Hydroponic Lettuce Cultivation with Organic Liquid Fertilizer: Examining Bacterial Inhibition and Phosphate Solubilization
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Parameters
2.2. Micro Enrichment Process (MEP) of Organic Liquid Fertilizer
2.3. Growth Environment and Conditions
- “Power Fish”: total nitrogen (T-N): 12 g/L, total phosphorus (T-P): 9 g/L, total potassium (T-K): 20 g/L, total magnesium (T-Mg): 10 g/L.
- “Planet Organic Liquid Fertilizer Vol. 2” (POF vol. 2): total nitrogen (T-N): 12 g/L, total phosphorus (T-P): 7 g/L, potassium (K): 11.5 g/L.
2.4. Detection of Nitrate
2.5. Dual Cultivation with Rot Fungi
2.6. Phosphate Solubilization Reaction
3. Results
3.1. Plant Growth
3.2. Change in pH and EC Values from MEP to DAT
3.3. Detected NO3-N
3.4. Isolation of Bacteria and Their Inhibitory Activities Against Root Rot Fungi
3.5. Ability of Phosphate Solubilization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Acronyms
DAT | Days after transplanting |
DW | Dry weight |
EC | Electrical conductivity |
FW | Fresh weight |
HNO3 | Nitrate acid |
LN | Leaf number |
MEP | Micro enrichment process |
NA | Nutrient ager |
NO3 | Nitrate |
NO3-N | Nitrate nitrogen |
NS | Nutrient solution |
NS | Nutrient solution |
P | phosphate fertilizer |
PDA | Potato dextrose agar |
PFALs | Plant factory artificial lighting |
PGPR | Plant growth-promoting rhizobacteria |
PH | Plant height |
POF vol.2 | Planet Organic Liquid Fertilizer vol.2 |
PSM | Phosphate solubilizing microorganisms |
PVK | Pikovskaya’s agar |
RL | Root length |
SSP | Sodium salicylate procedure |
T-N | Total nitrogen |
References
- IFPRI High Fertilizer Prices Contribute to Rising Global Food Security Concerns. Available online: https://www.ifpri.org/blog/high-fertilizer-prices-contribute-rising-global-food-security-concerns (accessed on 25 April 2022).
- NARO. Organic Fertilizer-Based Hydroponic Cultivation System Organic Fertilizer-Based Hydroponic Cultivation System. 2013. Available online: https://www.naro.go.jp/project/results/laboratory/vegetea/2013/13_040.html (accessed on 20 August 2024). (In Japanese).
- NARO. Organic Cultivation Manuals in Hydroponics Vol.1. 2012. Available online: https://www.naro.go.jp/publicity_report/publication/files/vt_youekisaibai_manual_20140616.pdf (accessed on 20 August 2024). (In Japanese).
- Arnaouteli, S.; Bamford, N.C.; Stanley-Wall, N.R.; Kovács, Á.T. Bacillus subtilis biofilm formation and social interactions. Nat. Rev. Microbiol. 2021, 19, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Iida, Y.; Someya, N.; Takano, M.; Ohnishi, J.; Terami, F.; Shinohara, M. Emergence of Antagonism Against the Pathogenic Fungus Fusarium oxysporum by Interplay Among Non-Antagonistic Bacteria in a Hydroponics Using Multiple Parallel Mineralization. J. Phytopathol. 2016, 164, 853–862. [Google Scholar] [CrossRef]
- Fujiwara, K.; Iida, Y.; Iwai, T.; Aoyama, C.; Inukai, R.; Ando, A.; Shinohara, M. The rhizosphere microbial com-munity in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum. Microbiologyopen 2013, 2, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Saijai, S.; Ando, A.; Inukai, R.; Shinohara, M.; Ogawa, J. Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics. Biosci. Biotechnol. Biochem. 2016, 80, 2247–2254. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.H. Substance Flow Analysis as a Decision Support Tool for Phosphorus Management. J. Ind. Ecol. 2010, 14, 870–873. [Google Scholar] [CrossRef]
- Cooper, J.; Lombardi, R.; Boardman, D.; Carliell-Marquet, C. The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 2011, 57, 78–86. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Steen, I. Management of a non-renewable resource. Phosphorus Potassium 1998, 217, 25–31. [Google Scholar]
- Joyce, A.; Goddek, S.; Kotzen, B.; Wuertz, S. Closing the Cycle on Limited Water, Land and Nutrient Resources. In Aquaponics Food Production Systems; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Iqbal, Z.; Ahmad, M.; Raza, M.A.; Hilger, T.; Rasche, F. Phosphate-Solubilizing Bacillus sp. Modulate Soil Exoenzyme Activities and Improve Wheat Growth. Microb. Ecol. 2024, 87, 31. [Google Scholar] [CrossRef] [PubMed]
- Lettuce Nutritional Monitoring Factsheet. Hort. Americas. 2018. Available online: https://www.hortidaily.com/article/6042710/nutritional-monitoring-in-lettuce/ (accessed on 20 August 2024).
- Chowdhury, M.; Samarakoon, U.C.; Altland, J.E. Evaluation of hydroponic systems for organic lettuce production in controlled environment. Front. Plant Sci. 2024, 15, 1401089. Available online: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1401089 (accessed on 20 August 2024). [CrossRef] [PubMed]
- Kano, K.; Kitazawa, H.; Suzuki, K.; Widiastuti, A.; Odani, H.; Zhou, S.; Chinta, Y.D.; Eguchi, Y.; Shinohara, M.; Sato, T. Effects of Organic Fertilizer on Bok Choy Growth and Quality in Hydroponic Cultures. Agronomy 2021, 11, 491. [Google Scholar] [CrossRef]
- Kechasov, D.; Verheul, M.J.; Paponov, M.; Panosyan, A.; Paponov, I.A. Organic Waste-Based Fertilizer in Hydroponics Increases Tomato Fruit Size but Reduces Fruit Quality. Front. Plant Sci. 2021, 12, 680030. [Google Scholar] [CrossRef] [PubMed]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory; Academic Press: Cambridge, MA, USA, 2016; pp. 401–405. ISBN 9780128017753. [Google Scholar] [CrossRef]
- Yang, J.E.; Kim, J.J.; Skogley, E.O.; Schaff, B.E. A Simple Spectrophotometric Determination of Nitrate in Water, Resin, and Soil Extracts. Soil. Sci. Soc. Am. J. 1998, 62, 1108–1115. [Google Scholar] [CrossRef]
- Delaide, B.; Monsees, H.; Gross, A.; Goddek, S. Aerobic Anaerobic Treatments for Aquaponic Sludge Reduction Mineralisation. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 247–266. [Google Scholar] [CrossRef]
- Chinta, Y.D.; Kano, K.; Widiastuti, A.; Fukahori, M.; Kawasaki, S.; Eguchi, Y.; Sato, T. Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f. sp. lactucae) in hydroponic cultures. J. Sci. Food Agric. 2014, 94, 2317–2323. [Google Scholar] [CrossRef] [PubMed]
- Chinta, Y.D.; Eguchi, Y.; Widiastuti, A.; Shinohara, M.; Sato, T. Organic hydroponics induces systemic resistance against the air-borne pathogen, Botrytis cinerea (gray mould). J. Plant Interact. 2015, 10, 243–251. [Google Scholar] [CrossRef]
- Nihorimbere, V.; Ongena, M.; Smargiassi, M.; Thonart, P. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol. Agron. Soc. Environ. 2011, 15, 327–337. [Google Scholar]
- Widnyana, I.K.; Javandira, C. Activities Pseudomonas spp. and Bacillus sp. to Stimulate Germination and Seedling Growth of Tomato Plants. Agric. Agric. Sci. Procedia 2016, 9, 419–423. [Google Scholar] [CrossRef]
- Sharan, A.; Shikha; Darmwal, N.S. Efficient phosphorus solubilization by mutant strain of Xanthomonas campestris using different carbon, nitrogen and phosphorus sources. World J. Microbiol. Biotechnol. 2008, 24, 3087–3090. [Google Scholar] [CrossRef]
- Sharan, A.; Shikha Darmwal, N.S.; Gaur, R. Xanthomonas campestris, a novel stress tolerant, phosphate-solubilizing bacterial strain from saline–alkali soils. World J. Microbiol. Biotechnol. 2008, 24, 753–759. [Google Scholar] [CrossRef]
- Shubha, K.; Mukherjee, A.; Dubey, A.; Koley, T. Bioponics—A new way to grow soilless vegetable cultivation. Agric. Food. E-Newsl. 2019, 1, 1015. [Google Scholar] [CrossRef]
Chemicals | Amounts |
---|---|
(mmol L) | |
Ca(NO3)2·4H2O | 0.200 |
KNO3 | 0.400 |
MgSO4·7H2O | 0.165 |
NH4H2PO4 | 0.065 |
FE-EDTA | 0.014 |
H3BO3 | 0.002 |
MnSO4·4H2O | 0.005 × 10 |
ZnSO4·5H2O | 0.006 × 102 |
CuSO4·5H2O | 0.002 × 102 |
Na2MoO4·2H2O | 0.006 × 103 |
[P1F] treatment | [P1P] treatment | [P2F] treatment | [P2P]treatment |
Power Fish | POF Vol.2 | Power Fish | POF Vol.2 |
Room temperature: 26–27 °C | Room temperature: 23 °C | ||
Water temperature: 24–25 °C | Water temperature: 20–21 °C | ||
Humidity: 30–70% | Humidity: 30–70% | ||
Light intensity: 400 μmol−2s−1 | Light intensity: 400 μmol−2s−1 | ||
Carbon oxidation: 900 ppm | Carbon oxidation: 900 ppm |
Bacillus sp. | Xanthomonas sp. | |||
Inhibition (%) | P1 | P2 | P3 | P4 |
Pythium sp. | 84.8 *b | 87.7 *a | 83.3 *b | 79.7 *b |
Fusarium sp. | 51.1 n.s | 50.0 n.s | 44.4 n.s | 33.3 n.s |
Bacillus sp. | ||||
Inhibition (%) | F1 | F2 | F3 | F4 |
Pythium sp. | 77.5 n.s | 85.5 n.s | 82.6 n.s | 88.0 n.s |
Fusarium sp. | 33.3 *b | 43.3 *b | 46.7 *b | 63.3 *a |
Day 3 | Day 5 | Day 7 | Day 9 | Day 3 | Day 5 | Day 7 | Day 9 | ||
---|---|---|---|---|---|---|---|---|---|
F1 | × | 〇 | 〇 | 〇 | P1 | × | 〇 | 〇 | 〇 |
F2 | × | 〇 | 〇 | 〇 | P2 | × | 〇 | 〇 | 〇 |
F3 | × | × | 〇 | 〇 | P3 | × | × | 〇 | 〇 |
F4 | 〇 | 〇 | 〇 | 〇 | P4 | × | 〇 | 〇 | 〇 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Endoh, T.; Takagaki, M.; Suwitchayanon, P.; Chanseetis, C.; Lu, N. Hydroponic Lettuce Cultivation with Organic Liquid Fertilizer: Examining Bacterial Inhibition and Phosphate Solubilization. Crops 2024, 4, 502-513. https://doi.org/10.3390/crops4040036
Endoh T, Takagaki M, Suwitchayanon P, Chanseetis C, Lu N. Hydroponic Lettuce Cultivation with Organic Liquid Fertilizer: Examining Bacterial Inhibition and Phosphate Solubilization. Crops. 2024; 4(4):502-513. https://doi.org/10.3390/crops4040036
Chicago/Turabian StyleEndoh, Tomoka, Michiko Takagaki, Prapaipit Suwitchayanon, Charturong Chanseetis, and Na Lu. 2024. "Hydroponic Lettuce Cultivation with Organic Liquid Fertilizer: Examining Bacterial Inhibition and Phosphate Solubilization" Crops 4, no. 4: 502-513. https://doi.org/10.3390/crops4040036
APA StyleEndoh, T., Takagaki, M., Suwitchayanon, P., Chanseetis, C., & Lu, N. (2024). Hydroponic Lettuce Cultivation with Organic Liquid Fertilizer: Examining Bacterial Inhibition and Phosphate Solubilization. Crops, 4(4), 502-513. https://doi.org/10.3390/crops4040036