The Future of Engine Knock and Fuel Octane Numbers in the Era of Biofuels and Vehicle Electrification
Abstract
1. Introduction
2. Background
2.1. Knock and Fuel Octane Numbers
2.2. Fuel Sensitivity and K Values
3. Materials and Methodology
3.1. Methodology
3.2. Engine Knock Behaviors
3.2.1. Engine Trends
3.2.2. Shift in Knock-Limited Operating Range
3.2.3. Change in Values for K
3.3. Fuel Anti-Knock Behavior
3.3.1. Current Blends
3.3.2. Biofuels
3.3.3. E-Fuels
3.3.4. Change in Value for S
4. Conclusions and Recommendations
4.1. Engine and Fuel Recommendations for Future Vehicles
4.2. Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFR | Cooperative Fuel Research |
MON | Motor Octane Number |
OI | Octane Index |
PRF | Primary Reference Fuel |
RON | Research Octane Number |
S | Sensitivity |
References
- Heywood, J.B. Internal Combustion Engine Fundamentals, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Pulkrabek, W.W. Engineering Fundamentals of the Internal Combustion Engine, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Swarts, A.; Kalaskar, V. Bridging the Knock Severity Gap to CFR Octane Rating Engines. SAE Int. J. Adv. Curr. Pract. Mobil. 2020, 3, 240–249. [Google Scholar] [CrossRef]
- Corrigan, D.J.; Fontanesi, S. Knock: A Century of Research. SAE Int. J. Engines 2021, 15, 57–127. [Google Scholar] [CrossRef]
- Kalghatgi, G.T. Fuel Anti-Knock Quality—Part I. Engine Studies. SAE Trans. 2001, 110, 1993–2004. [Google Scholar]
- Mittal, V.; Heywood, J.B.; Green, W.H. The Underlying Physics and Chemistry behind Fuel Sensitivity. SAE Int. J. Fuels Lubr. 2010, 3, 256–265. [Google Scholar] [CrossRef]
- ASTM D2699-20; Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D2700-20; Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel. ASTM International: West Conshohocken, PA, USA, 2020.
- Singh, E.; Badra, J.; Mehl, M.; Sarathy, S.M. Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures. Energy Fuels 2017, 31, 1945–1960. [Google Scholar] [CrossRef]
- Mittal, V.; Shah, R. Methods to Increase the Relevancy of the Octane Number Tests; SAE Technical Paper 2021-01-0471; SAE International: Warrendale, PA, USA, 2021. [Google Scholar]
- Leppard, W.R. The Chemical Origin of Fuel Octane Sensitivity. SAE Trans. 1990, 99, 862–876. [Google Scholar]
- Kalghatgi, G.T. Fuel anti-knock quality-Part II. Vehicle Studies-how relevant is Motor Octane Number (MON) in modern engines? SAE Trans. 2001, 110, 2005–2015. [Google Scholar]
- Mittal, V.; Heywood, J.B. The shift in relevance of fuel RON and MON to knock onset in modern SI engines over the last 70 years. SAE Int. J. Engines 2010, 2, 1–10. [Google Scholar] [CrossRef]
- Zhou, Z.; Kar, T.; Yang, Y.; Brear, M.; Xu, J.; Lacey, J.; Leone, T.; Anderson, J.; Shelby, M.; Curtis, E. Mapping K Factor Variations and Its Causes in a Modern Spark-Ignition Engine. Fuel 2021, 290, 120012. [Google Scholar] [CrossRef]
- Szybist, J.P.; Splitter, D.A. Pressure and Temperature Effects on Fuels with Varying Octane Sensitivity at High Load in SI Engines. Combust. Flame 2017, 177, 49–66. [Google Scholar] [CrossRef]
- Ratcliff, M.A.; Burton, J.; Sindler, P.; Christensen, E.; Fouts, L.; McCormick, R.L. Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance; SAE Technical Paper 2018-01-0218; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Lopez-Pintor, D.; Dec, J.; Cho, S. Performance of Octane Index in LTGC Engines from Beyond MON to Beyond RON. Fuel 2023, 341, 127625. [Google Scholar] [CrossRef]
- Suijs, W.; Broekaert, S.; De Cuyper, T.; Verhelst, S. The Sensitivity of Pressure-Based Knock Threshold Values to Alternative Fuels: A Comparison of Methanol vs. Gasoline. Fuel 2024, 362, 130850. [Google Scholar] [CrossRef]
- Phaal, R.; Farrukh, C.J.P.; Probert, D.R. Technology Roadmapping—A Planning Framework for Evolution and Revolution. Technol. Forecast. Soc. Change 2004, 71, 5–26. [Google Scholar] [CrossRef]
- Conway, G.; Joshi, A.; Leach, F.; García, A.; Senecal, P.K. A review of current and future powertrain technologies and trends in 2020. Transp. Eng. 2021, 5, 100080. [Google Scholar] [CrossRef]
- Lyon, P. Bucking Industry Trend, Toyota Chairman Downplays EV Growth Predictions. Forbes, 3 March 2024. Available online: https://www.forbes.com/sites/peterlyon/2024/03/03/bucking-industry-trend-toyota-chairman-downplays-ev-growth-predictions/ (accessed on 24 July 2025).
- Liu, Q.; Xiaoyan, L. Analysis of Investment Value in China’s New Energy Vehicle Industry—Taking BYD Company as an Example. J. Adv. Acad. Res. Stud. 2024, 1, 1–17. [Google Scholar]
- Neves, S.A.; Marques, A.C. What Has Driven the Adoption of BEV and PHEV in the EU? Res. Transp. Bus. Manag. 2025, 60, 101331. [Google Scholar] [CrossRef]
- Bayindir, K.Ç.; Gözüküçük, M.A.; Teke, A. A Comprehensive Overview of Hybrid Electric Vehicle: Powertrain Configurations, Powertrain Control Techniques and Electronic Control Units. Energy Convers. Manag. 2011, 52, 1305–1313. [Google Scholar] [CrossRef]
- Kebriaei, M.; Niasar, A.H.; Asaei, B. Hybrid Electric Vehicles: An Overview. In Proceedings of the 2015 International Conference on Connected Vehicles and Expo (ICCVE), Shenzhen, China, 19–23 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 299–305. [Google Scholar]
- León, R.; Montaleza, C.; Maldonado, J.L.; Tostado-Véliz, M.; Jurado, F. Hybrid Electric Vehicles: A Review of Existing Configurations and Thermodynamic Cycles. Thermo 2021, 1, 134–150. [Google Scholar] [CrossRef]
- Yue, H.; Lin, J.; Dong, P.; Chen, Z.; Xu, X. Configurations and Control Strategies of Hybrid Powertrain Systems. Energies 2023, 16, 725. [Google Scholar] [CrossRef]
- Anton, B.; Florescu, A. Design and Development of Series-Hybrid Automotive Powertrains. IEEE Access 2020, 8, 226026–226041. [Google Scholar] [CrossRef]
- Liu, J.; Peng, H. Modeling and Control of a Power-Split Hybrid Vehicle. IEEE Trans. Control Syst. Technol. 2008, 16, 1242–1251. [Google Scholar]
- Mittal, V. Distribution of Knock Frequencies in Modern Engines Compared to Historical Data. In Proceedings of the SAE International Fuels, Powertrain, and Lubrication Conference, Heidelberg, Germany, 17–19 September 2018. SAE Technical Paper 2018-01-1666. [Google Scholar]
- Fu, J.; Liu, J.; Feng, R.; Yang, Y.; Wang, L.; Wang, Y. Energy and exergy analysis on gasoline engine based on mapping characteristics experiment. Appl. Energy 2013, 102, 622–630. [Google Scholar] [CrossRef]
- Kargul, J.; Stuhldreher, M.; Barba, D.; Schenk, C.; Bohac, S.; McDonald, J.; DeKraker, P.; Alden, J. Benchmarking a 2018 Toyota Camry 2.5-Liter Atkinson-Cycle Engine with Cooled-EGR; SAE Technical Paper 2019-01-0249; SAE: Warrendale, PA, USA, 2019. [Google Scholar]
- Ramirez-Corredores, M.M.; Vega-Montoto, L.; Patzelt, R. The Formulation of a Base Fuel for Gasoline-Type Bioblendstocks. Fuel 2022, 324, 124665. [Google Scholar] [CrossRef]
- Johnson, C.; Moriarty, K.; Alleman, T.; Santini, D. History of Ethanol Fuel Adoption in the United States: Policy, Economics, and Logistics; Report No. NREL/TP-5400-76260; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021.
- Pasadakis, N.; Gaganis, V.; Foteinopoulos, C. Octane Number Prediction for Gasoline Blends. Fuel Process. Technol. 2006, 87, 505–509. [Google Scholar] [CrossRef]
- Demirbas, A.; Balubaid, M.A.; Basahel, A.M.; Ahmad, W.; Sheikh, M.H. Octane Rating of Gasoline and Octane Booster Additives. Pet. Sci. Technol. 2015, 33, 1190–1197. [Google Scholar] [CrossRef]
- Foong, T.M.; Morganti, K.J.; Brear, M.J.; da Silva, G.; Yang, Y.; Dryer, F.L. The Octane Numbers of Ethanol Blended with Gasoline and Its Surrogates. Fuel 2014, 115, 727–739. [Google Scholar] [CrossRef]
- Anderson, J.E.; DiCicco, D.M.; Ginder, J.M.; Kramer, U.; Leone, T.G.; Raney-Pablo, H.E.; Wallington, T.J. High octane number ethanol–gasoline blends: Quantifying the potential benefits in the United States. Fuel 2012, 97, 585–594. [Google Scholar] [CrossRef]
- Giertl, T.; Vitázek, I.; Gaduš, J.; Kollárik, R.; Przydatek, G. Thermochemical Conversion of Biomass into 2nd Generation Biofuel. Processes 2024, 12, 2658. [Google Scholar] [CrossRef]
- Pal, P.; Chew, K.W.; Yen, H.-W.; Lim, J.W.; Lam, M.K.; Show, P.L. Cultivation of Oily Microalgae for the Production of Third-Generation Biofuels. Sustainability 2019, 11, 5424. [Google Scholar] [CrossRef]
- Uddin, M.N.; Wang, F. Fuelling a Clean Future: A Systematic Review of Techno-Economic and Life Cycle Assessments in E-Fuel Development. Appl. Sci. 2024, 14, 7321. [Google Scholar] [CrossRef]
- Dell’Aversano, S.; Villante, C.; Gallucci, K.; Vanga, G.; Di Giuliano, A. E-Fuels: A Comprehensive Review of the Most Promising Technological Alternatives towards an Energy Transition. Energies 2024, 17, 3995. [Google Scholar] [CrossRef]
- Ravi, S.S.; Mazumder, J.; Sun, J.; Brace, C.; Turner, J.W. Techno-Economic Assessment of Synthetic E-Fuels Derived from Atmospheric CO2 and Green Hydrogen. Energy Convers. Manag. 2023, 291, 117271. [Google Scholar] [CrossRef]
- Dybiński, O.; Szabłowski, Ł.; Martsinchyk, A.; Szczęśniak, A.; Milewski, J.; Grzebielec, A.; Shuhayeu, P. Overview of the e-Fuels Market, Projects, and the State of the Art of Production Facilities. Energies 2025, 18, 552. [Google Scholar] [CrossRef]
- Boretti, A. Advancements in E-Fuel Combustion Systems for a Sustainable Energy Future. Int. J. Hydrogen Energy 2024, 79, 258–266. [Google Scholar] [CrossRef]
- Guibet, J.C. Fuels and Engines; Institute Francais du Petrole Publications: Paris, France, 1999. [Google Scholar]
Parameter | Current | Future |
---|---|---|
Cycle | Otto | Atkinson |
Configuration | Engine is primary source of power | Engine works in power-split hybrid configuration |
Intake | Turbocharged (with Direct Injection) | Naturally Aspirated |
Compression Ratio | ~10 | ~13 |
Effective Compression Ratio | - | ~9 |
Temperature at Intake Valve Closing | Lower due to direct injection | Higher due to longer intake duration |
Knock Sensitivity | Lower because of cooler charge and faster burn | Higher due to high geometric ratio and hot residuals |
Operating Conditions | Low engine speeds | Low engine speeds |
Charge Temperature During Combustion | Lower | Higher because of reduced cooling |
Likelihood of Knock | Lower in modern turbo DI due to charge cooling | Still significant despite lower effective CR |
Ignition Timing Limitation | Somewhat limited by knock at high load | Strongly limited at high load |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mittal, V.; Eastlick, R. The Future of Engine Knock and Fuel Octane Numbers in the Era of Biofuels and Vehicle Electrification. Future Transp. 2025, 5, 149. https://doi.org/10.3390/futuretransp5040149
Mittal V, Eastlick R. The Future of Engine Knock and Fuel Octane Numbers in the Era of Biofuels and Vehicle Electrification. Future Transportation. 2025; 5(4):149. https://doi.org/10.3390/futuretransp5040149
Chicago/Turabian StyleMittal, Vikram, and Reagan Eastlick. 2025. "The Future of Engine Knock and Fuel Octane Numbers in the Era of Biofuels and Vehicle Electrification" Future Transportation 5, no. 4: 149. https://doi.org/10.3390/futuretransp5040149
APA StyleMittal, V., & Eastlick, R. (2025). The Future of Engine Knock and Fuel Octane Numbers in the Era of Biofuels and Vehicle Electrification. Future Transportation, 5(4), 149. https://doi.org/10.3390/futuretransp5040149