Transit Quality of Service Assessment Using Smart Data
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Field and Dataset
3.2. Notation
4. Methodology
- k = 1 7:00 a.m.–10:00 a.m.
- k = 2 10:00 a.m.–2:00 p.m.
- k = 3 2:00 p.m.–6:00 p.m.
- k = 4 6:00 p.m.–12:00 p.m.
- k = 1 5:00 a.m.–7:00 a.m.
- k = 2 7:00 a.m.–10:00 a.m.
- k = 3 10:00 a.m.–2:00 p.m.
- k = 4 2:00 p.m.–6:00 p.m.
- k = 5 6:00 p.m.–12:00 p.m.
5. Results
6. Discussion
7. Managerial Insights
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gkiotsalitis, K.; Cats, O. Public transport planning adaption under the COVID-19 pandemic crisis: Literature review of research needs and directions. Transp. Rev. 2021, 41, 374–392. [Google Scholar] [CrossRef]
- Przybylowski, A.; Stelmak, S.; Suchanek, M. Mobility behaviour in view of the impact of the COVID-19 pandemic—Public transport users in Gdansk case study. Sustainability 2021, 13, 364. [Google Scholar] [CrossRef]
- Orro, A.; Novales, M.; Monteagudo, Á.; Pérez-López, J.B.; Bugarín, M.R. Impact on city bus transit services of the COVID-19 lockdown and return to the new Normal: The case of A Coruña (Spain). Sustainability 2020, 12, 7206. [Google Scholar] [CrossRef]
- Jenelius, E.; Cebecauer, M. Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and passenger counts. Transp. Res. Interdiscip. Perspect. 2020, 8, 100242. [Google Scholar] [PubMed]
- Tiikkaja, H.; Viri, R. The effects of COVID-19 epidemic on public transport ridership and frequencies. A case study from Tampere, Finland. Transp. Res. Interdiscip. Perspect. 2021, 10, 100348. [Google Scholar] [CrossRef]
- Rasca, S.; Markvica, K.; Ivanschitz, B.P. Impacts of COVID-19 and pandemic control measures on public transport ridership in European urban areas–The cases of Vienna, Innsbruck, Oslo, and Agder. Transp. Res. Interdiscip. Perspect. 2021, 10, 100376. [Google Scholar] [CrossRef]
- Aparicio, J.T.; Arsenio, E.; Henriques, R. Understanding the impacts of the COVID-19 pandemic on public transportation travel patterns in the City of Lisbon. Sustainability 2021, 13, 8342. [Google Scholar] [CrossRef]
- Taylor, B.D.; Fink, C.N. The Factors Influencing Transit Ridership: A Review and Analysis of the Ridership Literature. Available online: https://escholarship.org/uc/item/3xk9j8m2 (accessed on 8 March 2022).
- TRB. Transit Capacity and Quality of Service Manual, 2nd ed.; Transportation Research Board: Washington, DC, USA, 2003. [Google Scholar]
- Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Gupta, S.K. Collaboration of drone and internet of public safety things in smart cities: An overview of qos and network performance optimization. Drones 2019, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Alsamhi, S.H.; Rajput, N.S. An efficient channel reservation technique for improved QoS for mobile communication deployment using high altitude platform. Wirel. Pers. Commun. 2016, 91, 1095–1108. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Rajput, N.S. Implementation of call admission control technique in HAP for enhanced QoS in wireless network deployment. Telecommun. Syst. 2016, 63, 141–151. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Rajput, N.S. Performance and analysis of propagation models for efficient handoff in high altitude platform system to sustain QoS. In Proceedings of the 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, Bhopal, India, 1–2 March 2014; pp. 1–6. [Google Scholar]
- Van Oort, N.; Cats, O. Improving public transport decision making, planning and operations by using big data: Cases from Sweden and the Netherlands. In Proceedings of the IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 19–24. [Google Scholar]
- Hammerle, M.; Haynes, M.; McNeil, S. Use of automatic vehicle location and passenger count data to evaluate bus operations: Experience of the Chicago Transit Authority, Illinois. Transp. Res. Rec. 2005, 1903, 27–34. [Google Scholar] [CrossRef]
- U.S. Department of Transportation. ITS Transit Fact Sheet. Available online: https://www.pcb.its.dot.gov/ (accessed on 5 March 2022).
- Wilson, N.H.; Zhao, J.; Rahbee, A. The Potential Impact of Automated Data Collection Systems on Urban Public Transport Planning; Springer: Cham, Switzerland, 2009; pp. 1–25. [Google Scholar]
- Ji, Y.; You, Q.; Jiang, S.; Zhang, H.M. Statistical inference on transit route-level origin–destination flows using automatic passenger counter data. J. Adv. Transp. 2015, 49, 724–737. [Google Scholar] [CrossRef]
- Pi, X.; Egge, M.; Whitmore, J.; Silbermann, A.; Qian, Z.S. Understanding transit system performance using avl-apc data: An analytics platform with case studies for the pittsburgh region. J. Public Transp. 2018, 21, 2. [Google Scholar] [CrossRef]
- Feng, W.; Figliozzi, M. Using archived AVL/APC bus data to identify spatial-temporal causes of bus bunching. In Proceedings of the 90th Transportation Research Board Annual Meeting, Washington, DC, USA, 23–27 January 2011; pp. 11–32. [Google Scholar]
- Fadaei, M.; Cats, O. Evaluating the impacts and benefits of public transport design and operational measures. Transp. Policy 2016, 48, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, J.; Chien, S.; Bladikas, A. Estimation of bus arrival times using APC data. J. Public Transp. 2004, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Liu, X.; Xia, J.; Chien, S.I. A dynamic bus-arrival time prediction model based on APC data. Comput.-Aided Civ. Infrastruct. Eng. 2004, 19, 364–376. [Google Scholar] [CrossRef]
- Chen, W.Y.; Chen, Z.Y. A simulation model for transit service unreliability prevention based on AVL-APC data. In Proceedings of the International Conference on Measuring Technology and Mechatronics Automation, Hunan, China, 11–12 April 2009; pp. 184–188. [Google Scholar]
- Shalaby, A.; Farhan, A. Prediction model of bus arrival and departure times using AVL and APC data. J. Public Transp. 2004, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Nuzzolo, A.; Crisalli, U.; Comi, A.; Rosati, L. A mesoscopic transit assignment model including real-time predictive information on crowding. J. Intell. Transp. Syst. 2016, 20, 316–333. [Google Scholar] [CrossRef]
- Ji, Y.; Mishalani, R.G.; McCord, M.R. Transit passenger origin–destination flow estimation: Efficiently combining onboard survey and large automatic passenger count datasets. Transp. Res. Part C Emerg. Technol. 2015, 58, 178–192. [Google Scholar] [CrossRef]
- Jenelius, E. Personalized predictive public transport crowding information with automated data sources. Transp. Res. Part C Emerg. Technol. 2020, 117, 102647. [Google Scholar] [CrossRef]
- Berrebi, S.; Joshi, S.; Watkins, K. Cross-Checking Automated Passenger Counts for Ridership Analysis. J. Public Transp. 2021, 23, 5. [Google Scholar]
- Martinez, J.; Mukhopadhyay, A.; Ayman, A.; Wilbur, M.; Pugliese, P.; Freudberg, D.; Dubey, A. Predicting public transportation load to estimate the probability of social distancing violations. In Proceedings of the Workshop on AI for Urban Mobility at the 35th AAAI Conference on Artificial Intelligence, Online. 8–9 February 2021. [Google Scholar]
- Egu, O.; Bonnel, P. Can we estimate accurately fare evasion without a survey? Results from a data comparison approach in Lyon using fare collection data, fare inspection data and counting data. Public Transp. 2020, 12, 1–26. [Google Scholar] [CrossRef]
- Kumar, P.; Khani, A.; Lind, E.; Levin, J. Estimation and mitigation of epidemic risk on a public transit route using automatic passenger count data. Transp. Res. Rec. 2021, 2675, 94–106. [Google Scholar] [CrossRef]
- Polzin, S.E.; Pendyala, R.M.; Navari, S. Development of time-of-day–based transit accessibility analysis tool. Transp. Res. Record 2002, 1799, 35–41. [Google Scholar] [CrossRef]
- Hensher, D.A.; Houghton, E. Performance-based quality contracts for the bus sector: Delivering social and commercial value for money. Transp. Res. Part B Methodol. 2004, 38, 123–146. [Google Scholar] [CrossRef] [Green Version]
- Kittelson & Associates, Inc.; KFH Group, Inc.; Parsons Brinckerhoff Quade & Douglass, Inc.; Zaworski, K. Transit capacity and quality of service manual. In TCRP Report 100, 2nd ed.; Transportation Research Board: Washington, DC, USA, 2003. [Google Scholar]
Study | Region | Research Question |
---|---|---|
Jenelius [28] | Stockholm, Sweden | Personalized predictive public transport crowding information |
Berrebi et al. [29] | Portland, OR, USA Miami, FL, USA Minneapolis/St. Paul, MN, USA Atlanta, GA, USA | Consistency of APC data for analysis of ridership trends |
Martinez et al. [30] | Two metropolitan areas in the USA | Development of ridership models and identification of social distancing violations |
Egu and Bonel [31] | Lyon, France | Fare irregularity rate |
Kumar et al. [32] | Minneapolis/St. Paul, MN, USA | Extraction of origin–destination demand |
Line | Length (km) | Type of Route | Stops O-D | Stops D-O | Capacity | Period |
---|---|---|---|---|---|---|
154 | 16.2 | Circular | 51 | - | 103 | 15 January 2019 to 15 April 2019 |
171 | 13.1 | Linear | 37 | 34 | 155 | 15 January 2019 to 28 February 2019 |
237 | 13.3 | Circular | 47 | - | 103 | 15 January 2019 to 15 April 2019 |
242 | 7.5 | Circular | 20 | - | 155 | 15 January 2019 to 15 April 2019 |
550 | 20.9 | Linear | 56 | 56 | 155 | 15 January 2019 to 28 February 2019 |
608 | 15.5 | Linear | 42 | 43 | 155 | 15 January 2019 to 28 February 2019 |
732 | 12.7 | Linear | 46 | 45 | 102 | 15 January 2019 to 15 April 2019 |
Bus Line | 5:00–7:00 | 7:00–10:00 | 10:00–14:00 | 14:00–18:00 | 18:00–00:00 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Sd | Mean | Sd | Mean | Sd | Mean | Sd | Mean | Sd | ||
154 | 4.1 | 0.8 | 3.9 | 0.4 | 4.5 | 0.8 | 4.0 | 0.4 | |||
171 | O⇒D | 5.6 | 0.6 | 5.5 | 0.2 | 5.9 | 0.7 | 5.7 | 1.0 | ||
D⇒O | 5.8 | 0.4 | 5.5 | 0.5 | 5.7 | 0.4 | 5.5 | 0.3 | |||
237 | 2.9 | 0.1 | 2.8 | 0.2 | 2.9 | 0.1 | 2.5 | 0.4 | |||
242 | 2.8 | 0.2 | 2.8 | 0.4 | 3.0 | 0.5 | 3.2 | 0.3 | |||
550 | O⇒D | 7.5 | 1.5 | 5.9 | 0.6 | 5.6 | 0.6 | 5.5 | 0.4 | 4.4 | 0.5 |
D⇒O | 5.4 | 1.8 | 5.4 | 1.2 | 5.8 | 1.0 | 5.3 | 1.0 | 5.7 | 1.0 | |
608 | O⇒D | 3.0 | 0.3 | 3.1 | 0.2 | 2.8 | 0.1 | 2.7 | 0.1 | 2.6 | 0.2 |
D⇒O | 3.1 | 0.3 | 3.1 | 0.2 | 3.1 | 0.1 | 3.2 | 0.2 | 3.1 | 0.1 | |
732 | O⇒D | 3.7 | 0.3 | 3.2 | 0.2 | 2.7 | 0.2 | 2.8 | 0.2 | 2.8 | 0.3 |
D⇒O | 3.5 | 0.4 | 2.9 | 0.2 | 2.9 | 0.2 | 3.2 | 0.2 | 3.1 | 0.2 |
Bus Line | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Sd | M | Sd | M | Sd | M | Sd | M | Sd | M | Sd | M | Sd | ||
154 | 4.4 | 0.5 | 4.3 | 0.3 | 4.2 | 0.7 | 4.0 | 0.6 | 4.0 | 0.9 | 4.6 | 1.2 | |||
171 | O⇒D | 5.4 | 1.2 | 5.5 | 0.4 | 6.0 | 0.2 | 5.7 | 0.3 | 5.6 | 0.6 | 5.5 | 0.2 | 6.2 | 0.2 |
D⇒O | 5.8 | 0.5 | 5.9 | 0.3 | 5.6 | 0.5 | 5.6 | 0.4 | 5.4 | 0.5 | 5.7 | 0.3 | 6.3 | 0.3 | |
237 | 3.0 | 0.1 | 2.7 | 0.4 | 2.6 | 0.1 | 2.9 | 0.1 | 2.9 | 0.1 | 2.7 | 0.1 | 2.7 | 0.07 | |
242 | 3.2 | 0.3 | 2.8 | 1.1 | 2.8 | 0.1 | 2.8 | 0.1 | 2.9 | 0.4 | |||||
550 | O⇒D | 5.5 | 0.6 | 5.8 | 0.9 | 5.9 | 0.7 | 5.8 | 1.0 | 5.8 | 1.5 | 6.4 | 0.8 | 5.2 | 1.1 |
D⇒O | 4.4 | 2.0 | 6.1 | 1.0 | 5.2 | 0.2 | 6.1 | 1.5 | 5.5 | 0.6 | 7.7 | 0.0 | 4.9 | 0.9 | |
608 | O⇒D | 3.1 | 0.2 | 2.9 | 0.2 | 2.9 | 0.1 | 2.7 | 0.2 | 2.7 | 0.2 | 2.8 | 0.2 | 3.0 | 0.2 |
D⇒O | 2.8 | 0.1 | 3.2 | 0.2 | 3.0 | 0.1 | 2.5 | 0.1 | 3.0 | 0.2 | 3.1 | 0.1 | 3.4 | 0.2 | |
732 | O⇒D | 3.2 | 0.3 | 2.9 | 0.2 | 2.8 | 0.4 | 3.0 | 0.2 | 2.9 | 0.2 | 2.6 | 0.3 | 3.2 | 0.3 |
D⇒O | 3.1 | 0.1 | 3.1 | 0.2 | 2.8 | 0.2 | 3.1 | 0.2 | 3.0 | 0.2 | 2.8 | 0.2 | 3.5 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazaki, I.; Gioldasis, C.; Giannoulaki, M.; Christoforou, Z. Transit Quality of Service Assessment Using Smart Data. Future Transp. 2022, 2, 414-424. https://doi.org/10.3390/futuretransp2020023
Bazaki I, Gioldasis C, Giannoulaki M, Christoforou Z. Transit Quality of Service Assessment Using Smart Data. Future Transportation. 2022; 2(2):414-424. https://doi.org/10.3390/futuretransp2020023
Chicago/Turabian StyleBazaki, Ioanna, Christos Gioldasis, Maria Giannoulaki, and Zoi Christoforou. 2022. "Transit Quality of Service Assessment Using Smart Data" Future Transportation 2, no. 2: 414-424. https://doi.org/10.3390/futuretransp2020023
APA StyleBazaki, I., Gioldasis, C., Giannoulaki, M., & Christoforou, Z. (2022). Transit Quality of Service Assessment Using Smart Data. Future Transportation, 2(2), 414-424. https://doi.org/10.3390/futuretransp2020023