Developing a Cryopreservation Protocol for Embryonic Axes of Six South American Peanut Genotypes (Arachis hypogaea L.) Using Desiccation–Vitrification
Abstract
1. Introduction
2. Materials and Methods
2.1. PlantMaterial
2.2. Disinfection and Conditioning of Seeds
2.3. Excision of Embryonic Axes
2.4. Desiccation of Embryonic Axes and Determination of Moisture Content
2.5. Treatment with Cryoprotectant Solutions and Freezing in LN
2.6. Thawing, Recovery, and Assessment of Embryonic Axes
2.7. Assessment of Five Peanut Accessions with an Optimized Cryopreservation Protocol
2.8. Transplant of Recovered Seedlings to the Greenhouse
2.9. Experimental Design and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. FAOSTAT. 2023. Available online: https://www.fao.org/statistics/en (accessed on 4 October 2024).
- Ojiewo, C.O.; Janila, P.; Bhatnagar-Mathur, P.; Pandey, M.K.; Desmae, H.; Okori, P.; Mwololo, J.; Ajeigbe, H.; Njuguna-Mungai, E.; Muricho, G.; et al. Advances in Crop Improvement and Delivery Research for Nutritional Quality and Health Benefits of Groundnut (Arachis hypogaea L.). Front. Plant Sci. 2020, 11, 29. [Google Scholar] [CrossRef]
- Hanson, J.; Williams, J.T.; Freund, R. Institutes Conserving Crop Germplasm: The IBPGR Global Network of Genebanks; International Board for Plant Genetic Resources: Rome, Italy, 1984. [Google Scholar]
- Morris, J.B.; Dunn, S.; Pittman, N.R. Plant recovery from embryonic axes of deteriorated peanut seed for germplasm renewal. Peanut Sci. 1995, 22, 66–70. [Google Scholar] [CrossRef]
- Pence, V.C. Cryostorage of embryo axes of several large-seeded temperate tree species. Cryobiology 1990, 27, 212–218. [Google Scholar] [CrossRef]
- Roos, E.E. Physiological, biochemical, and genetic changes in seed quality during storage. Hortscience 1980, 15, 19–22. [Google Scholar] [CrossRef]
- Vázquez-Yanes, C.; Aréchiga, M.R. Ex situ conservation of tropical rain forest seed: Problems and perspectives. Interciencia 1996, 21, 293–298. [Google Scholar]
- Dunbar, K.B.; Pittman, R.N.; Morris, J.B. In vitro culture of embryonic axes from Arachis species for germplasm survival. J. Seed Technol. 1993, 17, 1–8. [Google Scholar]
- Zhang, L.; Li, J.; Rong, T.; Gao, S.; Wu, F.; Xu, J.; Cao, M.; Wang, J.; Hu, E.; Liu, Y.; et al. Large-scale screening maize germplasm for low-phosphorus tolerance using multiple selection criteria. Euphytica 2014, 197, 435–446. [Google Scholar] [CrossRef]
- Vollmer, R.; Villagaray, R.; Castro, M.; Cárdenas, J.; Pineda, S.; Espirilla, J.; Anglin, N.; Ellis, D.; Rennó Azevedo, V.C. The world’s largest potato cryobank at the International Potato Center (CIP)—Status quo, protocol improvement through large-scale experiments and long-term viability monitoring. Front. Plant Sci. 2022, 13, 1059817. [Google Scholar] [CrossRef]
- Kuranuki, Y.; Sakai, A. Cryopreservation of in vitro-grown shoot tips of tea (Camellia sinensis) by vitrification. CryoLetters 1995, 16, 345–352. [Google Scholar]
- Sakai, A.; Kobayashi, S.; Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990, 9, 30–33. [Google Scholar] [CrossRef]
- Towill, L.E. Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Rep. 1990, 9, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Janeiro, L.V.; Vieitez, A.M.; Ballester, A. Cryopreservation of somatic embryos and embryonic axes of Camellia japonica L. Plant Cell Rep. 1996, 15, 699–703. [Google Scholar] [CrossRef]
- Uragami, A.; Sakai, A.; Nagai, M.; Takahashi, T. Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Rep. 1989, 8, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Harata, K.; Mii, M.; Sakai, A.; Yoshimatsu, K.; Shimomura, K. Cryopreservation of zygotic embryos of a Japanese terrestrial orchid (Bletilla striata) by vitrification. Plant Cell Rep. 1997, 16, 754–757. [Google Scholar] [CrossRef]
- Mycock, D.J.; Watt, M.P.; Berjak, P. A simple procedure for the cryopreservation of hydrated embryonic axes of Pisum sativum. J. Plant Physiol. 1991, 138, 728–733. [Google Scholar] [CrossRef]
- Thammasiri, K. Cryopreservation of embryonic axes of jackfruit. Cryo-Letters 1999, 20, 21–28. Available online: https://api.semanticscholar.org/CorpusID:89388704 (accessed on 4 October 2024).
- Benson, E. (Ed.) Cryopreservation in Plant Conservation Biotechnology; Taylor & Francis Ltd.: London, UK, 1999; pp. 83–93. [Google Scholar]
- Withers, L.A.; Engelman, F. In-vitro conservation of plant genetic resources. In Agricultural Biotechnology; Altman, A., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1997; pp. 57–88. [Google Scholar]
- Rey, H.Y.; Mroginski, L.A. Cryopreservation of Arachis pintoi (Leguminosae) seeds. Seed Sci. Technol. 2009, 37, 202–205. [Google Scholar] [CrossRef]
- Gonzalez-Benito, M.E.; Carvalho, J.M.F.C.; Perez, C. Effect of desiccation and cryopreservation on the germination of embryonic axes and seeds of cotton. Pesqui. Agropecu. Bras. 1998, 33, 17–20. [Google Scholar]
- Hong, T.D.; Ellis, R.H. The survival of germinating orthodox seeds after desiccation and hermetic storage. J. Exp. Bot. 1992, 43, 239–247. [Google Scholar] [CrossRef]
- Pritchard, H.W.; Tompsett, P.B.; Manger, K.; Smidt, W.J. The effect of moisture content on the low temperature responses of Araucaria hunsteinii seed and embryos. Ann. Bot. 1995, 76, 79–88. [Google Scholar] [CrossRef]
- Berjak, P.; Walker, M.; Watt, M.P.; Mycock, D.J. Experimental parameters underlying failure or success in plant germplasm cryopreservation: A case study on zygotic axes of Quercus robur L. Cryo-Letters 1999, 20, 251–262. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20001609820 (accessed on 5 October 2024).
- Sun, W.Q. State and phase transition behaviours of Quercus rubra seed axes and cotyledonary tissues: Relevance to the desiccation sensitivity and cryopreservation of recalcitrant seeds. Cryobiology 1999, 38, 372–385. [Google Scholar] [CrossRef]
- Gagliardi, R.F.; Pacheco, G.P.; Vall, J.F.M.; Mansur, E. Cryopreservation of cultivated and wild Arachis species embryonic axes using desiccation and vitrification methods. CryoLetters 2002, 23, 61–68. [Google Scholar]
- Abdulmalik, M.M.; Usman, I.S.; Olarewaju, J.D.; Aba, D.A. Influence of Desiccation Time on Survival and Regeneration of Embryonic Axes of Groundnut (Arachis hypogaea L.) Immersed in Liquid Nitrogen. Am. J. Plant Sci. 2013, 4, 1725–1730. [Google Scholar] [CrossRef]
- Ozudogru, E.A.; Ozden-Tokatli, Y.; Gumusel, F.; Benelli, C.; Lambardi, M. Development of a cryopreservation procedure for peanut (Arachis hypogaea L.) embryonic axes and its application to local Turkish germplasm. Adv. Hort. Sci. 2009, 23, 41–48. Available online: https://www.torrossa.com/en/resources/an/2209346?digital=true# (accessed on 5 October 2024).
- Tacán, M.; Tapia, C.; Zambrano, E.; Mendoza, A.; Monteros-Altamirano, Á.; Pérez, C.; Sørensen, M. Cryopreservation of Arachis hypogaea L. varieties, from the INIAP-Ecuador Germplasm Bank. Acta Sci. Agric. 2023, 7, 18–31. [Google Scholar] [CrossRef]
- Rey, H.Y.; Faloci, M.; Medina, R.; Dolce, N.R.; Engelmann, F.; Mroginski, L. Cryopreservation of Arachis pintoi (Leguminosae) somatic embryos. CryoLetters 2013, 34, 571–582. Available online: https://pubmed.ncbi.nlm.nih.gov/24441368/ (accessed on 6 October 2024).
- Abdulmalik, M.M.; Usman, I.S.; Olarewaju, J.D.; Aba, D.A. Cryopreservation of embryonic axes of groundnut (Arachis hypogaea L.) by vitrification. Afr. J. Biotechnol. 2014, 13, 280–285. [Google Scholar] [CrossRef]
- Runthala, P.; Jana, M.K.; Mohanan, K. Cryopreservation of groundnut (Arachis hypogaea L.) embryonic axes for germplasm conservation. CryoLetters 1993, 14, 337–340. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19951605303 (accessed on 6 October 2024).
- Rey, H.Y.; Faloci, M.; Medina, R.; Dolce, N.R.; Mroginski, L.; Engelmann, F. Cryopreservation of in vitro grown shoot tips and apical meristems of the forage legume Arachis pintoi. CryoLetters 2009, 30, 347–358. Available online: https://pubmed.ncbi.nlm.nih.gov/19946657/ (accessed on 6 October 2024).
- Gagliardi, R.F.; Pacheco, G.P.; Carneriro, L.A.; Valls, J.F.M.; Vieira, L.M.C.; Mansur, E. Cryopreservation of Arachis species by vitrification of in vitro-grown shoot apices and genetic stability of recovered plants. CryoLetters 2003, 24, 103–110. Available online: https://pubmed.ncbi.nlm.nih.gov/12819831/ (accessed on 6 October 2024).
- Monteros-Altamirano, A.; Tacán, M.; Peña, G.; Tapia, C.; Paredes, N.; Lima, L. Guía para el Manejo de los Recursos Fitogenéticos en Ecuador; Protocolos. INIAP, Estación Experimental Santa Catalina; Departamento Nacional de Recursos Fitogenéticos: Mejía, Ecuador, 2018; No. 432. [Google Scholar]
- World Flora Online (WFO). Arachis hypogaea L. Available online: https://wfoplantlist.org/taxon/wfo-0000174378-2023-12?page=1 (accessed on 6 October 2024).
- Plants of the World Online of the Royal Botanic Gardens of Kew. Arachis hypogaea L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:318562-2 (accessed on 7 October 2024).
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Takagi, H. Recent developments in cryopreservation of shoot apices of tropical species. In Cryopreservation of Tropical Plant Germplasm. Current Research Progress and Application; JIRCAS International Agriculture Series No. 8; Engelmann, F., Takagi, H., Eds.; IPGRI: Rome, Italy, 2000; pp. 178–192. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/2021-08/010023387.pdf (accessed on 7 October 2024).
- Matsumoto, T.; Sakai, A. Cryopreservation of axillary shoot tips of in vitro-grown grape (Vitis) by a two-step vitrification protocol. Euphytica 2003, 131, 299–304. [Google Scholar] [CrossRef]
- Reed, B.M.; Dumet, D.; Denoma, J.M.; Benson, E.E. Validation of cryopreservation protocols for plant germplasm conservation: A pilot study using Ribes L. Biodivers. Conserv. 2001, 10, 939–949. [Google Scholar] [CrossRef]
- Engelmann, F. Importance of cryopreservation for the conservation of plant genetic resources. In Cryopreservation of Tropical Plant Germplasm. Current Research Progress and Application; JIRCAS International Agriculture Series No. 8; Engelmann, F., Takagi, H., Eds.; IPGRI: Rome, Italy, 2000; pp. 8–42. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/2021-08/010023387.pdf (accessed on 7 October 2024).
- Pence, V.C. Desiccation and survival of Aesculus, Castanea and Quercus embryo axes through cryopreservation. Cryobiology 1992, 29, 391–399. [Google Scholar] [CrossRef]
- Osorio-Saenz, A.; Mascorro-Gallardo, J.O.; Valle-Sandoval, M.d.R.; González-Arnao, M.T.; Engelmann, F. Geneticallly enginereed trehalose accumulation improves cryopreservation tolerance of chrysanthemum (Dendranthema grandiflorum Kitam.) shoot-tips. CryoLetters 2011, 32, 477–486. [Google Scholar] [PubMed]
- Bula Silvera, A.J.; Juvinao, J. Comportamiento del gel de sílice como filtro deshumidificador en sistemas de acondicionamiento de aire por compresión de vapor. Rev. Fac. Ing. 2004, 31, 73–83. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Fan, M.-J.; Liaw, S.-I. Cryopreservation of in vitro grown shoot tips of papaya (Carica papaya L.) by vitrification. Bot. Bull. Acad. Sin. 2005, 46, 29–34. Available online: https://ejournal.sinica.edu.tw/bbas/content/2005/1/Bot461-04.pdf (accessed on 8 October 2024).
- Yamuna, G.; Sumathi, V.; Geetha, S.P.; Praveen, K.; Swapna, N.; Nirmal Babu, K. Cryopreservation of in vitro grown shoots of ginger (Zingiber officinale Rosc.). CryoLetters 2007, 28, 241–252. [Google Scholar] [PubMed]
- Volk, G.M.; Walters, C. Plant vitrification solution 2 lowers water content and alters freezing behaviour in shoot tips during cryoprotection. Cryobiology 2006, 52, 48–61. [Google Scholar] [CrossRef]
- Fuller, B.J. Cryoprotectants: The essential antifreezes to protect life in the frozen state. CryoLetters 2004, 25, 375–388. [Google Scholar] [PubMed]
Genotype | Taxonomic Classification | Geographic Origin (Province, City) | |
---|---|---|---|
Current 1 | Former | ||
ECU-12466 | A. hypogaea L. | Arachis hypogaea L. | Guayas, Naranjal |
ECU-11448 | A. hypogaea L. | A. hypogaea subsp. fastigiata var. fastigiata Harz | Loja, Paltas |
ECU-11418 | A. hypogaea L. | A. hypogaea subsp. fastigiata var. aequatoriana Krapov. & W.C. Greg. | Napo, Tena |
ECU-11494 | A. hypogaea L. | A. hypogaea subsp. fastigiata var. peruviana Krapov. & W.C. Greg. | Esmeraldas, Quininde |
ECU-11469 | A. hypogaea L. | A. hypogaea subsp. hypogaea var. hypogaea Köhler | Manabí, Sucre |
ECU-11401 | A. hypogaea L. | A. hypogaea subsp. hypogaea var. hirsuta Köhler | Pichincha, Quito |
Treatment | Germination Rate (After 10 Days) 1 | Shoot Length ± SE (mm) [After 30 Days] 1 | Rooting Rate (After 30 Days) 1 |
---|---|---|---|
Desiccation with silica gel (S) | |||
0 h | 71.4% a | 32.36 ± 7.60 a | 41.0% a |
1 h | 83.3% a | 33.69 ± 5.72 a | 34.1% a b |
2 h | 85.7% a | 21.69 ± 4.47 a | 19.8% b |
3 h | 85.7% a | 29.54 ± 5.86 a | 28.0% a b |
Cryoprotection (PVS2) | |||
0 h | 73.2% a | 30.04 ± 3.13 b | 22.7% a b |
1 h | 79.2% a | 44.96 ± 4.56 a | 53.6% a |
2 h | 85.7% a | 12.96 ± 2.77 c | 16.1% b |
S × PVS2 | |||
0 h × 0 h | N.S. | 29.60 ± 13.38 a,b | 20.0% a,b,c |
0 h × 1 h | N.S. | 55.70 ± 3.61 a | 80.0% a |
0 h × 2 h | N.S. | 11.77 ± 3.60 b | 50.0% a,b,c |
1 h × 0 h | N.S. | 28.40 ± 4.67 a,b | 16.7% a,b,c |
1 h × 1 h | N.S. | 48.30 ± 12.83 a | 71.4% a,b |
1 h × 2 h | N.S. | 24.37± 6.56 a,b | 14.3% a,b,c |
2 h × 0 h | N.S. | 31.30 ± 2.92 a,b | 42.9% a,b,c |
2 h × 1 h | N.S. | 27.90 ± 6.32 a,b | 16.7% a,b,c |
2 h × 2 h | N.S. | 5.87 ± 0.68 b | 0.0% c |
3 h × 0 h | N.S. | 30.87 ± 1.94 a,b | 12.5% a,b,c |
3 h × 1 h | N.S. | 47.93 ± 5.20 a | 71.4% a,b |
3 h × 2 h | N.S. | 9.83 ± 4.13 b | 0.0% b,c |
Genotype | Germination Rate (±SE) 1 | Rooting Rate 1 | ||||
---|---|---|---|---|---|---|
−LN | +LN | −LN | +LN | |||
10 Days | 10 Days | 15 Days | 21 Days | 30 Days | ||
ECU-11448 | 93.7 ± 1.3% | 90.8 ± 3.1% | 89.7 ± 3.3% | 94.3 ± 2.5% | 93.1 ± 2.7% | 3.4 ± 2.0% |
ECU-11418 | 60.7 ± 2.5% | 22.4 ± 4.2% | 61.2 ± 4.9% | 70.4 ± 4.6% | 80.8 ± 4.0% | 3.0 ± 1.7% |
ECU-11494 | 96.6 ± 1.0% | 95.4 ± 2.3% | 97.7 ± 1.6% | 93.1 ± 2.7% | 94.3± 2.5% | 59.8 ± 5.3% |
ECU-11469 | 94.0 ± 1.3% | 88.5 ± 3.4% | 95.4 ± 2.3% | 97.7 ± 1.6% | 95.4 ± 2.3% | 40.2 ± 5.3% |
ECU-11401 | 93.2 ± 1.4% | 91.3 ± 3.2% | 88.9 ± 3.2% | 92.6 ± 2.9% | 92.6 ± 2.9% | 22.2 ± 4.6% |
Average | 87.0 ± 1.0% a | 76.1 ± 2.0% b | 85.9 ± 1.7% a | 89.1 ± 1.5% a | 90.9 ± 1.4% A | 25.2 ± 2.1% B |
Genotype | Moisture Content of Embryonic Axes | T50 ± SE | |
---|---|---|---|
−LN | +LN | ||
ECU-11418 | 9.0% | 3.6 ± 0.2 | 6.0 ± 0.3 |
ECU-11448 | 10.8% | 4.4 ± 0.1 | 6.8 ± 0.2 |
ECU-11494 | 8.9% | 3.8 ± 0.1 | 6.3 ± 0.2 |
ECU-11469 | 7.9% | 3.6 ± 0.2 | 6.3 ± 0.3 |
ECU-11401 | 9.2% | 3.5 ± 0.1 | 5.9 ± 0.2 |
AVERAGE | 9.2% | 3.8 ± 0.1 b | 6.2 ± 0.1 a |
Peanut Genotype | Number of Plants Selected for Transplanting, 50 Days After Rewarming (+LN) | Condition of Plants, 30 Days After Transplanting | Classification of Plants (+LN) According to Their Physiological Condition, 45 Days After Transplanting | Number of Plants Flowering 90 Days After Transplanting | |||||
---|---|---|---|---|---|---|---|---|---|
Complete Plants | % | Dead Plants | % | Good | Regular | Weak | |||
ECU-11418 | 30 | 20 | 67% | 10 | 33% | 2 | 2 | 1 | 2 |
ECU-11448 | 30 | 16 | 53% | 14 | 47% | 1 | 3 | 1 | 1 |
ECU-11401 | 30 | 19 | 63% | 11 | 37% | 2 | 2 | 1 | 1 |
ECU-11494 | 30 | 28 | 93% | 2 | 7% | 3 | 1 | 1 | 3 |
ECU-11469 | 30 | 22 | 73% | 8 | 27% | 2 | 2 | 1 | 2 |
AVERAGE | 30 | 21 | 70% | 9 | 30% | 2 | 2 | 1 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tacán, M.; Andrango, R.; Tapia, C.; Sørensen, M.; Vollmer, R.; Pérez, C. Developing a Cryopreservation Protocol for Embryonic Axes of Six South American Peanut Genotypes (Arachis hypogaea L.) Using Desiccation–Vitrification. Crops 2024, 4, 701-716. https://doi.org/10.3390/crops4040048
Tacán M, Andrango R, Tapia C, Sørensen M, Vollmer R, Pérez C. Developing a Cryopreservation Protocol for Embryonic Axes of Six South American Peanut Genotypes (Arachis hypogaea L.) Using Desiccation–Vitrification. Crops. 2024; 4(4):701-716. https://doi.org/10.3390/crops4040048
Chicago/Turabian StyleTacán, Marcelo, Raquel Andrango, César Tapia, Marten Sørensen, Rainer Vollmer, and César Pérez. 2024. "Developing a Cryopreservation Protocol for Embryonic Axes of Six South American Peanut Genotypes (Arachis hypogaea L.) Using Desiccation–Vitrification" Crops 4, no. 4: 701-716. https://doi.org/10.3390/crops4040048
APA StyleTacán, M., Andrango, R., Tapia, C., Sørensen, M., Vollmer, R., & Pérez, C. (2024). Developing a Cryopreservation Protocol for Embryonic Axes of Six South American Peanut Genotypes (Arachis hypogaea L.) Using Desiccation–Vitrification. Crops, 4(4), 701-716. https://doi.org/10.3390/crops4040048