Variations and Commonalities of Farming Systems Based on Ecological Principles
Abstract
:1. Introduction
2. Variants of Farming Systems Based on Ecological Principles
2.1. Agroecology
2.2. Regenerative Agriculture
2.3. Holistic Management
2.4. Carbon Farming
2.5. Organic Farming
2.6. Permaculture
2.7. Biodynamic Farming
2.8. Conservation Agriculture
2.9. Regenerative Organic Farming
3. Overarching Themes of the Variations of Ecological Agriculture Programs and How They Meet the UN’s 13 Principles of Agroecology
4. Challenges Facing the Implementation of the Ecological Agriculture Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lam, D. How the world survived the population bomb: Lessons from 50 years of extraordinary demographic history. Demography 2011, 48, 1231–1262. [Google Scholar] [CrossRef]
- McDonald, B.L. The World Food Crisis and the End of the Postwar Food System. In Food Power: The Rise and Fall of the Postwar American Food System; Oxford Academic: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Jachertz, R.; Nützenadel, A. Coping with hunger? Visions of a global food system, 1930–1960. J. Glob. Hist. 2011, 6, 99–119. [Google Scholar] [CrossRef]
- Smil, V. China’s great famine: 40 years later. BMJ 1999, 319, 1619–1621. [Google Scholar] [CrossRef] [PubMed]
- Riley, B. The Political History of American Food Aid: An Uneasy Benevolence; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Pingali, P. Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef]
- Nelson, A.R.L.E.; Ravichandran, K.; Antony, U. The impact of the green revolution on indigenous crops of India. J. Ethnic Foods 2019, 6, 8. [Google Scholar] [CrossRef]
- Pinstrup-Andersen, P.; Hazell, P.B.R. The impact of the green revolution and prospects for the future. Food Rev. Int. 1985, 1, 1–25. [Google Scholar] [CrossRef]
- Wu, F.; Butz, W.P. The Green Revolution. In The Future of Genetically Modified Crops: Lessons from the Green Revolution, 1st ed.; RAND Corporation: Santa Monica, CA, USA, 2004; pp. 11–38. Available online: http://www.jstor.org/stable/10.7249/mg161rc.11 (accessed on 28 December 2023).
- Davies, W.P. An Historical Perspective from the Green Revolution to the Gene Revolution. Nutr. Rev. 2003, 61, S124–S134. [Google Scholar] [CrossRef] [PubMed]
- Pingali, P. Are the Lessons from the Green Revolution Relevant for Agricultural Growth and Food Security in the Twenty-First Century? In Agricultural Development in Asia and Africa; Estudillo, J.P., Kijima, Y., Sonobe, T., Eds.; Emerging-Economy State and International Policy Studies; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Jackson, W.; Piper, J. The necessary marriage between ecology and agriculture. Ecology 1989, 70, 1091–1993. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.; Matson, P.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Magdoff, F. Ecological agriculture: Principles, Practices, and Constraints. Renew. Agric. Food Syst. 2007, 22, 109–117. [Google Scholar] [CrossRef]
- Dale, V.H.; Brown, S.; Haeuber, R.A.; Hobbs, N.T.; Huntly, N.; Naiman, R.J.; Riebsame, W.E.; Turner, M.G.; Valone, T.J. Ecological principles and guidelines for managing the use of land. Ecol. Appl. 2000, 10, 639–670. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Phil. Trans. R. Soc. B 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.P.; Swinton, S.M. Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture. Front. Ecol. Environ. 2005, 33, 8–46. [Google Scholar] [CrossRef]
- John, D.A.; Babu, G.R. Lessons from the aftermaths of green revolution on food system and health. Front. Sustain. Food Syst. 2021, 5, 644559. [Google Scholar] [CrossRef]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Kremen, C.; Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecol. Soc. 2012, 17, 4. Available online: http://www.jstor.org/stable/26269237 (accessed on 30 December 2023). [CrossRef]
- Wezel, A.; Herren, B.G.; Kerr, R.B.; Barrios, E.; Gonçalves, A.L.R.; Sinclair, F. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 2020, 40, 40. [Google Scholar] [CrossRef]
- Pimentel, D.; Pimentel, M. Comment: Adverse Environmental Consequences of the Green Revolution. Popul. Dev. Rev. 1990, 16, 329–332. [Google Scholar] [CrossRef]
- Porter, S.S.; Sachs, J.L. Agriculture and the disruption of plant-microbial symbiosis. Trends Ecol. Evol. 2020, 35, 426–439. [Google Scholar] [CrossRef]
- Dixon, M.; Rohrbaugh, C.; Afkairin, A.; Vivanco, J. Impacts of the green revolution on rhizosphere microbiology related to nutrient acquisition. Appl. Microbiol. 2022, 2, 992–1003. [Google Scholar] [CrossRef]
- Harwood, J. Could the adverse consequences of the green revolution have been foreseen? How experts responded to unwelcome evidence. Agroecol. Sustain. Food Syst. 2020, 44, 509–535. [Google Scholar] [CrossRef]
- Pingali, P.L.; Rosegrant, M.W. Confronting the environmental consequences of the green revolution in Asia. In Environment and Production Technology Division Discussion Paper No. 2; International Food Policy Research Institute: Washington, DC, USA, 1994; Available online: https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/125528/filename/125559.pdf (accessed on 30 December 2023).
- Conway, G.R.; Barbie, E.B. After the Green Revolution: Sustainable and equitable agricultural development. Futures 1988, 20, 651–670. [Google Scholar] [CrossRef]
- Sustainable Agriculture. Available online: https://www.nal.usda.gov/farms-and-agricultural-production-systems/sustainable-agriculture (accessed on 3 May 2024).
- Gliessman, S.R. 3 Sustainable agriculture: An agroecological perspective. Adv. Plant Pathol. 1995, 11, 45–57. [Google Scholar] [CrossRef]
- Gliessman, S.R. Agroecology and Agroecosystems. In Agroecosystems Analysis, Agronomy Monographs 43; Diane, R., Francis, C., Eds.; American Society of Agronomy, Inc.; Crop Science Society of America, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 2004; pp. 19–29. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronmonogr43.c2 (accessed on 30 December 2023).
- León-Sicard, T.E.; Toro Calderón, J.; Martínez-Bernal, L.F.; Cleves-Leguízamo, J.A. The main agroecological structure (MAS) of the agroecosystems: Concept, methodology and applications. Sustainability 2018, 10, 3131. [Google Scholar] [CrossRef]
- Klages, K.H. Crop ecology and ecological crop geography in the agronomic curriculum. J. Am. Soc. Agron. 1928, 20, 336–353. [Google Scholar] [CrossRef]
- Pimbert, M.; Moeller, N.; Singh, J.; Anderson, C. Agroecology. Oxford Research Encyclopedia of Anthropology. 2021. Available online: https://oxfordre.com/anthropology/view/10.1093/acrefore/9780190854584.001.0001/acrefore-9780190854584-e-298 (accessed on 30 December 2023).
- Bensin, B.M. Agroecological Characteristics Description and Classification of the Local Corn Varieties-Chorotypes. 1928. Available online: https://books.google.co.th/books?id=AffJtgAACAAJ (accessed on 30 December 2023).
- Altieri, M.A. Agroecology the Scientific Basis of Alternative Agriculture; Intermediate Publications: London, UK, 1987; pp. 45–48. [Google Scholar]
- Gliessman, S.R. Agroecology: Researching the Ecological Basis for Sustainable Agriculture. In Agroecology; Gliessman, S.R., Ed.; Ecological Studies; Springer: New York, NY, USA, 1990; Volume 78. [Google Scholar] [CrossRef]
- Thomas, V.G.; Kevan, P.G. Basic principles of agroecology and sustainable agriculture. J. Agric. Environ. Ethics 1993, 6, 1–19. [Google Scholar] [CrossRef]
- Francis, C.; Lieblein, G.; Gliessman, S.R.; Breland, T.A.; Creamer, N.; Salomonsson, L.; Helenius, J.; Rickerl, D.; Salvador, R.; Wiedenhoeft, M.; et al. Agroecology: The ecology of food systems. J. Sustain. Agric. 2003, 22, 99–118. [Google Scholar] [CrossRef]
- Wezel, A.; Bellon, S.; Doré, T.; Francis, C.; Vallod, D.; David, C. Agroecology as a science, a movement and a practice: A review. Agron. Sustain. Dev. 2009, 29, 503–515. [Google Scholar] [CrossRef]
- De Molina, G.M.; Petersen, P.F.; Peña, F.P.; Caporal, F.R. Political Agroecology: Advancing the Transition to Sustainable Food Systems; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Anderson, C.; Bruil, J.; Chappell, M.J.; Kiss, C.; Pimbert, M.P. Agroecology Now! Transformations Towards More Just and Sustainable Food Systems; Palgrave Pivot Series: London, UK, 2020. [Google Scholar]
- Gliessman, S. Defining Agroecology. Agroecol. Sustain. Food Syst. 2018, 42, 599–600. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). The 10 Elements of Agroecology: Guiding the Transition to Sustainable Food and Agricultural Systems. 2018. Available online: https://www.fao.org/documents/card/en/c/I9037EN/ (accessed on 23 March 2024).
- Rosset, P.M.; Martínez-Torres, M.E. Rural social movements and agroecology: Context, theory, and process. Ecol. Soc. 2012, 17, 17. Available online: https://www.jstor.org/stable/26269097 (accessed on 2 April 2024). [CrossRef]
- Acevedo-Osorio, Á.; Chohan, J.K. Agroecology as social movement and practice in Cabrera’s peasant reserve zone, Colombia. Agroecol. Sustain. Food Syst. 2020, 44, 331–351. [Google Scholar] [CrossRef]
- van den Berg, L.; Teixeira, H.M.; Behagel, J.H.; Verschoor, G.; Turnhout, E.; Cardoso, I.M.; Botelho, M.I.V. From managing transitions towards building movements of affect: Advancing agroecological practices and transformation in Brazil. Geoforum 2022, 131, 50–60. [Google Scholar] [CrossRef]
- Rodale, R. Breaking new ground: The search for a sustainable agriculture. Futurist 1983, 1, 15–20. [Google Scholar]
- Schreefel, L.; Schulte, R.P.O.; de Boer, I.J.M.; Pas Schrijver, A.; van Zanten, H.H.E. Regenerative agriculture—The soil is the base. Glob. Food Secur. 2020, 26, 100404. [Google Scholar] [CrossRef]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes. Front. Sustain. Food Syst. 2020, 4, 577723. [Google Scholar] [CrossRef]
- Iowa Soybean Association. Regenerative Ag: A Systems Approach to Soil Health. 2021. Available online: https://www.iasoybeans.com/newsroom/article/isr-regenerative-ag-a-systems-approach-to-soil-health (accessed on 3 May 2024).
- Regeneration International. Why Regenerative Agriculture. Available online: https://regenerationinternational.org/why-regenerative-agriculture/ (accessed on 3 May 2024).
- California Department of Food and Agriculture. Defining Regenerative Agriculture for State Policies and Programs. Available online: https://www.cdfa.ca.gov/RegenerativeAg/ (accessed on 3 May 2024).
- Food and Agriculture Organization of the United Nations. Regenerative Agriculture: Good Practices for Small Scale Agricultural Producers. 2020. Available online: https://www.fao.org/documents/card/en?details=CB6018EN/ (accessed on 3 May 2024).
- Syngenta Group. Regenerative Agriculture. Available online: https://www.syngentagroup.com/regenerative-agriculture (accessed on 3 May 2024).
- Tittonell, P.; El Mujtar, V.; Felix, G.; Kebede, Y.; Laborda, L.; Soto, R.L.; de Vente, J. Regenerative agriculture—Agroecology without politics? Front. Sustain. Food Syst. 2022, 6, 844261. [Google Scholar] [CrossRef]
- Nordborg, N. Holistic Management—A Critical Review of Alan Savory’s Grazing Method; SLU/EPOK—Centre for Organic Food & Farming & Chalmers, Swedish University of Agricultural Sciences & Chalmers: Uppsala, Sweden, 2016; 45p. [Google Scholar]
- Gosnell, H.; Grimm, K.; Goldstein, B.E. A half century of holistic management: What does the evidence reveal? Agric. Hum. Val. 2020, 37, 849–867. [Google Scholar] [CrossRef]
- Fairlie, S. Meat: A Benign Extravagance; Chelsea Green Publishing: White River Junction, VT, USA, 2010; pp. 191–193. [Google Scholar]
- Savory, A. A Framework for Managing Complexity. Available online: https://savory.global/holistic-management/ (accessed on 3 May 2024).
- Lal, R. Carbon farming by recarbonization of agroecosystems. Pedosphere 2023, 33, 676–679. [Google Scholar] [CrossRef]
- Lal, R. Abating climate change and feeding the world through soil carbon sequestration. In Soil as World Heritage; Dent, D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 443–457. [Google Scholar] [CrossRef]
- European Commission. Commission Staff Working Document. Sustainable Carbon Cycles—Carbon Farming Accompanying the Communication from the Commission to the European Parliament and the Council Sustainable Carbon Cycles, SWD/2021/450 Final. Available online: https://op.europa.eu/en/publication-detail/-/publication/d1d1329f-5d8e-11ec-9c6c-01aa75ed71a1/language-en (accessed on 29 March 2024).
- Toensmeier, E. The Carbon Farming Solution: A Global Toolkit of Perennial Crops and Regenerative Agriculture Practices for Climate Change Mitigation and Food Security; Chelsea Green Publishing: White River Junction, VT, USA, 2016; 512p. [Google Scholar]
- Jansson, C.; Faiola, C.; Wingler, A.; Zhu, X.-G.; Kravchenko, A.; de Graaff, M.-A.; Ogden, A.J.; Handakumbura, P.P.; Werner, C.; Beckles, D.M. Crops for Carbon Farming. Front. Plant Sci. 2021, 12, 636709. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Nair, V.D.; Mohan Kumar, B.; Showalter, J.M. Chapter 5—Carbon sequestration in agroforestry systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar]
- Chatterjee, N.; Nair, P.K.R.; Chakraborty, S.; Nair, V.D. Changes in soil carbon stocks across the forest-agroforest-agriculture/pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 2018, 266, 55–67. [Google Scholar] [CrossRef]
- Lal Carbon Center. Carbon Farming Alliance for Research and Management (C-FARM). Available online: https://carbon.osu.edu/c-farm (accessed on 4 May 2024).
- USDA. Report to Congress: A General Assessment of the Role of Agriculture and Forestry in U.S. Carbon Markets. 2023. Available online: https://www.usda.gov/sites/default/files/documents/USDA-General-Assessment-of-the-Role-of-Agriculture-and-Forestry-in-US-Carbon-Markets.pdf (accessed on 4 May 2024).
- Green America. Agriculture and Climate Change. Available online: https://www.greenamerica.org/food-climate/what-carbon-farming (accessed on 4 May 2024).
- Bayer, ForGround. Available online: https://bayerforground.com/carbon-initiative (accessed on 3 March 2024).
- National Corn Growers Association. Carbon Markets. Available online: https://ncga.com/key-issues/other-topics/carbon-markets (accessed on 4 March 2024).
- Raina, N.; Zavalloni, M.; Viaggi, D. Incentive mechanisms of carbon farming contracts: A systematic mapping study. J. Environ. Manag. 2024, 352, 120126. [Google Scholar] [CrossRef]
- Barbato, C.T.; Strong, A.L. Farmer perspectives on carbon markets incentivizing agricultural soil carbon sequestration. NPJ Clim. Action 2023, 2, 26. [Google Scholar] [CrossRef]
- Paull, J. The Betteshanger Summer School: Missing link between biodynamic agriculture and organic farming. J. Org. Syst. 2011, 6, 14–18. [Google Scholar]
- Adamchak, R. Organic Farming. Encyclopedia Britannica, 27 March 2024. Available online: https://www.britannica.com/topic/organic-farming (accessed on 30 March 2024).
- Kuepper, G. A Brief Overview of the History and Philosophy of Organic Agriculture; Kerr Center for Sustainable Agriculture: Poteau, OK, USA, 2010; Available online: https://kerrcenter.com/wp-content/uploads/2014/08/organic-philosophy-report.pdf (accessed on 30 March 2024).
- Northbourne, L. Look to the Land; J. M. Dent: London, UK, 1940. [Google Scholar]
- Walksman, S.A. Humus. Origin, Chemical Composition and Importance Nature; Williams and Wilkins: New York, NY, USA, 1936. [Google Scholar]
- Visser, S.A. Effects of humic substances on plant growth. In Humic Substances: Effects on Soil and Plants; Burns, R.G., Dell’Agnola, G., Miele, S., Nardi, S., Savoini, G., Schnitzer, M., Sequi, P., Vaughan, D., Visser, S., Eds.; Ramo Editoriale degli Agricoltori: Rome, Italy, 1986; pp. 89–135. [Google Scholar]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil. 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Kasper, M.; Freyer, B.; Hülsbergen, K.; Schmid, H.; Friedel, J. Humus balances of different farm production systems in main production areas in Austria. J. Plant Nutr. Soil Sci. 2014, 178, 25–34. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Kavvadias, V.; Sotiropoulos, T.; Papadakis, I.E. Organic Fertilization and Tree Orchards. Agriculture 2021, 11, 692. [Google Scholar] [CrossRef]
- FAO. Organic Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999; Available online: http://www.fao.org/unfao/bodies/COAG/COAG15/X0075E.htm (accessed on 1 April 2024).
- USDA. Introduction to Organic Practices. 2015. Available online: https://www.ams.usda.gov/sites/default/files/media/Organic%20Practices%20Factsheet.pdf (accessed on 4 May 2024).
- Luttikholt, L.W.M. Principles of organic agriculture as formulated by the International Federation of Organic Agriculture Movements. NJAS—Wagen. J. Life Sci. 2007, 54, 347–360. Available online: https://www.sciencedirect.com/science/article/pii/S157352140780008X (accessed on 3 March 2024). [CrossRef]
- Hemenway, T. Gaia’s Garden: A Guide to Home-scale Permaculture; Chelsea Green Publishing: White River Junction, VT, USA, 2009; 328p. [Google Scholar]
- Holmgren, D. Essence of Permaculture. In Permaculture: Principles & Pathways Beyond Sustainability; Holmgren Design Services: Melbourne, Australia, 2007; Available online: https://www.transitionmonty.org/uploads/6/5/4/9/6549206/essence_of_pc_ebook_1.pdf (accessed on 3 March 2024).
- Krebs, J.; Bach, S. Permaculture—Scientific evidence of principles for the agroecological design of farming systems. Sustainability 2018, 10, 3218. [Google Scholar] [CrossRef]
- Kutschera, U. Ernst Haeckel’s biodynamics 1866 and the occult basis of organic farming. Plant Signal Behav. 2016, 11, e1199315. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Santoni, M.; Ferretti, L.; Migliorini, P.; Vazzana, C.; Pacini, G.C. A review of scientific research on biodynamic agriculture. Org. Agric. 2022, 12, 373–396. [Google Scholar] [CrossRef]
- Lejano, R.; Ingram, M.; Ingram, H.M. Narratives of Nature and Science in Alternative Farming Networks. In Power of Narrative in Environmental Networks; MIT Press: Cambridge, MA, USA, 2013; p. 155. [Google Scholar]
- Paull, J. Attending the first organic agriculture course: Rudolf Steiner’s agriculture course at Koberwitz, 1924. Eur. J. Soc. Sci. 2011, 21, 64–70. [Google Scholar]
- Chalker-Scott, L. The science behind biodynamic preparations: A literature review. HortTechnology 2013, 23, 814–819. [Google Scholar] [CrossRef]
- Rigolot, C.; Quantin, M. Biodynamic farming as a resource for sustainability transformations: Potentials and challenges. Agric. Syst. 2022, 200, 103424. [Google Scholar] [CrossRef]
- Muhie, S.H. Concepts, principles, and application of biodynamic farming: A review. Circ. Econ. Sustainability. 2023, 3, 291–304. [Google Scholar] [CrossRef]
- Biodynamic Demeter Alliance. Biodynamic Principles and Practices. Available online: https://www.biodynamics.com/biodynamic-principles-and-practices (accessed on 4 May 2024).
- USDA Organic. US Department of Agriculture. Available online: https://www.usda.gov/topics/organic (accessed on 4 May 2024).
- Food and Agriculture Organization of the United Nations. Conservation Agriculture. Available online: https://www.fao.org/conservation-agriculture/en/ (accessed on 4 May 2024).
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Phil. Trans R. Soc. B 2008, 363, 543–555. [Google Scholar] [CrossRef]
- Li, Y.; Chang, S.X.; Tian, L.; Zhang, Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol. Biochem. 2018, 121, 50–58. [Google Scholar] [CrossRef]
- Abdalla, M.; Osborne, B.; Lanigan, G.; Forristal, D.; Williams, M.; Smith, P.; Jones, M.B. Conservation tillage systems: A review of its consequences for greenhouse gas emissions. Soil Use Manag. 2013, 29, 199–209. [Google Scholar] [CrossRef]
- Cordeau, S.; Gatere, L.; Jat, M.L.; Pittelkow, C.M.; Thierfelder, C. Editorial: Conservation agriculture: Knowledge frontiers around the world. Front. Agron. 2023, 5, 1177412. [Google Scholar] [CrossRef]
- Tufa, A.H.; Kanyamuka, J.S.; Alene, A.; Ngoma, H.; Marenya, P.P.; Thierfelder, C.; Banda, H.; Chikoye, D. Analysis of adoption of conservation agriculture practices in southern Africa: Mixed-methods approach. Front. Sustain. Food Syst. 2023, 7, 1151876. [Google Scholar] [CrossRef]
- Ngoma, H.; Angelsen, A.; Jayne, T.S.; Chapoto, A. Understanding adoption and impacts of conservation agriculture in eastern and southern Africa: A review. Front. Agron. 2021, 3, 671690. [Google Scholar] [CrossRef]
- Regenerative Organic. Regenerative Organic Alliance. [Archived]. 2024. Available online: https://regenorganic.org (accessed on 3 March 2024).
- Norris, K. Agriculture and biodiversity conservation: Opportunity knocks. Conserv. Lett. 2008, 1, 2–11. [Google Scholar] [CrossRef]
- Feber, R.E.; Johnson, P.J.; Chamberlain, D.E.; Firbank, L.G.; Fuller, R.J.; Hart, B.; Manley, W.; Mathews, F.; Norton, L.R.; Townsend, M.; et al. Does organic farming affect biodiversity? In Wildlife Conservation on Farmland Volume 1: Managing for Nature on Lowland Farms; Macdonald, D.W., Feber, R.E., Eds.; Oxford Academic: Oxford, UK, 2015; Available online: https://academic.oup.com/book/26851/chapter-abstract/195873162?redirectedFrom=fulltext (accessed on 3 March 2024).
- Reinhard, J.E.; Geissler, K.; Blaum, N. Grass and ground dwelling beetle community responses to holistic and wildlife grazing management using a cross-fence comparison in Western Kalahari rangeland, Namibia. J. Insect Conserv. 2022, 26, 711–720. [Google Scholar] [CrossRef]
- Frac, M.; Panek, J.; Gryta, A.; Oszust, K.; Pertile, G.; Siegieda, D.; Mącik, M.; Pylak, M.; Imran Pathan, S.; Pietramellara, G. Legume-cereal intercropping as a strategy of regenerative agriculture supporting reverse of biodiversity loss-relevance of microbiome-based research. In ARPHA Conference Abstracts; Pensoft Publishers: Sofia, Bulgaria, 2023; Volume 6, p. e108886. [Google Scholar] [CrossRef]
- Richardson, A.E.; Coonan, E.; Kirkby, C.; Orgill, S. Soil organic matter and carbon sequestration. In Australian Agriculture in 2020: From Conservation to Automation; Pratley, J., Kirkegaard, J., Eds.; Australian Society of Agronomy: Willow Grove, Australia, 2019; pp. 255–271. Available online: http://agronomyaustraliaproceedings.org/index.php/special-publications (accessed on 19 May 2024).
- Sekaran, U.; Lai, L.; Ussiri, D.A.; Kumar, S.; Clay, S. Role of integrated crop-livestock systems in improving agriculture production and addressing food security–A review. J. Agric. Food Res. 2021, 5, 100190. [Google Scholar] [CrossRef]
- Seufert, V.; Austin, S.E.; Badami, M.G.; Turner, S.; Ramankutty, N. The diversity of organic farmer motivations and livelihoods in the Global South–A case study in Kerala, India. Geoforum 2023, 138, 103670. [Google Scholar] [CrossRef]
- Jouzi, Z.; Azadi, H.; Taheri, F.; Zarafshani, K.; Gebrehiwot, K.; Van Passel, S.; Lebailly, P. Organic Farming and Small-Scale Farmers: Main Opportunities and Challenges. Ecol. Econ. 2016, 132, 144–154. [Google Scholar] [CrossRef]
- Ingram, J.; Maye, D.; Kirwan, J.; Curry, N.; Kubinakova, K. Learning in the permaculture community of practice in England: An analysis of the relationship between core practices and boundary processes. J. Agric. Educ. Ext. 2014, 3, 275–290. [Google Scholar] [CrossRef]
- Habib, B.; Fadaee, S. Permaculture: A global community of practice. Environ. Values 2022, 31, 441–462. [Google Scholar] [CrossRef]
- Utter, A.; White, A.; Ernesto Méndez, V.; Morris, K. Co-creation of knowledge in agroecology. Elementa Sci. Anthrop. 2021, 9, 00026. [Google Scholar] [CrossRef]
- Nimmo, E.R.; Nelson, E.; Gómez-Tovar, L.; García, M.M.; Spring, A.; Lacerda, A.E.B.; de Carvalho, A.I.; Blay-Palmer, A. Building an agroecology knowledge network for agrobiodiversity conservation. Conservation 2023, 3, 491–508. [Google Scholar] [CrossRef]
- Regenerative Organic Certified® 2023. Framework for Regenerative Organic Certified®. Available online: https://regenorganic.org/wp-content/uploads/2023/03/Regenerative-Organic-Certified-Framework.pdf (accessed on 7 April 2024).
- Biodynamic Principles and Practices. Biodynamic Association. 2018. Available online: https://www.biodynamics.com/biodynamics-social-justice (accessed on 7 April 2024).
- Luna, J.M.; Dávila, E.R.; Reynoso-Morris, A. Pedagogy of permaculture and food justice. Educ. Found. 2018, 31, 57–85. [Google Scholar]
- Kerr, R.B.; Liebert, J.; Kansanga, M.; Kpienbaareh, D. Human and social values in agroecology: A review. Elem. Sci. Anthrop. 2022, 10, 00090. [Google Scholar] [CrossRef]
- Kennedy, N. Farm to Table: A Journey of Freshness and Trust. The Farming Insider. 2024. Available online: https://thefarminginsider.com/farm-to-table-journey/ (accessed on 7 April 2024).
- Kiss the Ground. 2020. Available online: https://kissthegroundmovie.com/ (accessed on 7 April 2024).
- Hava and Adam Eco-Educational Farm. Available online: https://ecoisrael.org.il/curriculum/ (accessed on 7 April 2024).
- Permaculture Association. Land Tenure and Community Governance. Available online: https://www.permaculture.org.uk/practical-solutions/land-tenure-and-community-governance (accessed on 7 April 2024).
- Badgley, C.; Perfecto, I. Can organic agriculture feed the world? Renew. Agric. Food Syst. 2007, 22, 80–85. [Google Scholar] [CrossRef]
- Muller, A.; Schader, C.; El-Hage Scialabba, N.; Brüggemann, J.; Isensee, A.; Erb, K.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 2017, 8, 1290. [Google Scholar] [CrossRef] [PubMed]
- Jordan, C.F. Can Organic Agriculture Feed the World? In Evolution from a Thermodynamic Perspective; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Kerr, R.B.; Madsen, S.; Stüber, M.; Liebert, J.; Enloe, S.; Borghino, N.; Parros, P.; Mutyambai, D.M.; Prudhon, M.; Wezel, A. Can agroecology improve food security and nutrition? A review. Glob. Food Secur. 2021, 29, 100540. [Google Scholar] [CrossRef]
- Rhodes, C.J. Feeding and healing the world: Through regenerative agriculture and permaculture. Sci. Prog. 2012, 95, 345–446. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative agriculture: An agronomic perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef] [PubMed]
- McGuire, A.D.; Lawrence, D.M.; Koven, C.; Clein, J.S.; Burke, E.; Chen, G.; Jafarov, E.; MacDougall, A.H.; Marchenko, S.; Nicolsky, D.; et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl. Acad. Sci. USA 2018, 115, 3882–3887. [Google Scholar] [CrossRef]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.; Haberi, H.; Creutzig, F. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2016, 114, 8939–8944. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.; Săvulescu, I.; Birsan, M.; Bandoc, G. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 2021, 194, 10697. [Google Scholar] [CrossRef] [PubMed]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.; Rebetez, M.; Rasmann, S. The effect of climate change on invasive crop pests across biomes. Curr. Opin. Insect Sci. 2022, 50, 100895. [Google Scholar] [CrossRef] [PubMed]
- Regenerative Agriculture 101. Available online: https://www.nrdc.org/stories/regenerative-agriculture-101#what-is (accessed on 3 March 2024).
- Baur, P. When farmers are pulled in too many directions: Comparing institutional drivers of food safety and environmental sustainability in California agriculture. Agric. Hum. Values 2020, 37, 1175–1194. [Google Scholar] [CrossRef]
- Daum, T.; Baudron, F.; Birner, R.; Qaim, M.; Grass, I. Addressing agricultural labour issues is key to biodiversity-smart farming. Biol. Conserv. 2023, 284, 110165. [Google Scholar] [CrossRef]
- Cozim-Melges, F.; Ripoll-Bosch, R.; Veen, G.F.; Oggiano, P.; Bianchi, F.J.J.A.; van der Putten, W.H.; van Zanten, H.H.E. Farming practices to enhance biodiversity across biomes: A systematic review. NPJ Biodivers. 2024, 3, 1. [Google Scholar] [CrossRef]
- Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 2020, 4, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Brussaard, L.; Caron, P.; Campbell, B.; Lipper, L.; Mainka, S.; Rabbinge, R.; Babin, D.; Pulleman, M. Reconciling biodiversity conservation and food security: Scientific challenges for new agriculture. Curr. Opin. Environ. Sustain. 2010, 2, 34–42. [Google Scholar] [CrossRef]
- Coquil, X.; Cerf, M.; Auricoste, C.; Joannon, A.; Barcellini, F.; Cayre, P.; Chizallet, M.; Dedieu, B.; Hostiou, N.; Hellec, F.; et al. Questioning the work of farmers, advisors, teachers and researchers in agro-ecological transition. A review. Agron. Sustain. Dev. 2018, 38, 47. [Google Scholar] [CrossRef]
Farming System | Founder/s and Year | Salient Features/Theme |
---|---|---|
Agroecology | Basil Bensin, 1928 | Based on ecological principles with its own subset of clearly defined principles and elements on local and international scales. Integrates research, education, and the food system in its entirety and is more of a social movement in several parts of the world. |
Regenerative agriculture | George Washington Carver, 1940/Robert Rodale, 1980 | Based on ecological principles but with more emphasis on improving overall soil health with ecological methods. Similar to agroecology; some definitions of “regenerative agriculture” include socio-political justice concerns and support for local production systems. |
Holistic management | Alan Savory, 1960s | Based on ecological principles but puts more emphasis on improving soil health by the rotational grazing of animals and the social and economic wellbeing of people living in the landscape. |
Carbon farming | Unknown | Based on ecological principles but with more emphasis on increasing carbon sequestration, improving soil health, and reducing agricultural pollution to mitigate climate change. The system relies on economic incentives in the form of carbon markets. |
Organic farming | Lord Northbourne, 1940 | Based on ecological principles but with more emphasis on building humus for soil health; regulations do not allow the usage of any synthetic products and do not allow the use of GMOs. Registered growers must abide by the regulations to get their products certified as “organic”. In some countries, it is a farming system based on the use of natural inputs instead of synthetic pesticides and fertilizers and one that practices crop rotations, biodiversity, and emphasis on other holistic farming practices. |
Permaculture | David Holmgren and Bill Mollison, 1978 | A farming system based on the philosophy of Holmgren and Mollison. A variation of ecological agriculture with a clearly defined set of stepwise principles that provide unique guidelines for the design, implementation, and maintenance of the agroecosystem. |
Biodynamic farming | Rudolf Steiner, 1924 | A form of ecological agriculture where the farming practices are based on beliefs rooted in cosmic and astrological calendars. A holistic system of farming with a continuum of soil to human health while maintaining its own standards defined by a certification system of its own. Several techniques are similar to “organic agriculture”. |
Conservation agriculture | FAO, 1990s | A form of ecological agriculture with emphasis on three major base principles. These three are minimum mechanical soil disturbance, permanent soil organic cover, and species diversification. |
Regenerative organic farming | Robert Rodale, 1980 | Based on the philosophy of “organic agriculture”. Has a formal regulated process that uses the USDA’s organic certification program but has three additional requirements relating to environmental protection and human welfare and wellbeing. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, A.; Horwitz, D. Variations and Commonalities of Farming Systems Based on Ecological Principles. Crops 2024, 4, 288-307. https://doi.org/10.3390/crops4030021
Shrestha A, Horwitz D. Variations and Commonalities of Farming Systems Based on Ecological Principles. Crops. 2024; 4(3):288-307. https://doi.org/10.3390/crops4030021
Chicago/Turabian StyleShrestha, Anil, and David Horwitz. 2024. "Variations and Commonalities of Farming Systems Based on Ecological Principles" Crops 4, no. 3: 288-307. https://doi.org/10.3390/crops4030021
APA StyleShrestha, A., & Horwitz, D. (2024). Variations and Commonalities of Farming Systems Based on Ecological Principles. Crops, 4(3), 288-307. https://doi.org/10.3390/crops4030021