The Sustainable Future of Carbon Farming with Virginia Fanpetals, a Carbon-Negative Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agri-Technical and Rainfall Conditions
2.2. Soil Sampling
2.3. Sampling of Roots for Testing and Determination of Dry Matter
2.4. Sampling of Stems and Determination of Dry Matter
2.5. Carbon Determination in Plant Material
2.6. Statistical Calculations
3. Results
3.1. Biomass Yields
3.2. Carbon Sequestration
4. Discussion
5. Conclusions
- Significant carbon sequestration in the root system and above ground biomass allows Sida to be classified as one of the species limiting the concentration of carbon dioxide in the atmosphere.
- Sida is particularly suitable for cultivation in sandy soils due to the improvement of their mechanical and biological properties.
- On sandy loam soil, the yield of Sida biomass was several times higher than on sandy soil.
- Virginia fanpetals (Sida), due its strong Carbon sequestration and environment benefits can be also called The Species for a Changing World.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rautiainen, A.; Wernick, I.; Waggoner, P.E.; Ausubel, J.H.; Kauppi, P.E. A National and International Analysis of Changing Forest Density. PLoS ONE 2011, 6, e19577. [Google Scholar] [CrossRef] [PubMed]
- Borkowska, H.; Wróblewska, A.; Kolasa, Z. Sida, a new crop (in Polish): Sida nowa roślina uprawna. Fragm. Agron. 1986, 1, 37–42. [Google Scholar]
- Borkowska, H.; Styk, B. Monograph: Virginia fanpetals (Sida hermaphrodita L. Rusby) cultivation and utilization. In Ślazowiec Pensylwański Uprawa i Wykorzystanie; AR University Publishing House: Lublin, Poland, 2006; pp. 1–69. (In Polish) [Google Scholar]
- Borkowska, H.; Molas, R. Yield comparison of four lignocellulosic perennial energy crop species. Biomass Bioenergy 2013, 51, 145–153. [Google Scholar] [CrossRef]
- Molas, R.; Borkowska, H.; Kupczyk, A.; Osiak, J. Virginia Fanpetals (Sida) Biomass Can be Used to Produce High-Quality Bioenergy. Agron. J. 2019, 111, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Molas, R.; Borkowska, H.; Głowacka, A.; Skiba, D. Quantifying the peak yields of four cellulosic Bioenergy Crops in the East-Central Poland. Agron. Sci. (Ann. UMCS Sect. E Agric.) 2020, 1, 29–41. [Google Scholar] [CrossRef]
- Damm, T.; Grande, P.M.; Jablonowski, N.D.; Thiele, B.; Disko, U.; Mann, U.; Schurr, U.; Letitner, W.; Usadel, B.; de María, P.D.; et al. OrganoCat pretreatment a perennial plants: Synergies between a biogenic fractionation and valuable feedstocks. Bioresour. Technol. 2017, 244, 889–896. [Google Scholar] [CrossRef] [PubMed]
- von Gehren, P.; Gansberger, M.; Pichler, W.; Weigl, M.; Feldmeier, S.; Wopienka, E.; Bochmann, G. A practical field trial to assess the potential of Sida hemaphrodita as a versatile, perennial crop for Central Europe. Biomass Bioenergy 2019, 122, 99–108. [Google Scholar] [CrossRef]
- ISO 10390:2021; Soil, Treated Biowaste and Sludge—Determination of pH. Chemical Characterization of Soils: Warsaw, Poland. 2021. Available online: https://www.iso.org/standard/75243.html (accessed on 10 July 2022).
- PN-Z-19012:2020-02; Oznaczanie Składu Granulometrycznego Mineralnego Materiału Glebowego–Metoda Dyfrakcji Laserowej. Wydawnictwo; Polski Komitet Normalizacyjny: Warszaw, Poland, 2020; Available online: https://sklep.pkn.pl/pn-z-19012-2020-02p.html (accessed on 10 July 2022). (In Polish)
- Mocek, A. Soil Science; State Scientific Publisher: Warsaw, Poland, 2015; p. 571. [Google Scholar]
- WRB. World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports, 106; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; ISBN 978-92-5-108369-7. E-ISBN 978-92-5-108370-3. [Google Scholar]
- PN-EN ISO 6507-1:2018-05; Metale–Pomiar Twardości Sposobem Vickersa–Część 1: Metoda Badania; Polski Komitet Normalizacyjny: Warszaw, Poland, 2018. (In Polish)
- AOAC. TM Official Methods of Analysis, 21st ed.; AOAC: Rockville, MD, USA, 2019; Available online: https://www.aoac.org/official-methods-of-analysis-21st-edition-2019/ (accessed on 4 May 2022).
- SAS Institute Inc. SAS/STAT®9.2 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Laudański, Z.; Mańkowski, D. Planning and statistical inference in agricultural research. In Teaching Materials; The Plant Breeding and Acclimatization Institute (IHAR)–National Research Institute: Radzików, Poland, 2007; p. 142. Available online: http://www.ihar.edu.pl/index_en.php (accessed on 10 June 2022).
- Koronacki, J. Statistics, for Students of Technical and Natural Sciences; WNT: Warsaw, Poland, 2009; p. 491. [Google Scholar]
- Kantola, I.B.; Masters, M.D.; de Lucia, E.H. Soil particulate organic matter increases under perennial bioenergy crop agriculture. Soil Biol. Biochem. 2017, 113, 184–191. [Google Scholar] [CrossRef]
- Liebig, M.A.; Schmer, R.M.; Vogel, K.P.; Mitchell, R.B. Soil Carbon Storage by Switchgrass Grown for Bioenergy. Bioenergy Res. 2008, 1, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Agostini, F.; Gregory, A.S.; Richter, G.M. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out? Bioenergy Res. 2015, 8, 1057–1080. [Google Scholar] [CrossRef] [Green Version]
- Lemus, R.; Lal, R. Bioenergy Crops and Carbon Sequestration. Crit. Rev. Plant Sci. 2005, 24, 1–21. [Google Scholar] [CrossRef]
- Wardzińska, K. Wpływ rodzaju podłoża (gleba mineralna, osad pościekowy) na wzrost i rozwój ślazowca pensylwańskiego. Ann. UMCS S. E 2000, 55, 63–74. (In Polish) [Google Scholar]
- Borkowska, H.; Wardzińska, K. Some effects of Sida hermaphrodita R. cultivation on sewage sludge. Pol. J. Environ. Stud. 2003, 12, 111–122. [Google Scholar]
- Borkowska, H.; Styk, B. Ślazowiec pensylwański jako wieloletni przedplon dla niektórych gatunków roślin uprawianych na osadzie pościekowym. Acta Agrophysica 2002, 70, 49–54. (In Polish) [Google Scholar]
- Borkowska, H.; Molas, R.; Kupczyk, A. Virginia fanpetals (Sida hermaphrodita Rusby) cultivated on light soil: Height of yield and biomass productivity. Pol. J. Environ. Stud. 2009, 18, 563–568. [Google Scholar]
- Borkowska, H.; Molas, R. Two extremely different crops, Salix and Sida, as sources of renewable Bioenergy. Biomass Bioenergy 2012, 36, 234–240. [Google Scholar] [CrossRef]
- Nahm, M.; Morhart, C. Virginia mallow (Sida hermaphrodita L. Rusby) as perennial multipurpose crop: Biomass yields, energetic valorization, utilization potentials, and management perspectives. GCB Bioenergy 2018, 10, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Rasse, P.D.; Rumpel, C.; Dignac, M.-F. Is soil carbon mostly root carbon? Mechanism for a specific stabilization. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
- Chimento, C.; Almagro, M.; Amaduci, S. Carbon sequestration potential in perennial bioenergy crops: The importance of organic matter inputs and its physical protection. GCB Bioenergy 2016, 8, 111–121. [Google Scholar] [CrossRef]
- Emmerling, C.; Schmidt, A.; Ruf, T.; von Francken-Welz, H.; Thielen, S. Impact of newly introduced perennial bioenergy crops on soil quality parameters at three different location in W-Germany. J. Plant Nutr. Soil Sci. 2017, 180, 759–767. [Google Scholar] [CrossRef]
- Rauf, T.; Emmerling, C. Soil organic carbon allocation and dynamics under perennial energy crops and their feedback with soil microbial biomass and activity. Soil Use Manag. 2020, 36, 646–657. [Google Scholar] [CrossRef]
- Emmerling, C. Impact of land-use change towards perennial energy crops on earthworm population. Appl. Soil Ecol. 2014, 84, 12–15. [Google Scholar] [CrossRef]
- Jablonowski, N.D.; Kollmann, T.; Meiller, M.; Dohrn, M.; Müller, M.; Nabel, M.; Zapp, P.; Schonhoff, A.; Schrey, D.S. Full assessment of Sida (Sida hermaphrodita) biomass as a solid fuel. GCB Bioenergy 2020, 12, 618–635. [Google Scholar] [CrossRef]
- Cumplido-Martin, L.; Graves, A.R.; Burgess, P.J.; Morhart, C.; Paris, P.; Jablonowski, N.D.; Facciotto, G.; Bury, M.; Martens, R.; Nahm, M. Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Sylphium perfoliatum L.–State of Knowledge. Agronomy 2020, 10, 928. [Google Scholar] [CrossRef]
Year | Type of Soil | ||
---|---|---|---|
Sandy | Sandy Loam | Mean | |
2016 | 1.115a | 0.218a | 0.667a |
2017 | 1.602a | 8.780b | 5.191b |
2018 | 3.190b | 15.760c | 9.475c |
LSDp0.05 for years × type of soils */ for years ** | 0.765 * | 0.383 ** | |
Mean | 1.968a | 8.253b | 5.111 |
LSDp0.05 for type of soils *** | 0.255 *** |
Year | Type of Soil | ||
---|---|---|---|
Sandy | Sandy Loam | Mean | |
2016 | 3.363a | 3.160a | 3.262a |
2017 | 7.007b | 10.367b | 8.687b |
2018 | 9.956c | 19.890c | 14.932c |
LSDp0.05 for years × type of soils */ for years ** | 1.737 * | 0.869 ** | |
Mean | 6.775a | 11.139b | 8.957 |
LSDp0.05 for type of soils *** | 0.579 |
Years | Type of Soil | ||
---|---|---|---|
Sandy | Sandy Loam | Mean | |
2016 | 4.478a | 3.378a | 3.928a |
2017 | 8.609b | 19.147b | 13.878b |
2018 | 13.146c | 35.650c | 24.398c |
LSDp0.05 for years × type of soils */ for years ** | 2.196 * | 1.098 ** | |
Mean | 8.744a | 19.392b | 14.068 |
LSDp0.05 for type of soil *** | 0.732 *** |
Year | Type of Soil | ||
---|---|---|---|
Sand | Sandy Loam | Mean | |
2016 | 0.516a | 0.124a | 0.320a |
2017 | 0.741a | 4.061b | 2.401b |
2018 | 1.475b | 7.280c | 4.382c |
LSDp0.05 for years × type of soils */ for years ** | 0.369 * | 0.184 ** | |
Mean | 0.911a | 3.825b | 2.368 |
LSDp0.05 for type of soil *** | 0.123 *** |
Year | Type of Soil | ||
---|---|---|---|
Sandy | Sandy Loam | Mean | |
2016 | 1.435a | 1.348a | 1.392a |
2017 | 2.990b | 2.990b | 3.707b |
2018 | 4.249c | 4.249c | 6.368c |
LSDp0.05 for years × type of soils */ for years ** | 0.567 * | 0.283 ** | |
Mean | 2.891a | 4.753b | 3.822 |
LSDp0.05 for type of soils *** | 0.198 *** |
Year | Type of Soil | ||
---|---|---|---|
Sandy | Sandy Loam | Mean | |
2016 | 1.951a | 1.472a | 1.712a |
2017 | 3.732b | 8.484b | 6.108b |
2018 | 5.724c | 15.776c | 10.750c |
LSDp0.05 for years × type of soils */ for years ** | 0.927 * | 0.465 ** | |
Mean | 3.802c | 8.577b | 6.190 |
LSDp0.05 for type of soils *** | 0.309 *** |
Agronomic Category of Soil | the Term of the Marking | Percentage of Fractions | ||
---|---|---|---|---|
Sand (0.05–2.00) | Silt (0.05–0.002) | Loam (<0.002) | ||
mm | ||||
Sandy soil | Before cultivating | 76.55 | 21.45 | 2.00 |
After three years of cultivation | 72.33 | 22.95 | 4.72 | |
Sandy loam | Before cultivating | 53.31 | 43.30 | 3.39 |
After three years of cultivation | 56.73 | 38.67 | 4.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molas, R.; Borkowska, H.; Skiba, D.; Sawicka, B.; Skulimowska, E. The Sustainable Future of Carbon Farming with Virginia Fanpetals, a Carbon-Negative Species. Crops 2022, 2, 258-267. https://doi.org/10.3390/crops2030019
Molas R, Borkowska H, Skiba D, Sawicka B, Skulimowska E. The Sustainable Future of Carbon Farming with Virginia Fanpetals, a Carbon-Negative Species. Crops. 2022; 2(3):258-267. https://doi.org/10.3390/crops2030019
Chicago/Turabian StyleMolas, Roman, Halina Borkowska, Dominika Skiba, Barbara Sawicka, and Ewa Skulimowska. 2022. "The Sustainable Future of Carbon Farming with Virginia Fanpetals, a Carbon-Negative Species" Crops 2, no. 3: 258-267. https://doi.org/10.3390/crops2030019
APA StyleMolas, R., Borkowska, H., Skiba, D., Sawicka, B., & Skulimowska, E. (2022). The Sustainable Future of Carbon Farming with Virginia Fanpetals, a Carbon-Negative Species. Crops, 2(3), 258-267. https://doi.org/10.3390/crops2030019