Analysis of Parent and F1 Progeny Verification in African Yam Bean (Sphenostylis stenocarpa Hochst, Ex. A. Rich. Harms) Using Cowpea SSR Markers
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Crosses
2.2. SSR Marker Selection and PCR Amplification
2.3. Gel Electrophoresis
2.4. Polymorphism Analysis
2.5. Determination of True Progeny
2.6. Statistical Analysis
3. Results
3.1. Screening the Parents and Progenies Using SSR Markers
3.2. Cluster Analysis and F-Statistics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popoola, J.O.; Aworunse, O.S.; Ojuederie, O.B.; Adewale, B.D.; Ajani, O.C.; Oyatomi, O.A.; Eruemulor, D.I.; Adegboyega, T.T.; Obembe, O.O. The Exploitation of Orphan Legumes for Food, Income, and Nutrition Security in Sub-Saharan Africa. Front. Plant Sci. 2022, 13, 782140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adewale, B.D.; Nnamani, C.V. Introduction to food, feed, and health wealth in African yam bean, a locked-in African indigenous tuberous legume. Front. Sustain. Food Syst. 2022, 6, 726458. [Google Scholar] [CrossRef]
- Potter, D.; Doyle, J.J. Origins of the African Yam bean (Sphenostylis stenocarpa, leguminosae): Evidence from morphology, isozymes, chloroplast DNA, and linguistics. Econ. Bot. 1992, 46, 276–292. [Google Scholar] [CrossRef]
- Adewale, D.B.; Dumet, D.J. Descriptors for African Yam Bean, Sphenostylis stenocarpa (Hochst ex. A. Rich.) Harms; IITA: Ibadan, Nigeria, 2011; pp. 1–12. [Google Scholar]
- Uguru, M.I.; Madukaife, S.O. Studies on the variability in agronomic and nutritive characteristics of African yam bean (Sphenostylis stenocarpa Hochst ex. A. Rich. Harms). Plant Prod. Res. J. 2001, 6, 10–19. [Google Scholar]
- National Research Council. Lost Crops of Africa; Vegetables National Academic Press: Washington, DC, USA, 2006; Volume II. [Google Scholar]
- Baiyeri, S.O.; Uguru, M.I.; Ogbonna, P.E.; Samuel-Baiyeri, C.C.A.; Okechukwu, R.; Kumaga, F.K.; Amoatey, C. Evaluation of the nutritional composition of the seeds of some selected African yam bean (Sphenostylis stenocarpa Hochst, Ex. A. Rich (Harms)) accessions. J. Agro-Sci. 2018, 17, 37–44. [Google Scholar] [CrossRef]
- Enujiugha, V.N.; Talabi, J.Y.; Malomo, S.A.; Olagunju, A.I. DPPH Radical Scavenging Capacity of Phenolic Extracts from African Yam Bean (Sphenostylis stenocarpa). Food Nutr. Sci. 2012, 2012, 16920. [Google Scholar] [CrossRef]
- Klu, G.Y.P.; Amoatey, H.M.; Bansa, D.; Kumaga, F.K. Cultivation and use of African yam bean (Sphenostylis stenocarpa) in the Volta Region of Ghana. J. Food Technol. Afr. 2001, 6, 74–77. [Google Scholar] [CrossRef]
- Eneh, U.F.; Orjionwe, R.N.; Adindu, C.S. Effect of African Yam Bean (Sphenostylis stenocarpa) on Serum Calcium, Inorganic Phosphate, Uric Acid, and Alkaline Phosphatase Concentration of Male Albino Rats. J. Agric. Sci. 2015, 8. [Google Scholar] [CrossRef]
- Shitta, N.S.; Edemodu, A.C.; Abtew, W.G.; Tesfaye, A.A. A Review on the Cooking Attributes of African Yam Bean (Sphenostylis stenocarpa); IntechOpen: London, UK, 2022; Volume 2. [Google Scholar] [CrossRef]
- Chinonyerem, A.; Obioha, O.; Ebere, U. Amino acid Composition, Amino Acid Scores and Predicted Protein Efficiency Ratio of Raw and Cooked African Yam Bean (Sphenostylis sternocarpa). J. Appl. Life Sci. Int. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Okeola, O.G.; Machuka, J.; Fasidi, I.O. Insecticidal activities of the African yam bean seed lectin on the development of the cowpea beetle and the pod-sucking bug. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production, Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 4–8 September 2000; Fatokun, C.A., Tarawali, S.A., Singh, B.B., Kormawa, P.M., Tamo, M., Eds.; IITA: Ibadan, Nigeria, 2000; Available online: https://hdl.handle.net/10568/100005 (accessed on 16 September 2024).
- Adewale, D.B.; Adegbite, A.E. Investigation of the Breeding Mechanism of African Yam Bean [Fabaceae] (Sphenostylis stenocarpa Hochst. Ex. A. Rich) Harms. Not. Sci. Biol. 2018, 10, 199–204. [Google Scholar] [CrossRef]
- Dafni, A. Pollination Ecology: A Practical Approach; IRL Press, Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Moyib, O.; Gbadegesin, M.; Aina, O.O. Genetic variation within a collection of Nigerian accessions of African yam bean (Sphenostylis stenocarpa) revealed by RAPD primers. Afr. J. Biotechnol. 2008, 7, 1839–1846. [Google Scholar] [CrossRef]
- Ojuederie, O.B.; Balogun, M.O.; Fawole, I.; Igwe, D.O.; Olowolafe, M.O. Assessment of the genetic diversity of African yam bean (Sphenostylis stenocarpa Hochst ex. A Rich. Harms) accessions using amplified fragment length polymorphism (AFLP) markers. Afr. J. Biotechnol. 2014, 13, 1850–1858. [Google Scholar] [CrossRef]
- Adewale, B.D.; Vroh-Bi, I.; Dumet, D.J.; Nnadi, S.; Kehinde, O.B.; Ojo, D.K.; Adegbite, A.E.; Franco, J. Genetic diversity in African yam bean accessions based on AFLP markers: Towards a platform for germplasm improvement and utilization. Plant Genet. Resour. 2015, 13, 111–118. [Google Scholar] [CrossRef]
- Shitta, N.S.; Abberton, M.T.; Adesoye, A.I.; Adewale, B.D.; Oyatomi, O.A. Analysis of genetic diversity of African yam bean using SSR markers derived from cowpea. Plant Genet. Resour. 2016, 14, 50–56. [Google Scholar] [CrossRef]
- Shitta, N.S.; Unachukwu, N.; Edemodu, A.C.; Abebe, A.T.; Oselebe, H.O.; Abtew, W.G. Genetic diversity and population structure of an African yambean (Sphenostylis stenocarpa) collection from IITA GenBank. Sci. Rep. 2022, 12, 4437. [Google Scholar] [CrossRef]
- Aina, A.; Garcia-Oliveira, A.L.; Ilori, C.; Chang, P.L.; Yussuf, M.; Oyatomi, O.; Abberton, M.; Potter, D. Predictive genotype-phenotype relations using genetic diversity in African yam bean (Sphenostylis stenocarpa (Hochst. ex. A. Rich) Harms). BMC Plant Biol. 2021, 21, 547. [Google Scholar] [CrossRef]
- Olomitutu, O.E.; Paliwal, R.; Abe, A.; Oluwole, O.O.; Oyatomi, O.A.; Abberton, M.T. Genome-Wide Association Study Revealed SNP Alleles Associated with Seed Size Traits in African Yam Bean (Sphenostylis stenocarpa (Hochst ex. A. Rich.) Harms). Genes 2022, 13, 2350. [Google Scholar] [CrossRef]
- Duhan, N.; Kaundal, R. LegumeSSRdb: A Comprehensive Microsatellite Marker Database of Legumes for Germplasm Characterization and Crop Improvement. Int. J. Mol. Sci. 2021, 22, 11350. [Google Scholar] [CrossRef]
- Srivastava, S.; Avvaru, A.K.; Sowpati, D.T.; Mishra, R.K. Patterns of microsatellite distribution across eukaryotic genomes. BMC Genom. 2019, 20, 153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sari, D.; Sari, H.; Ikten, C.; Toker, C. Genome-wide discovery of di-nucleotide SSR markers based on whole genome re-sequencing data of Cicer arietinum L. and Cicer reticulatum Ladiz. Sci. Rep. 2023, 13, 10351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Popoola, J.; Ojuederie, O.; Adegbite, A. Neglected and Underutilized legume crops: Improvement and future prospect. In Recent Advances in Grain Crops Research; Agricultural and Food Sciences, Environmental Science; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid Isolation of High Molecular Weight Plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [PubMed]
- Andargie, M.; Pasquet, R.S.; Gowda, B.S.; Muluvi, G.M.; Timko, M.P. Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V. unguiculata (L.) Walp.). Mol. Breed. 2011, 28, 413–420. [Google Scholar] [CrossRef]
- Bohra, A.; Dubey, A.; Saxena, R.K.; Penmetsa, R.V.; Poornima, K.N.; Kumar, N.; Farmer, A.D.; Srivani, G.; Upadhyaya, H.D.; Gothalwal, R.; et al. Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeon pea (Cajanus spp.). BMC Plant Biol. 2011, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, R.; Adegboyega, T.T.; Abberton, M.T.; Faloye, B.; Oyatomi, O.A. Potential of genomics for the improvement of underutilized legumes in sub-Saharan Africa. Legume Sci. 2021, 3, e69. [Google Scholar] [CrossRef]
- Nnamani, C.V.; Afiukwa, C.A.; Oselebe, H.O.; Igwe, D.O.; Uhuo, C.A.; Idika, K.O.; Ezigbo, E.; Oketa, C.N.; Nwankwo, V.O.; Ukwueze, C.K.; et al. Genetic Diversity of some African Yam Bean Accessions in Ebonyi State Assessed using Inter Simple Sequence Repeat (ISSR) markers. J. Underutilized Legumes 2019, 1, 20–33. [Google Scholar]
- Chander, S.; Garcia-Oliveira, A.L.; Gedil, M.; Shah, T.; Otusanya, G.O.; Asiedu, R.; Chigeza, G. Genetic diversity and population structure of soybean lines adapted to sub-Saharan Africa using single nucleotide polymorphism (SNP) markers. Agronomy 2021, 11, 604. [Google Scholar] [CrossRef]
- Paliwal, R.; Abberton, M.T.; Faloye, B.; Oyatomi, O.A. Developing the role of legumes in West Africa under climate change. Curr. Opin. Plant Biol. 2020, 56, 242–258. [Google Scholar] [CrossRef]
- Simko, I.; Eujayl, I.; van Hintum, T.J.L. Empirical evaluation of DArT, SNP, and SSR marker-systems for genotyping, clustering, and assigning sugar beet hybrid varieties into populations. Plant Sci. 2012, 184, 54–62. [Google Scholar] [CrossRef]
- Shonde, T.E.O.; Adebayo, M.A.; Bhadmus, A.A.; Adejumobi, I.I.; Oyatomi, O.A.; Faloye, B.; Abberton, M.T. Diversity Assessment of Winged Bean [Psophocarpus tetragonolobus (L.) DC.] Accessions from IITA GenBank. Agronomy 2023, 13, 2150. [Google Scholar] [CrossRef]
- Wong, Q.N.; Tanzi, A.S.; Ho, W.K.; Malla, S.; Blythe, M.; Karunaratne, A.; Massawe, F.; Mayes, S. Development of Gene-Based SSR Markers in Winged Bean (Psophocarpus tetragonolobus (L.) DC.) for Diversity Assessment. Genes 2017, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Njoku, D.; Gracen, V.; Offei, S.; Asante, I.; Danquah, E.; Egesi, C.; Okogbenin, E. Molecular marker analysis of F1 progenies and their parents for carotenoids inheritance in African cassava (Manihot esculenta Crantz). Afr. J. Biotechnol. 2014, 13, 3999–4007. [Google Scholar] [CrossRef]
S/N | Accession No | Source | GT | FC | SC | SS | PD | SB | ST | SP |
---|---|---|---|---|---|---|---|---|---|---|
1 | TSs-417 | Nigeria | Male | Purplish pink | G/VM/LB | O/OB/RH | NSH | Shiny | Smooth | Red |
2 | TSs-111 | Nigeria | Male | Pale violet | G/VM/LB | O/R/RH | NSH | Shiny | Smooth/Rough | Green |
3 | TSs-78 | Nigeria | Male | Purplish pink | G/VM | O/OB/RH | NSH | Shiny/ Medium | Smooth | Red |
4 | TSs-363 | Nigeria | Female | Pale violet | G/VM/LB | O/OB | NSH | Shiny | Smooth | Green |
5 | TSs-274 | Nigeria | Female | Purplish pink | VM | OV/OB/R/RH | SH/NSH | Shiny | Smooth | Red |
6 | TSs-96 | Nigeria | Female | Violet white | G/VM/LB | O/OB/RH | NSH | Shiny | Smooth/Wrinkled | Red |
Hybrid Crosses | True-to-Type | Total Progeny |
---|---|---|
TSs-274 × TSs-78 | 18 | 28 |
TSs-363 × TSs-111 | 7 | 7 |
TSs-96 × TSs-111 | 15 | 21 |
TSs-96 × TSs-417 | 12 | 21 |
52 | 77 |
Marker | MAF | Allele No | He | Ho | PIC |
---|---|---|---|---|---|
SSR-6701 | 0.687 | 2 | 0.430 | 0.333 | 0.338 |
SSR-6623 | 0.675 | 2 | 0.439 | 0.453 | 0.343 |
SSR-6466 | 0.639 | 4 | 0.500 | 0.643 | 0.424 |
SSR-6577 | 0.699 | 2 | 0.421 | 0.321 | 0.332 |
SSR-6924 | 0.687 | 2 | 0.430 | 0.453 | 0.338 |
SSR-6982 | 0.675 | 2 | 0.439 | 0.566 | 0.343 |
SSR-6294 | 0.675 | 2 | 0.439 | 0.423 | 0.343 |
SSR-6225 | 0.675 | 2 | 0.439 | 0.246 | 0.343 |
SSR-6171 | 0.639 | 4 | 0.500 | 0.643 | 0.424 |
SSR-6730 | 0.687 | 2 | 0.430 | 0.356 | 0.338 |
Mean | 0.673 | 2.4 | 0.447 | 0.4437 | 0.356 |
Source | DF | SS | MS | Est. Var. | % | Fst | P |
---|---|---|---|---|---|---|---|
Among populations | 2 | 13.000 | 6.500 | 1.333 | 57% | 0.571 | 0.009 |
Among individual | 3 | 3.500 | 1.167 | 0.167 | 7% | ||
Within individual | 6 | 5.000 | 0.833 | 0.833 | 36% | ||
Total | 11 | 21.500 | 2.333 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adefiranye, A.O.; Ogunkanmi, L.A.; Adeyemo, O.A.; Shonde Olatunde, T.E.; Paliwal, R.; Abberton, M.T.; Oyatomi, O.A. Analysis of Parent and F1 Progeny Verification in African Yam Bean (Sphenostylis stenocarpa Hochst, Ex. A. Rich. Harms) Using Cowpea SSR Markers. Crops 2024, 4, 480-490. https://doi.org/10.3390/crops4040034
Adefiranye AO, Ogunkanmi LA, Adeyemo OA, Shonde Olatunde TE, Paliwal R, Abberton MT, Oyatomi OA. Analysis of Parent and F1 Progeny Verification in African Yam Bean (Sphenostylis stenocarpa Hochst, Ex. A. Rich. Harms) Using Cowpea SSR Markers. Crops. 2024; 4(4):480-490. https://doi.org/10.3390/crops4040034
Chicago/Turabian StyleAdefiranye, Abimbola O., Liasu A. Ogunkanmi, Oyenike A. Adeyemo, Temitope E. Shonde Olatunde, Rajneesh Paliwal, Michael T. Abberton, and Olaniyi A. Oyatomi. 2024. "Analysis of Parent and F1 Progeny Verification in African Yam Bean (Sphenostylis stenocarpa Hochst, Ex. A. Rich. Harms) Using Cowpea SSR Markers" Crops 4, no. 4: 480-490. https://doi.org/10.3390/crops4040034
APA StyleAdefiranye, A. O., Ogunkanmi, L. A., Adeyemo, O. A., Shonde Olatunde, T. E., Paliwal, R., Abberton, M. T., & Oyatomi, O. A. (2024). Analysis of Parent and F1 Progeny Verification in African Yam Bean (Sphenostylis stenocarpa Hochst, Ex. A. Rich. Harms) Using Cowpea SSR Markers. Crops, 4(4), 480-490. https://doi.org/10.3390/crops4040034