Vegetative Recovery of Yerba-Mate (Ilex paraguariensis St. Hil) Crop by Coppicing
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Experiment Design
2.3. Follow-Up of the Experiment in 2019
2.4. Follow-Up of the Experiment in 2020
2.5. Data Analysis
3. Results
3.1. Morphological Development during the First Year (2019/September–2019/November)
3.2. Morphological Development during the Second Year (2020/September–2020/November)
3.3. Characteristics of Yerba-Mate Crop and Yield Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valduga, A.T.; Gonçalves, I.L.; Magri, E.; Delalibera Finzer, J.R. Chemistry, pharmacology and new trends in traditional functional and medicinal beverages. Food Res. Int. 2019, 120, 478–503. [Google Scholar] [CrossRef] [PubMed]
- IBGE-SIDRA, Produção Agrícola Municipal—PEVS—Produção da Extração Vegetal e da Silvicultura. 2020. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=destaques (accessed on 1 July 2022).
- Lewinski, C.S.; Gonçalves, I.L.; Piovezan Borges, A.C.; Dartora, N.; de Souza, L.M.; Valduga, A.T. Effects of UV light on the physic-chemical properties of yerba-mate. Nutr. Food Sci. 2015, 45, 221–228. [Google Scholar] [CrossRef]
- Schuler, H.R.; Alarcon, G.G.; Joner, F.; dos Santos, K.L.; Siminski, A.; Siddique, I. Ecosystem services from ecological agroforestry in Brazil: A systematic map of scientific evidence. Land 2022, 11, 83. [Google Scholar] [CrossRef]
- Schmalko, M.E.; Prat Krikum, S.D.; Kanzi, R.G. La Yerba Mate Tecnología de la Producción y Propiedades; EdUNaM: Missiones, Argentina, 2015. [Google Scholar]
- Penteado Junior, J.; Goulart, I.D.R. Poda em erva-mate plantada. In Embrapa Florestas; Embrapa: Colombo, Brazil, 2017; 28p. [Google Scholar]
- Guedes, J.V.C.; d’Avila, M.; Dornelles, S.H.B. Behavior of Hedypathes betulinus (Klug, 1825) on the Paraguay tea plants. Cienc. Rural 2000, 30, 1059–1061. [Google Scholar] [CrossRef] [Green Version]
- Andrade, S.M.M.; Szczerbowski, D.; Vidal, D.M.; Allison, J.D.; Zarbin, P.H.G. Mate recognition by the green mate borer, Hedypathes betulinus (coleoptera: Cerambycidae): The role of cuticular compounds. J. Insect Behav. 2019, 32, 120–133. [Google Scholar] [CrossRef]
- Hallé, F.; Oldeman, R.A.; Tomlinson, P.B. Tropical Trees and Forests: An Architectural Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Guédon, Y.; Costes, E.; Rakocevic, M. Modulation of the yerba-mate metamer production phenology by the cultivation system and the climatic factors. Ecol. Model. 2018, 384, 188–197. [Google Scholar] [CrossRef]
- Stuepp, C.A.; Bitencourt, J.D.; Wendling, I.; Koehler, H.S.; Zuffellato-Ribas, K.C. Epicormic shoot induction through girdling and coppicing in ‘erva-mate’ trees. Ciência Florest. 2016, 26, 1009–1022. [Google Scholar] [CrossRef] [Green Version]
- Santin, D.; Wendling, I.; Benedetti, E.L.; Brondani, G.E.; Reissmann, C.B.; Morandi, D.; Roveda, L.F. Pruning and bark girdling or erva-mate (Ilex paraguariensis) aiming induction of basal sproutings. Pesqui. Florest. Bras. 2008, 56, 97–104. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Rakocevic, M.; Medrado, M.J.S.; Martim, S.F.; Assad, E.D. Sexual dimorphism and seasonal changes of leaf gas exchange in the dioecious tree Ilex paraguariensis grown in two contrasted cultivation types. Ann. Appl. Biol. 2009, 154, 291–301. [Google Scholar] [CrossRef]
- Rinne, P.L.; Kaikuranta, P.M.; van der Schoot, C. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J. 2001, 26, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, E.; Beauchêne, J.; de la Vallée, B.L.; Ruelle, J.; Mangenet, T.; Heuret, P. Dating branch growth units in a tropical tree using morphological and anatomical markers: The case of Parkia velutina Benoist (Mimosoïdeae). Ann. For. Sci. 2012, 69, 543–555. [Google Scholar] [CrossRef] [Green Version]
- Greathouse, D.C.; Laetsch, W.M.; Phinney, B.O. The Shoot-Growth Rhythm of a Tropical Tree, Theobroma cacao. Am. J. Bot. 1971, 58, 281–286. [Google Scholar] [CrossRef]
- Medrado, J.S.M.; Dalzoto, D.N.; Olizeski, A.; Mosele, S.H. Recuperação de ervais degradados. Embrapa Florestas-Comunicado Técnico; Embrapa: Colombo, Brazil, 2002. [Google Scholar]
- Meier, A.R.; Saunders, M.R.; Michler, C.H. Epicormic buds in trees: A review of bud establishment, development and dormancy release. Tree Physiol. 2012, 32, 565–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fumey, D.; Lauri, P.; Guédon, Y.; Godin, C.; Costes, E. How young trees cope with removal of whole or parts of shoots: An analysis of local and distant responses to pruning in 1-year-old apple (Malus × domestica; Rosaceae) trees. Am. J. Bot. 2011, 98, 1737–1751. [Google Scholar] [CrossRef] [PubMed]
- Sansberro, P.; Mroginski, L.; Bottini, R. Stimulation of lateral branch formation on Ilex paraguariensis (Aquifoliaceae) seedlings. Aust. J. Exp. Agric. 2006, 46, 707–710. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development; Sinauer Associates Incorporated: Sunderland, MA, USA, 2015. [Google Scholar]
- Leyser, O. Regulation of shoot branching by auxin. Trends Plant Sci. 2003, 8, 541–545. [Google Scholar] [CrossRef] [PubMed]
Treatments | Height of Cutting—cm (Level) | Month (Level) |
---|---|---|
1 | 10 (−1) | June (−1) |
2 | 40 (+1) | June (−1) |
3 | 10 (−1) | August (+1) |
4 | 40 (+1) | August (+1) |
Number of Primary Branches | |||||
---|---|---|---|---|---|
QS | DF | QM | F | p | |
Month | 9.924 | 1 | 9.924 | 5.6151 | 0.076853 |
Height | 1203.197 | 1 | 1203.197 | 680.8154 | 0.000013 |
Interaction | 18.271 | 1 | 18.271 | 10.3384 | 0.032424 |
Error | 7.069 | 4 | 1.767 | ||
Total | 1238.460 | 7 | |||
Number of secondary branches | |||||
QS | DF | QM | F | p | |
Month | 0.06125 | 1 | 0.06125 | 0.13447 | 0.732411 |
Height | 14.36480 | 1 | 14.36480 | 31.53806 | 0.004941 |
Interaction | 3.56445 | 1 | 3.56445 | 7.82579 | 0.048938 |
Error | 1.82190 | 4 | 0.45547 | ||
Total | 19.81240 | 7 |
Conditions | Biomass | kg/Plant | ||||||
---|---|---|---|---|---|---|---|---|
Parcel | Month | Height | No. of Plants | 2019 | 2021 | 2019 | 2021 | Raise (%) |
6 | August | 40 | 27 | 63 | 82 | 2.33 | 3.04 | |
8 | August | 40 | 27 | 40 | 111 | 1.48 | 4.11 | |
11 | August | 40 | 26 | 54 | 144 | 2.08 | 5.54 | |
Total | 111 | 267 | 428 | 2.41 | 4.23 | 75.5 | ||
7 | August | 10 | 35 | 84 | 65 | 2.40 | 1.86 | |
12 | August | 10 | 29 | 48 | 76 | 1.66 | 2.62 | |
15 | August | 10 | 24 | 40 | 124 | 1.67 | 5.17 | |
Total | 88 | 172 | 265 | 1.95 | 3.01 | 54.3 | ||
5 | June | 40 | 32 | 71 | 107 | 2.22 | 3.34 | |
10 | June | 40 | 22 | 75 | 124 | 3.41 | 5.64 | |
13 | June | 40 | 26 | 37 | 104 | 1.42 | 4.00 | |
Total | 112 | 231 | 397 | 2.06 | 4.32 | 109.7 | ||
4 | June | 10 | 25 | 54 | 25 | 2.16 | 1.00 | |
9 | June | 10 | 22 | 41 | 62 | 1.86 | 2.82 | |
14 | June | 10 | 30 | 87 | 62 | 2.90 | 2.07 | |
Total | 77 | 182 | 149 | 2.36 | 1.94 | −17.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valduga, A.T.; Magri, E.; Cominetti, J.; Gonçalves, I.L.; Navarini Bampi, E.; Cansian, R.L.; Zanin, E.M. Vegetative Recovery of Yerba-Mate (Ilex paraguariensis St. Hil) Crop by Coppicing. Crops 2023, 3, 26-39. https://doi.org/10.3390/crops3010004
Valduga AT, Magri E, Cominetti J, Gonçalves IL, Navarini Bampi E, Cansian RL, Zanin EM. Vegetative Recovery of Yerba-Mate (Ilex paraguariensis St. Hil) Crop by Coppicing. Crops. 2023; 3(1):26-39. https://doi.org/10.3390/crops3010004
Chicago/Turabian StyleValduga, Alice Teresa, Ederlan Magri, Janice Cominetti, Itamar Luís Gonçalves, Edivania Navarini Bampi, Rogério Luís Cansian, and Elisabete Maria Zanin. 2023. "Vegetative Recovery of Yerba-Mate (Ilex paraguariensis St. Hil) Crop by Coppicing" Crops 3, no. 1: 26-39. https://doi.org/10.3390/crops3010004
APA StyleValduga, A. T., Magri, E., Cominetti, J., Gonçalves, I. L., Navarini Bampi, E., Cansian, R. L., & Zanin, E. M. (2023). Vegetative Recovery of Yerba-Mate (Ilex paraguariensis St. Hil) Crop by Coppicing. Crops, 3(1), 26-39. https://doi.org/10.3390/crops3010004