are observed when compared to the optimum temperature zone but without irreversible damage. | [10,11,19,20,90,93,94] |
Dangerous Zone ( > 35 °C). | Greater damages are observed, some of them irreversible, mainly in reproductive stages. The development of soybean ceases at 40 °C, which is the upper basal temperature, above which it becomes unsuitable for soybean cultivation. | [11,17,20,75,90,94,95,96,97] |
Genotypes | Sowing Dates | RECENT PAST | BASELINE | RCP 4.5 MID | RCP 4.5 END | RCP 8.5 MID | RCP 8.5 END | |
---|---|---|---|---|---|---|---|---|
T1 | MG7 | DEC.21 | 2405 Ac | 2787 Abc | 4285 Aa | 3824 Aab | 3640 Aab | 3544 Bab |
JAN.01 | 2226 ABc | 2560 ABbc | 3573 Ba | 3237 Bab | 3307 ABab | 3250 ABab | ||
JAN.11 | 2115 ABc | 2418 ABCbc | 3312 BCa | 2995 Bab | 3103 ABCab | 3189 ABab | ||
JAN.21 | 2008 ABc | 2285 ABCbc | 3052 CDa | 2758 BCab | 2839 BCDab | 2920 ABab | ||
FEB.01 | 1809 ABc | 2069 BCbc | 2630 DEab | 2374 CDabc | 2627 CDab | 2760 Ba | ||
FEB.11 | 1683 Bc | 1916 Cc | 2355 Eab | 2008 Dbc | 2392 Dab | 2627 Ba | ||
MG6 | DEC.21 | 2110 Ac | 2405 Abc | 3804 Da | 3485 Da | 3180 Dab | 3124 Aabc | |
JAN.01 | 2006 Ac | 2261 Abc | 3161 Ca | 2882 Cab | 2832 ABab | 2845 Aab | ||
JAN.11 | 1944 Ac | 2184 Abc | 2925 BCa | 2696 BCab | 2758 ABab | 2773 Aab | ||
JAN.21 | 1837 Ab | 2060 Aab | 2650 ABa | 2462 ABCab | 2595 ABa | 2597 Aa | ||
FEB.01 | 1741 Ac | 1592 Abc | 2449 Aab | 2196 ABabc | 2474 Aab | 2546 Aa | ||
FEB.11 | 1734 Ad | 1927 Acd | 2304 Aabc | 2020 Abcd | 2388 Aab | 2624 Aa | ||
T2 | MG7 | DEC.21 | 4160 Ac | 4697 Ad | 5193 Ac | 5443 Abc | 5497 Ab | 5890 Aa |
JAN.01 | 3751 Be | 4244 Bd | 4726 Bc | 4980 Bbc | 5021 Bb | 5399 Ba | ||
JAN.11 | 3339 Ce | 3820 Cd | 4239 Cc | 4528 Cb | 4550 Cb | 4944 Ca | ||
JAN.21 | 2917 De | 3357 Dd | 3657 De | 4062 Db | 3947 Db | 4515 Da | ||
FEB.01 | 2401 Ee | 2796 Ed | 3010 Ec | 3378 Eb | 3333 Eb | 3851 Ea | ||
FEB.11 | 1973 Fe | 2303 Fd | 2494 Fc | 2703 Fb | 2716 Fb | 3224 Fa | ||
MG6 | DEC.21 | 3792 Ad | 4210 Ac | 4636 Ab | 4727 Ab | 4905 Ab | 5328 Aa | |
JAN.01 | 3374 Bd | 3742 Bc | 4162 Bb | 4275 Bb | 4411 Bb | 4777 Ba | ||
JAN.11 | 3026 Cd | 3388 Cc | 3717 Cb | 3894 Cb | 3959 Cb | 4274 Ca | ||
JAN.21 | 2657 Dd | 3012 Dc | 3152 Dc | 3518 Db | 3505 Db | 3919 Da | ||
FEB.01 | 2309 Ed | 2623 Ec | 2767 Ec | 3101 Eb | 3051 Eb | 3495 Ea | ||
FEB.11 | 2021 Fe | 2255 Fd | 2455 Fc | 2642 Fb | 2693 Fb | 3067 Fa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigolin, T.; Talamini, E. Impacts of Climate Change on Late Soybean Cultivation in Subtropical Southern Brazil. Crops 2025, 5, 20. https://doi.org/10.3390/crops5020020
Bigolin T, Talamini E. Impacts of Climate Change on Late Soybean Cultivation in Subtropical Southern Brazil. Crops. 2025; 5(2):20. https://doi.org/10.3390/crops5020020
Chicago/Turabian StyleBigolin, Tiago, and Edson Talamini. 2025. "Impacts of Climate Change on Late Soybean Cultivation in Subtropical Southern Brazil" Crops 5, no. 2: 20. https://doi.org/10.3390/crops5020020
APA StyleBigolin, T., & Talamini, E. (2025). Impacts of Climate Change on Late Soybean Cultivation in Subtropical Southern Brazil. Crops, 5(2), 20. https://doi.org/10.3390/crops5020020